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Extreme Coefficients in Geographically Weighted Regression and Their Effects on 
Mapping 
 

Abstract: This study deals with the issue of extreme coefficients in geographically 

weighted regression (GWR) and their effects on mapping coefficients using three datasets 

with different spatial resolutions. We found that although GWR yields extreme coefficients 

regardless of the resolution of the dataset or types of kernel function, 1) the GWR tends to 

generate extreme coefficients for less spatially dense datasets, 2) coefficient maps based on 

polygon data representing aggregated areal units are more sensitive to extreme coefficients, 

and 3) coefficient maps using bandwidths generated by a fixed calibration procedure are 

more vulnerable to the extreme coefficients than adaptive calibration. 

 

Keywords:  extreme coefficient; fixed and adaptive calibrations; geographically weighted 

regression; Mapping  
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Extreme Coefficients in Geographically Weighted Regression and Their Effects on Mapping 
 

INTRODUCTION 

Cleveland and Devlin (1988) originally introduced local spatial regression techniques. A 

subclass of these regressions was renamed ‘geographically weighted regression’ (GWR) 

(Brunsdon et al., 1996, 1999, 2001). GWR has recently been applied intensively to test the 

assumption that regression parameter are globally stationary (McMillen 1996, Brunsdon et al., 

1996, 1999, 2001; Fotheringham and Brunsdon, 1999; Fotheringham et al., 1998, 2002; Leung et 

al., 2000a, 2000b; Huang and Leung, 2002; Yu and Wu, 2004; Laffan et al., 2005; Lambert et al., 

2006; Cho et al., 2006, 2008a; Yu, 2006, 2007; Deller and Lledo, 2007; Partridge and Rickman, 

2007; Lo, 2008). 

The main appeal of GWR is its ability to generate parameter estimates for every 

regression point by using observations in a given neighborhood. Typically, the parameter 

estimates are mapped to highlight spatial variation (Mennis, 2006). Resulting maps are thought 

to be didactic aids for policymakers, and for summarizing the large amount of data generated by 

the procedure. The Google Scholar and Web of Science identified 1,210 web links, with word 

searches using ‘GWR’ and ‘spatial’ (April 10, 2008). An examination of the first 100 papers that 

used GWR revealed that 94 papers mapped the parameter estimates in ex post discussion of the 

results. Despite the merit and increasing popularity of GWR, there are potentially serious 

problems associated with the approach as noted in the literature: 1) spatial error dependence 

(Leung et al., 2000b; Fotheringham et al., 2002), 2) potential multicollinearity among local 

regression coefficients (Wheeler and Tiefelsdorf, 2005), and 3) extreme coefficients including 

sign reversals (Farber and Páez, 2007). 
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GWR results that have policy implications typically use mapping to present results to 

policymakers. The issue of extreme coefficients in GWR is particularly important in these 

instances because it directly affects the visual pattern generated by the parameter distribution. Of 

the 94 papers that mapped GWR parameter estimates, 51 papers used some form of cluster 

analysis (i.e., local indicator of spatial association (LISA, Anselin, 1995), Gi-statistics) or 

interpolated data between the GWR regression parameters. Extreme coefficients can severely 

affect the determination of spatial clusters (Castro and Singer, 2001) which makes inferences 

based on cluster maps generated by GWR tenuous. Ex post interpolation of GWR coefficients 

may also introduce ‘phantom’ trends or patterns across a geographic area that would not 

otherwise exist in the actual data used to generate those patterns (Anselin, 2001); patterns that 

may contribute to biased interpretation and misinformed policies (Lambert et al., 2007). 

This paper examines the effects of extreme GWR coefficients generated by a series of 

hedonic housing price models on mapping of spatial clusters and their visual interpretation. 

Three data sets are compared, each recorded at different spatial resolutions. The first data set is 

point data of home sales transaction in Knox County, Tennessee. The second and third data sets 

are polygon data. The second data is census-block level information about median home value in 

the Southern Appalachian of the U.S. The third data set is at the county-level, including the 

change in median home value during the 1990’s for the U.S.  

Because the locations of specific census-block groups and counties are proxied by their 

centroids coordinates in establishing the neighborhood effect in GWR (i.e., the weight matrix for 

the neighborhood size), centroids of larger census-block groups and counties represent larger 

areas.1 As the spatial scale of data changes, spatial processes exhibit new interactions and 

                                                 
1 Mean areas for census-block groups of the Southern Appalachian data and counties of the U.S. data are 9.56 and 
979.11 square miles, respectively.    
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relationship (Nelson et al., 2007). The larger the area represented by the centroid, the wider and 

larger the area represented by the optimal neighborhood size if the trace of the weight matrix is 

allowed to expand and contract at each location, commonly referred to ‘adaptive’ function. 

Likewise, for the case of parcel level data, less dense data exist in more rural areas because 

parcels are more sparsely distributed, thus resulting in larger spatial neighborhoods. On the other 

hand, if expansion and contraction of the weight matrix is not allowed and there is a cutoff 

threshold (Fotheringham et al., 2002, p.57), the standard errors of the coefficients are higher 

because the number of data points used is small. In this case, the kernel is commonly referred to 

‘fixed’ function. 

Thus, one might expect that extreme values in GWR coefficients are likely to be found in 

areas where data points are relatively sparse using both fixed and adaptive weight matrices. 

Because the size of a census-block group is larger in a more rural area, the county size is larger 

in the Western U.S., and a parcel and a census-block group is more sparsely distributed in edge 

areas, the hypothesis is equivalent to testing the existence of more extreme coefficients 1) in 

more rural areas for the parcel and census-block group data, 2) in the West U.S. region for the 

county data, and 3) in edge areas for the parcels and census-block group data. Using the diagonal 

elements of a projection matrix estimated using the set of GWR coefficients, extreme 

coefficients are detected. Extreme coefficients will inevitably influence any projection of a map 

and its interpretation.  

 

DATA 

For the example, three hedonic models were estimated, each with different data sets. One data set 

and model was used by Cho et al. (2008b) in a study of open space amenity valuation in Knox 
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County, Tennessee. It consisted of 2,889 observations of single-family house sales during 2000 

and land cover information derived from Landsat 7 imagery for 2001. The amenity value of open 

space area within a buffer of 1.0 mile drawn around each house sale transaction was estimated in 

the study. Cho et al. (2008c) used the second dataset in a hedonic study of the value of spatial 

configuration of forests within the Southern Appalachian Highlands. This dataset consisted of 

4,915 observations of median housing values at the census-block group level in 2000. The 

amenity values of mean patch size, patch density, and edge density, and composition of forest 

species for the deciduous, evergreen, and mixed forest classifications were estimated in the study. 

Kim (2007) used the third dataset in a hedonic air quality study of the continental U.S. The 

dataset consisted of 3,102 observations of median housing values at the county level. The 

amenity value of a decrease in total suspended particulates (TSP) was estimated in the study. 

Table 1 summarizes the three models. 

 

EMPIRICAL MODEL 

 
Geographically Weighted Regression 

The hedonic housing price model is: 

                          0ln ( , ) ( , )i i i k i i ik ik
p u v u v xβ β ε= + +∑ ,  i = 1, … , n, k = 1, …, m,                    (1) 

where ln ip  is the natural log of the housing price (or value) of ith observation; ikx is the ith 

observation of the kth of m variables; iε  is a random error; ( , )i iu v denotes the location 

coordinates of ith observation; and 0 ( , )i iu vβ  and ( , )k i iu vβ  are local parameters for ith 

observation. The ip  for the model using Knox, Southern Appalachian, and U.S. data are housing 

sale price, median home value, and change in median home value, respectively. The complete 
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lists of 43, 29, and 20 explanatory variables used in each model are presented in the Table 1. A 

natural log transformation for the distance, dollar, and area-related variables was used and it is 

symbolized as Ln( )⋅  in the Table 1. 

The GWR estimator is: 

                                          [ ] 1ˆ( , ) ( ( , ) ) ( , )i i i i i iu v X W u v X X W u v P−′ ′β =                                 (2) 

where β̂  represents an n m×  matrix with elements ˆ ( , )k i iu vβ ; X is an mn ×  matrix containing a 

vector of the ikx  variables; P  is a vector of ln ip ; and ( , )i iW u v  is an nn ×  weight matrix in 

which the diagonal elements wij are geographical weights for each of the n  observations for 

regression point i .  

Different kernel functions ( / )ijK d b determine the diagonal elements of the weight matrix, 

with ijd  the distance between point i and j, b a value that minimizes the residual sum of squares 

of predicted values (e.g., a cross-validation (CV) procedure). Fotheringham et al. (2002) suggest 

using a fixed Gaussian kernel, with 2( / ) exp ( / ) / 2ij ijK d b d b⎡ ⎤= −⎣ ⎦ ; or an adaptive bi-square 

function, with 
22

max max( / ) 1 ( / )ij ijK d d d d⎡ ⎤= −⎣ ⎦  if j is one of the Nth nearest neighbors of i and 

max( / ) 0ijK d d = otherwise. For the adaptive kernel, dmax is the maximum distance between 

observation i and its optimal number of neighbors. For the fixed kernel, b is distance that is also 

used as a cutoff value for all observations. GWR 3.0 software was used for fitting the model 

(Fotheringham et al., 2002). 

 

 

 



 8

Screening Extreme Coefficients  

Extreme values in GWR coefficients are detected using a construct that follows the basic theory 

behind the ‘hat matrix’ commonly used in econometric studies to determine influential data 

points. The diagonal elements of the hat matrix are iiih xXXx ′′′= −1)( . To identify influential or 

‘extreme’ observations, Belsley et al. (1980) propose a cutoff of 2k/n, where n is the number of 

observations used to fit the model, and k is the number of parameters in the model. Values of hi 

exceeding this cut-off exert significant leverage in the coefficient design space, and typically 

warrant further investigation. In our approach, we consider the n by k matrix of GWR 

coefficients as a surrogate hat matrix; iiih ββββ ′′= −1)(β . Observations with ihβ  values above the 

cutoff of 2k/n are considered as extreme GWR coefficients. We use this metric to isolate extreme 

GWR coefficients that may influence patterns observed in ex post map making activities.  

 
Coefficient Mapping With and Without Extreme GWR Estimates   

GWR parameter estimates are often mapped to facilitate interpretation. This application focuses 

on cluster mapping using the GWR coefficients generated from three different hedonic models in 

three distinct data sets. The first set of GWR coefficients we map are the coefficients associated 

with an open space measure corresponding with the Knox County housing data set. The second 

set of GWR coefficients we map correspond with a variable measuring patch density of 

evergreen forest found in the census-block group of Southern Appalachia home value data set. 

The last set of GWR coefficients we map correspond with an air quality improvement measure 

reflected in change in Total Suspended Particulates (TSP) emission density found in the US 

county-level home value data set.  

Cluster patterns of parameter estimates from the same regression are mapped with and 

without the extreme coefficients to investigate the leverage effects of these extraordinary points. 
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The GWR regressions are based on two runs to compare the sensitivity of the results. The first 

run applies an adaptive bi-square function. A fixed Gaussian kernel is used in the second set of 

GWR regressions. Maps are generated from each regression with each data set. In an ex post 

analysis, Local Indices of Spatial Association (LISA, Anselin, 1995) are estimated to compare 

the extent to which extreme GWR coefficients influence cluster formation.2  

 

EMPIRICAL RESULTS 

Table 2 shows that distribution of coefficients are quite different, whereas coefficients of 

determination (R2) and sums of squared errors (SSE) are fairly close among the GWR estimates 

based on the fixed and adaptive calibrations for all three databases. The distance associated with 

the fixed bandwidth parameter is shorter in the parcel-level point data (i.e., Knox database), 

while bandwidth (e.g., the optimal number of neighbors) estimated by the adaptive kernel is 

larger in the same data.  

Diagonal elements of the GWR coefficient hat matrices generated from each data set for 

the fixed and adaptive estimates are mapped in Figure 1. The extreme coefficients identified by 

the 2k/n cutoff across the three datasets indicate that extreme coefficients are located more 

frequently near the edge of the study area. The extreme coefficients appear more pronounced for 

the estimates generated under the fixed calibration assumption as opposed to those estimated 

under the adaptive bandwidth assumption.  

The Figure 1 shows there are more extreme coefficients identified in rural areas with 

lower densities of observations than in urban areas at the Knox and the Southern Appalachian 

datasets. For example, there are no extreme coefficients identified in the city center for the 

estimates generated by the fixed calibration procedure in the Knox dataset. Average sizes of 
                                                 
2 An inverse distance weight matrix was used to estimate the LISA.  
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census-block groups with extreme coefficients in the Southern Appalachian dataset are 5.88% 

and 6.24% larger than those with non-extreme coefficients for the fixed and adaptive estimates, 

respectively. Note that the greater size of the census-block groups is constructed for areas that 

are more rural. Figure 1 also shows that significantly more extreme coefficients are found in the 

Western regions than the rest of the country for the coefficients estimated using the fixed 

bandwidth in the U.S. dataset. Notably smaller numbers of extreme coefficients are generated for 

the coefficients estimated using the adaptive bi-square function than for the estimates generated 

by the fixed Gaussian kernel in the U.S. dataset.  

We used a Kolmogorov-Smirnov test (KS-test) to determine if the distributions of ihβ  

with and without extreme coefficients were significantly different. The null hypothesis that the 

distributions were the same was rejected at the level of 1% in each scenario calibrated using the 

fixed kernel. With the adaptive calibration, the null hypothesis of similar distributions was 

rejected for the Knox and Southern Appalachian datasets, but not for the U.S. dataset at the 1% 

level. This shows, in general, the distribution are statistically different after removing the 

extreme coefficients.   

More extreme coefficients identified near the edge and in rural areas may be explained by 

the smaller number of observations in the bandwidth for the regression near the edge and rural 

area than inner points and urban area, respectively. Consequently, in regions where data are 

scarce, the standard errors of the coefficients when fixed kernels are used are higher because the 

number of data points used is small if cutoff threshold is enforced (Fotheringham et al., 2002). 

On the other hand, the extreme coefficients for adaptive estimates may be explained by Farber 

and Páez (2007)’s justification of more heterogeneous local neighborhoods resulting from larger 

bandwidths in terms of distance. To find the same number of nearest neighbors for the adaptive 
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calibration, a location near the edge or in rural area needs to cover a longer distance than one in 

the centre or in urban area, respectively.  

Smaller numbers of extreme coefficients are generated by the adaptive calibration 

relative to fixed calibration in all three datasets, reflecting greater propensity of the fixed 

calibration procedure to generate extreme GWR coefficients. This implies that the number of 

extreme coefficients generated by the fixed kernel is greater than the number generated by 

adaptive calibration.  

Figures 2, 3, and 4 show the LISA cluster maps for the high-high and low-low 

coefficients for the fixed and adaptive estimates before and after removing the extreme 

coefficients using the three datasets. The spatial patterns of clusters using the Knox dataset in 

Figure 2 show apparently little effect of extreme coefficients for both fixed and adaptive 

estimates, as the clusters with and without the extreme coefficients are comparable for both 

estimates.  

The spatial clusters of coefficients associated with patch density of evergreen forest from 

the Southern Appalachian dataset shown in Figure 3 are more visibly affected by the extreme 

coefficients than the spatial patterns of clusters using the Knox dataset for both cases in Figure 2. 

Although the overall pictures of the clusters (i.e., majority of high-high and low-low clustered 

areas), are not affected by the extreme coefficients, visible differences due to extreme 

coefficients exist in Southern Appalachian estimates. The spatial patterns of clusters using the 

U.S. dataset shown in Figure 4 are affected visibly significantly by the extreme coefficients for 

both fixed and adaptive estimates. As the extreme coefficients are removed from the LISA 

cluster map, most of the clusters in the West disappear in the fixed estimates. It is not clear 

whether this result is an artifact of the large geographic unit or it simply indicates that the 
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spatially varying coefficients are showing that change in median house value in these regions are 

actually more responsive to variation in air quality, or alternatively, there is a form of model 

misspecification related to geography that this coefficient is capturing.  

Simple statistics of clusters re-confirm the visible pattern of higher effect of extreme 

coefficients on cluster mapping in greater size of data points (see Table 2). For example, the % 

of observations identified as high-high clusters changed by -1.76%, +4.55%, and +11.27% in 

Knox, Southern Appalachian, and U.S. datasets, respectively, by removing the extreme 

coefficients for the fixed case. For the adaptive calibration case, the relatively larger effects exist 

in the U.S. dataset where the % of observation in the high-high clusters changed by -3.35%, 

whereas the changes are -2.82% and +1.07% for the Knox and Southern Appalachian datasets, 

respectively. This implies that extreme coefficients can alter the cluster mappings considerably 

for both fixed and adaptive estimates. Particularly the effects are greater using greater size of 

data points, i.e., county level data such as U.S. dataset in our example. 

Removing the extreme coefficient changes distribution of spatial clusters. For example, 

changes of cluster pattern appeared in the Southern Appalachian data appears greater than 

changes in the Knox data although the % change of observation in the high-high clusters 

following the removal of extreme coefficients is greater in the Knox data than in the Southern 

Appalachian data. This may be due to visible distinction in the resolution of data (parcels as 

opposed to polygons).   

 

CONCLUSIONS 

Despite the current popularity of GWR, more and more applied researchers have identified 

potentially serious problems with the approach. This study addresses with the issue of extreme 
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coefficients generated by GWR, and their effects on mapping coefficients based on the analysis 

of three datasets. We found that although GWR yields extreme coefficients regardless of the 

resolution of the dataset or types of kernel function, 1) the GWR tends to generate extreme 

coefficients for less spatially dense datasets, 2) coefficient maps based on polygon data 

representing aggregated areal units are more sensitive to extreme coefficients, and 3) coefficient 

maps using bandwidths generated by a fixed calibration procedure are more vulnerable to the 

extreme coefficients than adaptive calibration.  

 The causes of the extreme coefficients may be artifacts of the resolution and distribution 

of the dataset, spatially varying coefficients, and/or misspecification related to geography 

captured by the coefficients. This study suggests that researchers and those who advise 

policymakers should be more cautious in interpreting maps as extreme coefficients are likely to 

affect maps of cluster patterns and the extreme coefficients may be caused by factors other than 

spatially varying coefficients. This leaves us a future research need to develop a model that can 

filter extreme coefficients caused by the spatially varying coefficients from all the other sources.  
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Table 1. Summary of the three models: Variables used in the model and the data types and 
sources. 

Knox County Model Southern Appalachian 
Model 

U.S. Model 

Dependent Variable   
Ln(Housing sale price) Ln(Median home value) Ln(Change in median home 

value) 
Explanatory Variables   
Variable Used for Mapping 
Ln(Area of open space) 

 
Patch density of evergreen 
Forest 

 
Change in TSP emission 
density 

Structural Variables 
Ln(Lot size) 
Age of house 
Brick siding (1, if brick) 
Swimming pool (1, if pool) 
Garage (1, if garage) 
Number of bedrooms 
Number of stories 
Number of fireplaces 
Quality of construction 
(1, if excellent or good) 
Condition of structure 
(1, if excellent or good) 
Ln(Total finished area of 
house) 
Census Block-Group 
Variables 
Vacancy rate 
Housing density 
Unemployment rate 
Travel time to work 
Ln(Median household 
income) 
Distance Variables 
Ln(Distance to central 
business district) 
Ln(Distance to greenway) 
Ln(Distance to railroad) 
Ln(Distance to sidewalk) 
Ln(Distance to park) 
Ln(Distance to golf course) 
Ln(Distance to water body) 
Ln(Park size) 
Ln(Water body size) 
High School Dummy 

Spatial Configuration and 
Composition of Forest 
Species  
Mean patch size of deciduous 
forest 
Edge density of deciduous 
forest 
Patch density of deciduous 
forest 
Mean patch size of evergreen 
forest 
Edge density of evergreen 
forest 
Mean patch size of mixed 
forest 
Edge density of mixed forest 
Patch density of mixed forest 
Structure Variables 
% of house with 3 or more 
rooms 
% of house with kitchen 
% of house with plumbing 
Age of house 
Census-Block Group 
Variables 
Urban (1, if 100% in urban) 
Interface (1, if in mixed urban-
and-rural) 
Ln(Per capita income) 
Housing density 
Travel time to work 
Vacancy rate 
Unemployment rate 
Stability 
% of people with college 

Structural Variables 
Change in % of houses built 
in last 10 years 
Change in % of houses built 
10-20 years ago 
Change in % of houses built 
before 1939 
Change in % of houses 
without plumbing 
Census-Block Group 
Variables 
Change in population 
density 
Change in % of white 
Change in % of age above 
65 
Change in % of persons 
with high school graduate 
Change in % of persons 
with college graduate 
Change in % of urban 
population 
Change in % of persons in 
poverty 
Ln(Change in household 
income) 
Change in unemployment 
rate 
Change in % of 
manufacturing employment 
Change in % of vacant 
house 
Change in % of owner-
occupied house 
Tax and neighborhood 
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Variables 
Doyle 
Bearden 
Carter 
Central 
Fulton 
Gibbs 
Halls 
Karns 
Powell 
Farragut 
Austin 
Other Spatial Dummy 
Variables 
Knoxville 
Flood 
Interface 
Urban growth boundary  
(1, if in urban growth 
boundary) 
Planned growth area 
(1, if in planned growth area) 
Real Estate Market Variable 
Season of sale  
(1, if April through 
September) 

degree 
% of people over 65 years old 
Distance Variables 
Ln(Distance to major city) 
Ln(Distance to major road) 
Ln(Distance to National Park 
or National Forest) 
Ln(Distance to lake or 
reservoir) 
Environmental Variables 
Elevation 
Emission of Nitrogen Oxides 

variables 
Change in per capita taxes 
Environmental Variables 
Natural amenity scale 
Rural urban continuum 
code 
Elevation 

Data Type   
Parcel level point data 
 

Census-block group level 
boundary data 

County level boundary data 
 

Data Sources   
2001 National Land Cover 
Data, 2004 Environmental 
Systems Research Institute 
Data & Maps, GeoLytics 
Census CD, The Knoxville, 
Knox County, KUB 
Geographic Information 
System (Cho et al. 2008a) 

2001 National Land Cover 
Data, 2004 Environmental 
Systems Research Institute 
Data & Maps, GeoLytics 
Census CD (Cho, Jung, and 
Kim 2008) 

U.S. EPA 2007, County and 
City Data Books 2003, 
GeoLytics Census CD, 
USDA Economic Research 
Service, U.S. Census 
Bureau 2007 (Kim 2008) 
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Table 2. Goodness of fit, bandwidth, and summary of parameter estimates and clusters with and 
without extreme GWR coefficients. 
Dataset Knox Southern Appalachian U.S. 
Kernel Function Fixed Adaptive Fixed Adaptive Fixed Adaptive 
Coefficient at Lower 
Quartile 

-0.020 -0.044 -0.464 -0.622 -0.001 -0.002

Coefficient at Median 0.027 -0.004 0.043 -0.008 -0.000 -0.000
Coefficient at Upper 
Quartile 

0.049 0.036 0.895 1.026 0.001 0.000

Adjusted R-square 0.74 0.77 0.78 0.77 0.71 0.71 
SSE 187.2 188.0 146.0 155.3 26.1 25.5 
Bandwidtha  3.16 1,240  22.15 896 195.24b 389 
Total Number of Obs.  2,889 2,889 4,915 4,915 3,102 3,102 
Number of Observed 
Extreme Coefficients  

201 
(144) 

181 
(144) 

322 
(246) 

284 
(246) 

357 
(155) 

37 
(155) 

With Extreme 
Coefficients 

1,476 1,273 1,493 1,380 1,029 624 Number 
of Obs. in 
High-high 
Cluster 

Without 
Extreme 
Coefficients 

1,326 1,117 1,604 1,350 1,220 514 

With Extreme 
Coefficients 

1,165 1,198 1,729 1,752 829 154 Number 
of Obs. in 
Low-low 
Cluster 

Without 
Extreme 
Coefficients 

998 1,133 1,749 1,708 713 418 

a Distance in mile for fixed kernel and number of observation for adaptive kernel. 
b Converted from 2.87 decimal degree by estimating the distance in Arcmap that 1.47 decimal 
degree is approximately 100 mile. 
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Fig. 2.  
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Fig. 3. 
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Fig. 4.  
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Fig. 1. The extreme coefficients identified by the cutoff of 2k/n for fixed (left) and adaptive 

(right) estimates using Knox (top), Southern Appalachian (middle) and the US (bottom) 

datasets. 

Fig. 2. The LISA cluster maps for spatial clustering of high-high and low-low coefficients at the 

5% level for fixed (top) and adaptive (bottom) estimates before (left) and after (right) 

removing the extreme coefficients using Knox dataset 

Fig. 3. The LISA cluster maps for spatial clustering of high-high and low-low coefficients at the 

5% level for fixed (top) and adaptive (bottom) estimates before (left) and after (right) 

removing the extreme coefficients using Southern Appalachian dataset. 

Fig. 4. The LISA cluster maps for spatial clustering of high-high and low-low coefficients at the 

5% level for the fixed (top) and adaptive (bottom) estimates before (left) and after (right) 

removing the extreme coefficients using US dataset 


