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Extreme Coefficients in Geographically Weighted Regression and Their Effects on
Mapping
Abstract: This study deals with the issue of extreme coefficients in geographically
weighted regression (GWR) and their effects on mapping coefficients using three datasets
with different spatial resolutions. We found that although GWR yields extreme coefficients
regardless of the resolution of the dataset or types of kernel function, 1) the GWR tends to
generate extreme coefficients for less spatially dense datasets, 2) coefficient maps based on
polygon data representing aggregated areal units are more sensitive to extreme coefficients,
and 3) coefficient maps using bandwidths generated by a fixed calibration procedure are

more vulnerable to the extreme coefficients than adaptive calibration.

Keywords: extreme coefficient; fixed and adaptive calibrations; geographically weighted

regression; Mapping



Extreme Coefficients in Geographically Weighted Regression and Their Effects on Mapping

INTRODUCTION
Cleveland and Devlin (1988) originally introduced local spatial regression techniques. A
subclass of these regressions was renamed ‘geographically weighted regression’ (GWR)
(Brunsdon et al., 1996, 1999, 2001). GWR has recently been applied intensively to test the
assumption that regression parameter are globally stationary (McMillen 1996, Brunsdon et al.,
1996, 1999, 2001; Fotheringham and Brunsdon, 1999; Fotheringham et al., 1998, 2002; Leung et
al., 2000a, 2000b; Huang and Leung, 2002; Yu and Wu, 2004; Laffan et al., 2005; Lambert et al.,
2006; Cho et al., 2006, 2008a; Yu, 2006, 2007; Deller and Lledo, 2007; Partridge and Rickman,
2007; Lo, 2008).

The main appeal of GWR is its ability to generate parameter estimates for every
regression point by using observations in a given neighborhood. Typically, the parameter
estimates are mapped to highlight spatial variation (Mennis, 2006). Resulting maps are thought
to be didactic aids for policymakers, and for summarizing the large amount of data generated by
the procedure. The Google Scholar and Web of Science identified 1,210 web links, with word
searches using ‘GWR’ and “spatial’ (April 10, 2008). An examination of the first 100 papers that
used GWR revealed that 94 papers mapped the parameter estimates in ex post discussion of the
results. Despite the merit and increasing popularity of GWR, there are potentially serious
problems associated with the approach as noted in the literature: 1) spatial error dependence
(Leung et al., 2000b; Fotheringham et al., 2002), 2) potential multicollinearity among local
regression coefficients (Wheeler and Tiefelsdorf, 2005), and 3) extreme coefficients including

sign reversals (Farber and Paez, 2007).



GWR results that have policy implications typically use mapping to present results to
policymakers. The issue of extreme coefficients in GWR is particularly important in these
instances because it directly affects the visual pattern generated by the parameter distribution. Of
the 94 papers that mapped GWR parameter estimates, 51 papers used some form of cluster
analysis (i.e., local indicator of spatial association (LISA, Anselin, 1995), Gi-statistics) or
interpolated data between the GWR regression parameters. Extreme coefficients can severely
affect the determination of spatial clusters (Castro and Singer, 2001) which makes inferences
based on cluster maps generated by GWR tenuous. Ex post interpolation of GWR coefficients
may also introduce ‘phantom’ trends or patterns across a geographic area that would not
otherwise exist in the actual data used to generate those patterns (Anselin, 2001); patterns that
may contribute to biased interpretation and misinformed policies (Lambert et al., 2007).

This paper examines the effects of extreme GWR coefficients generated by a series of
hedonic housing price models on mapping of spatial clusters and their visual interpretation.
Three data sets are compared, each recorded at different spatial resolutions. The first data set is
point data of home sales transaction in Knox County, Tennessee. The second and third data sets
are polygon data. The second data is census-block level information about median home value in
the Southern Appalachian of the U.S. The third data set is at the county-level, including the
change in median home value during the 1990’s for the U.S.

Because the locations of specific census-block groups and counties are proxied by their
centroids coordinates in establishing the neighborhood effect in GWR (i.e., the weight matrix for
the neighborhood size), centroids of larger census-block groups and counties represent larger

areas.” As the spatial scale of data changes, spatial processes exhibit new interactions and

! Mean areas for census-block groups of the Southern Appalachian data and counties of the U.S. data are 9.56 and
979.11 square miles, respectively.



relationship (Nelson et al., 2007). The larger the area represented by the centroid, the wider and
larger the area represented by the optimal neighborhood size if the trace of the weight matrix is
allowed to expand and contract at each location, commonly referred to *adaptive’ function.
Likewise, for the case of parcel level data, less dense data exist in more rural areas because
parcels are more sparsely distributed, thus resulting in larger spatial neighborhoods. On the other
hand, if expansion and contraction of the weight matrix is not allowed and there is a cutoff
threshold (Fotheringham et al., 2002, p.57), the standard errors of the coefficients are higher
because the number of data points used is small. In this case, the kernel is commonly referred to
“fixed’ function.

Thus, one might expect that extreme values in GWR coefficients are likely to be found in
areas where data points are relatively sparse using both fixed and adaptive weight matrices.
Because the size of a census-block group is larger in a more rural area, the county size is larger
in the Western U.S., and a parcel and a census-block group is more sparsely distributed in edge
areas, the hypothesis is equivalent to testing the existence of more extreme coefficients 1) in
more rural areas for the parcel and census-block group data, 2) in the West U.S. region for the
county data, and 3) in edge areas for the parcels and census-block group data. Using the diagonal
elements of a projection matrix estimated using the set of GWR coefficients, extreme
coefficients are detected. Extreme coefficients will inevitably influence any projection of a map

and its interpretation.

DATA
For the example, three hedonic models were estimated, each with different data sets. One data set

and model was used by Cho et al. (2008b) in a study of open space amenity valuation in Knox



County, Tennessee. It consisted of 2,889 observations of single-family house sales during 2000
and land cover information derived from Landsat 7 imagery for 2001. The amenity value of open
space area within a buffer of 1.0 mile drawn around each house sale transaction was estimated in
the study. Cho et al. (2008c) used the second dataset in a hedonic study of the value of spatial
configuration of forests within the Southern Appalachian Highlands. This dataset consisted of
4,915 observations of median housing values at the census-block group level in 2000. The
amenity values of mean patch size, patch density, and edge density, and composition of forest
species for the deciduous, evergreen, and mixed forest classifications were estimated in the study.
Kim (2007) used the third dataset in a hedonic air quality study of the continental U.S. The
dataset consisted of 3,102 observations of median housing values at the county level. The
amenity value of a decrease in total suspended particulates (TSP) was estimated in the study.

Table 1 summarizes the three models.

EMPIRICAL MODEL

Geographically Weighted Regression

The hedonic housing price model is:

Inp, = By(u, )+, B U V)X +&, i=1,...,nk=1,...,m, (1)
where In p, is the natural log of the housing price (or value) of ith observation; x,, is the ith
observation of the k™ of m variables; & is a random error; (u,,v,) denotes the location
coordinates of ith observation; and S, (u;,v;) and g, (u;,v,) are local parameters for ith
observation. The p, for the model using Knox, Southern Appalachian, and U.S. data are housing

sale price, median home value, and change in median home value, respectively. The complete



lists of 43, 29, and 20 explanatory variables used in each model are presented in the Table 1. A
natural log transformation for the distance, dollar, and area-related variables was used and it is

symbolized as Ln(:) in the Table 1.

The GWR estimator is:

B, V) =[(XW (U, v) X)X W (u;,v,)P 2)

where ﬁ represents an nxm matrix with elements ﬁk (u,,v;); X isan nxm matrix containing a
vector of the x, variables; P isa vector of In p,; and W (u,,v;) isan nxn weight matrix in

which the diagonal elements w;; are geographical weights for each of the n observations for
regression point i.

Different kernel functions K(d; /b) determine the diagonal elements of the weight matrix,
with d; the distance between point i and j, b a value that minimizes the residual sum of squares

of predicted values (e.g., a cross-validation (CV) procedure). Fotheringham et al. (2002) suggest

using a fixed Gaussian kernel, with K (d; /b) = exp[ —(d; /b)* /2]; or an adaptive bi-square

function, with K(d; /d,,) = [1—(dij /dmax)z]2 if j is one of the Nth nearest neighbors of i and

K(d; /d,,,) =0otherwise. For the adaptive kernel, dmax is the maximum distance between

max
observation i and its optimal number of neighbors. For the fixed kernel, b is distance that is also
used as a cutoff value for all observations. GWR 3.0 software was used for fitting the model

(Fotheringham et al., 2002).



Screening Extreme Coefficients
Extreme values in GWR coefficients are detected using a construct that follows the basic theory

behind the “hat matrix” commonly used in econometric studies to determine influential data
points. The diagonal elements of the hat matrix are h, = x| (X'X) "x/ . To identify influential or

‘extreme’ observations, Belsley et al. (1980) propose a cutoff of 2k/n, where n is the number of
observations used to fit the model, and k is the number of parameters in the model. Values of h;
exceeding this cut-off exert significant leverage in the coefficient design space, and typically

warrant further investigation. In our approach, we consider the n by k matrix of GWR
coefficients as a surrogate hat matrix; h/ =g, (B'8) B, . Observations with h® values above the

cutoff of 2k/n are considered as extreme GWR coefficients. We use this metric to isolate extreme

GWR coefficients that may influence patterns observed in ex post map making activities.

Coefficient Mapping With and Without Extreme GWR Estimates
GWR parameter estimates are often mapped to facilitate interpretation. This application focuses
on cluster mapping using the GWR coefficients generated from three different hedonic models in
three distinct data sets. The first set of GWR coefficients we map are the coefficients associated
with an open space measure corresponding with the Knox County housing data set. The second
set of GWR coefficients we map correspond with a variable measuring patch density of
evergreen forest found in the census-block group of Southern Appalachia home value data set.
The last set of GWR coefficients we map correspond with an air quality improvement measure
reflected in change in Total Suspended Particulates (TSP) emission density found in the US
county-level home value data set.

Cluster patterns of parameter estimates from the same regression are mapped with and

without the extreme coefficients to investigate the leverage effects of these extraordinary points.



The GWR regressions are based on two runs to compare the sensitivity of the results. The first
run applies an adaptive bi-square function. A fixed Gaussian kernel is used in the second set of
GWR regressions. Maps are generated from each regression with each data set. In an ex post

analysis, Local Indices of Spatial Association (LISA, Anselin, 1995) are estimated to compare

the extent to which extreme GWR coefficients influence cluster formation.?

EMPIRICAL RESULTS
Table 2 shows that distribution of coefficients are quite different, whereas coefficients of
determination (R?) and sums of squared errors (SSE) are fairly close among the GWR estimates
based on the fixed and adaptive calibrations for all three databases. The distance associated with
the fixed bandwidth parameter is shorter in the parcel-level point data (i.e., Knox database),
while bandwidth (e.g., the optimal number of neighbors) estimated by the adaptive kernel is
larger in the same data.

Diagonal elements of the GWR coefficient hat matrices generated from each data set for
the fixed and adaptive estimates are mapped in Figure 1. The extreme coefficients identified by
the 2k/n cutoff across the three datasets indicate that extreme coefficients are located more
frequently near the edge of the study area. The extreme coefficients appear more pronounced for
the estimates generated under the fixed calibration assumption as opposed to those estimated
under the adaptive bandwidth assumption.

The Figure 1 shows there are more extreme coefficients identified in rural areas with
lower densities of observations than in urban areas at the Knox and the Southern Appalachian
datasets. For example, there are no extreme coefficients identified in the city center for the

estimates generated by the fixed calibration procedure in the Knox dataset. Average sizes of

2 An inverse distance weight matrix was used to estimate the LISA.



census-block groups with extreme coefficients in the Southern Appalachian dataset are 5.88%
and 6.24% larger than those with non-extreme coefficients for the fixed and adaptive estimates,
respectively. Note that the greater size of the census-block groups is constructed for areas that
are more rural. Figure 1 also shows that significantly more extreme coefficients are found in the
Western regions than the rest of the country for the coefficients estimated using the fixed
bandwidth in the U.S. dataset. Notably smaller numbers of extreme coefficients are generated for
the coefficients estimated using the adaptive bi-square function than for the estimates generated

by the fixed Gaussian kernel in the U.S. dataset.
We used a Kolmogorov-Smirnov test (KS-test) to determine if the distributions of h’

with and without extreme coefficients were significantly different. The null hypothesis that the
distributions were the same was rejected at the level of 1% in each scenario calibrated using the
fixed kernel. With the adaptive calibration, the null hypothesis of similar distributions was
rejected for the Knox and Southern Appalachian datasets, but not for the U.S. dataset at the 1%
level. This shows, in general, the distribution are statistically different after removing the
extreme coefficients.

More extreme coefficients identified near the edge and in rural areas may be explained by
the smaller number of observations in the bandwidth for the regression near the edge and rural
area than inner points and urban area, respectively. Consequently, in regions where data are
scarce, the standard errors of the coefficients when fixed kernels are used are higher because the
number of data points used is small if cutoff threshold is enforced (Fotheringham et al., 2002).
On the other hand, the extreme coefficients for adaptive estimates may be explained by Farber
and Paez (2007)’s justification of more heterogeneous local neighborhoods resulting from larger

bandwidths in terms of distance. To find the same number of nearest neighbors for the adaptive

10



calibration, a location near the edge or in rural area needs to cover a longer distance than one in
the centre or in urban area, respectively.

Smaller numbers of extreme coefficients are generated by the adaptive calibration
relative to fixed calibration in all three datasets, reflecting greater propensity of the fixed
calibration procedure to generate extreme GWR coefficients. This implies that the number of
extreme coefficients generated by the fixed kernel is greater than the number generated by
adaptive calibration.

Figures 2, 3, and 4 show the LISA cluster maps for the high-high and low-low
coefficients for the fixed and adaptive estimates before and after removing the extreme
coefficients using the three datasets. The spatial patterns of clusters using the Knox dataset in
Figure 2 show apparently little effect of extreme coefficients for both fixed and adaptive
estimates, as the clusters with and without the extreme coefficients are comparable for both
estimates.

The spatial clusters of coefficients associated with patch density of evergreen forest from
the Southern Appalachian dataset shown in Figure 3 are more visibly affected by the extreme
coefficients than the spatial patterns of clusters using the Knox dataset for both cases in Figure 2.
Although the overall pictures of the clusters (i.e., majority of high-high and low-low clustered
areas), are not affected by the extreme coefficients, visible differences due to extreme
coefficients exist in Southern Appalachian estimates. The spatial patterns of clusters using the
U.S. dataset shown in Figure 4 are affected visibly significantly by the extreme coefficients for
both fixed and adaptive estimates. As the extreme coefficients are removed from the LISA
cluster map, most of the clusters in the West disappear in the fixed estimates. It is not clear

whether this result is an artifact of the large geographic unit or it simply indicates that the
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spatially varying coefficients are showing that change in median house value in these regions are
actually more responsive to variation in air quality, or alternatively, there is a form of model
misspecification related to geography that this coefficient is capturing.

Simple statistics of clusters re-confirm the visible pattern of higher effect of extreme
coefficients on cluster mapping in greater size of data points (see Table 2). For example, the %
of observations identified as high-high clusters changed by -1.76%, +4.55%, and +11.27% in
Knox, Southern Appalachian, and U.S. datasets, respectively, by removing the extreme
coefficients for the fixed case. For the adaptive calibration case, the relatively larger effects exist
in the U.S. dataset where the % of observation in the high-high clusters changed by -3.35%,
whereas the changes are -2.82% and +1.07% for the Knox and Southern Appalachian datasets,
respectively. This implies that extreme coefficients can alter the cluster mappings considerably
for both fixed and adaptive estimates. Particularly the effects are greater using greater size of
data points, i.e., county level data such as U.S. dataset in our example.

Removing the extreme coefficient changes distribution of spatial clusters. For example,
changes of cluster pattern appeared in the Southern Appalachian data appears greater than
changes in the Knox data although the % change of observation in the high-high clusters
following the removal of extreme coefficients is greater in the Knox data than in the Southern
Appalachian data. This may be due to visible distinction in the resolution of data (parcels as

opposed to polygons).

CONCLUSIONS

Despite the current popularity of GWR, more and more applied researchers have identified

potentially serious problems with the approach. This study addresses with the issue of extreme

12



coefficients generated by GWR, and their effects on mapping coefficients based on the analysis
of three datasets. We found that although GWR vyields extreme coefficients regardless of the
resolution of the dataset or types of kernel function, 1) the GWR tends to generate extreme
coefficients for less spatially dense datasets, 2) coefficient maps based on polygon data
representing aggregated areal units are more sensitive to extreme coefficients, and 3) coefficient
maps using bandwidths generated by a fixed calibration procedure are more vulnerable to the
extreme coefficients than adaptive calibration.

The causes of the extreme coefficients may be artifacts of the resolution and distribution
of the dataset, spatially varying coefficients, and/or misspecification related to geography
captured by the coefficients. This study suggests that researchers and those who advise
policymakers should be more cautious in interpreting maps as extreme coefficients are likely to
affect maps of cluster patterns and the extreme coefficients may be caused by factors other than
spatially varying coefficients. This leaves us a future research need to develop a model that can

filter extreme coefficients caused by the spatially varying coefficients from all the other sources.
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Table 1. Summary of the three models: Variables used in the model and the data types and

Sources.

Knox County Model

Southern Appalachian
Model

U.S. Model

Dependent Variable
Ln(Housing sale price)

Ln(Median home value)

Ln(Change in median home
value)

Explanatory Variables
Variable Used for Mapping
Ln(Area of open space)

Structural Variables
Ln(Lot size)

Age of house

Brick siding (1, if brick)
Swimming pool (1, if pool)
Garage (1, if garage)
Number of bedrooms
Number of stories
Number of fireplaces
Quality of construction
(1, if excellent or good)
Condition of structure

(1, if excellent or good)
Ln(Total finished area of
house)

Census Block-Group
Variables

Vacancy rate

Housing density
Unemployment rate
Travel time to work
Ln(Median household
income)

Distance Variables
Ln(Distance to central
business district)
Ln(Distance to greenway)
Ln(Distance to railroad)
Ln(Distance to sidewalk)
Ln(Distance to park)
Ln(Distance to golf course)
Ln(Distance to water body)
Ln(Park size)

Ln(Water body size)
High School Dummy

Patch density of evergreen
Forest

Spatial Configuration and
Composition of Forest
Species

Mean patch size of deciduous
forest

Edge density of deciduous
forest

Patch density of deciduous
forest

Mean patch size of evergreen
forest

Edge density of evergreen
forest

Mean patch size of mixed
forest

Edge density of mixed forest
Patch density of mixed forest
Structure Variables

% of house with 3 or more
rooms

% of house with kitchen

% of house with plumbing
Age of house

Census-Block Group
Variables

Urban (1, if 200% in urban)
Interface (1, if in mixed urban-
and-rural)

Ln(Per capita income)
Housing density

Travel time to work
Vacancy rate

Unemployment rate

Stability

% of people with college

Change in TSP emission
density

Structural Variables
Change in % of houses built
in last 10 years

Change in % of houses built
10-20 years ago

Change in % of houses built
before 1939

Change in % of houses
without plumbing
Census-Block Group
Variables

Change in population
density

Change in % of white
Change in % of age above
65

Change in % of persons
with high school graduate
Change in % of persons
with college graduate
Change in % of urban
population

Change in % of persons in
poverty

Ln(Change in household
income)

Change in unemployment
rate

Change in % of
manufacturing employment
Change in % of vacant
house

Change in % of owner-
occupied house

Tax and neighborhood

18



Variables

Doyle

Bearden

Carter

Central

Fulton

Gibbs

Halls

Karns

Powell

Farragut

Austin

Other Spatial Dummy
Variables

Knoxville

Flood

Interface

Urban growth boundary
(1, if in urban growth
boundary)

Planned growth area

(1, if in planned growth area)
Real Estate Market Variable
Season of sale

(1, if April through
September)

degree

% of people over 65 years old
Distance Variables
Ln(Distance to major city)
Ln(Distance to major road)
Ln(Distance to National Park
or National Forest)
Ln(Distance to lake or
reservoir)

Environmental Variables
Elevation

Emission of Nitrogen Oxides

variables

Change in per capita taxes
Environmental Variables
Natural amenity scale
Rural urban continuum
code

Elevation

Data Type
Parcel level point data

Census-block group level
boundary data

County level boundary data

Data Sources

2001 National Land Cover
Data, 2004 Environmental
Systems Research Institute
Data & Maps, GeoL ytics
Census CD, The Knoxuville,
Knox County, KUB
Geographic Information
System (Cho et al. 2008a)

2001 National Land Cover
Data, 2004 Environmental
Systems Research Institute
Data & Maps, GeoL.ytics
Census CD (Cho, Jung, and
Kim 2008)

U.S. EPA 2007, County and
City Data Books 2003,
GeoLytics Census CD,
USDA Economic Research
Service, U.S. Census
Bureau 2007 (Kim 2008)
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Table 2. Goodness of fit, bandwidth, and summary of parameter estimates and clusters with and
without extreme GWR coefficients.

Dataset Knox Southern Appalachian U.S.
Kernel Function Fixed Adaptive  Fixed Adaptive Fixed  Adaptive
Coefficient at Lower -0.020 -0.044 -0.464 -0.622 -0.001 -0.002
Quiartile
Coefficient at Median 0.027 -0.004 0.043 -0.008 -0.000 -0.000
Coefficient at Upper 0.049 0.036 0.895 1.026 0.001 0.000
Quiartile
Adjusted R-square 0.74 0.77 0.78 0.77 0.71 0.71
SSE 187.2 188.0 146.0 155.3 26.1 25.5
Bandwidth® 3.16 1,240 2215 896 195.24° 389
Total Number of Obs. 2,889 2,889 4,915 4,915 3,102 3,102
Number of Observed 201 181 322 284 357 37
Extreme Coefficients (144) (144) (246) (246) (155) (155)
Number With Extreme 1,476 1,273 1,493 1,380 1,029 624
of Obs. in Coefficients
High-high Without 1,326 1,117 1,604 1,350 1,220 514
Cluster  Extreme

Coefficients
Number With Extreme 1,165 1,198 1,729 1,752 829 154
of Obs. in Coefficients
Low-low Without 998 1,133 1,749 1,708 713 418

Cluster  Extreme

Coefficients

% Distance in mile for fixed kernel and number of observation for adaptive kernel.
® Converted from 2.87 decimal degree by estimating the distance in Arcmap that 1.47 decimal
degree is approximately 100 mile.
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Fig. 4.

Moran's | = 0.334

‘- High-high

" | Low-low

Moran's | = 0.730

Moran's | =0.173

Il High-high
Low-low

i

Il High-high
| Low-low

Moran's | = 0.694

« q

Il High-high
Low-low

24



Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

The extreme coefficients identified by the cutoff of 2k/n for fixed (left) and adaptive
(right) estimates using Knox (top), Southern Appalachian (middle) and the US (bottom)
datasets.

The LISA cluster maps for spatial clustering of high-high and low-low coefficients at the
5% level for fixed (top) and adaptive (bottom) estimates before (left) and after (right)
removing the extreme coefficients using Knox dataset

The LISA cluster maps for spatial clustering of high-high and low-low coefficients at the
5% level for fixed (top) and adaptive (bottom) estimates before (left) and after (right)
removing the extreme coefficients using Southern Appalachian dataset.

The LISA cluster maps for spatial clustering of high-high and low-low coefficients at the
5% level for the fixed (top) and adaptive (bottom) estimates before (left) and after (right)

removing the extreme coefficients using US dataset

25



