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The Asymmetric Cycling of U.S. Soybeans

and Brazilian Coffee Prices: An Opportunity

for Improved Forecasting and Understanding

of Price Behavior

Octavio A. Ramirez

The behavior of agricultural commodity markets can arguably result in markedly asymmetric
price cycles, that is, downward cycles of substantially different length and breadth than
upward cycles. This study assesses whether asymmetric-cycle models can enhance the un-
derstanding of the dynamics and provide for a better forecasting of U.S. soybeans and
Brazilian coffee prices. The forecasts from asymmetric cycle models are found to be sub-
stantially mode precise than those obtained from standard autoregressive models. The
asymmetric cycle models also provide useful insights on the markedly different dynamics of
the upward versus the downward cycles exhibited by the prices of these two commodities.

Key Words: asymmetric cycles, coffee prices, soybean prices, threshold autoregressive
models, time series forecasting
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Basic economic theory suggests that the be-

havior of agricultural commodity prices over

time is governed by shifts supply and demand.

The impact of those shifts on prices depends on

the elasticities characterizing the supply and

demand relations. In a long-run dynamic frame-

work, multi-period impacts will also be affected

by other factors such as storability, irrevers-

ibility of capital investment, and the ease with

which farmers can switch into producing al-

ternative crops.

In the case of most agricultural commodi-

ties, it can be argued that the demand is re-

latively more stable than supply. Systematic

exogenous demand shifters such as population

and demographic changes, disposable income,

and so on, usually exhibit smooth gradual

trends; and random demand shocks tend not

to be very pronounced. Economic slowdowns,

however, can cause prolonged albeit not very

pronounced downward shifts in demand, par-

ticularly when international, developing coun-

try, markets are involved. Given that the supply

for raw agricultural commodities exhibits a

relatively low elasticity, even in a multi-period

time frame, such demand shifts can result

in several consecutive years of generally de-

pressed prices.

Supply can be substantially more volatile.

In the case of soybeans and other field crops,

for example, unusually adverse climatic or pest

conditions affecting key producing regions

such as the Midwestern U.S. can effect large,

although short-lived, negative supply shocks.

Under an inelastic demand, such shocks can
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result in substantial upward price spikes. Since

it may take a few years for stocks to replenish

to acceptable levels, those spikes can spill over

and cause several consecutive years of high

prices. Positive supply shocks of comparable

magnitude, however, are highly unlikely, as

evidenced by the significant left-skewness of

Midwest yield distributions identified by nu-

merous authors (Ker and Coble; Moss and

Shonkwiler; Nelson and Preckel; Ramirez;

Taylor). Thus, supply-induced downward price

spikes of similar scale are not expected. The

duration of low price cycles, however, can be

exacerbated by the irreversibility of the capital

investments made during good price periods in

order to increase production capacity, particu-

larly if there is a high correlation with the pri-

ces of alternative crops. A final argument for

asymmetric cycling behavior in the case of

soybeans is the fact that, for several decades,

agricultural policies have affected the func-

tioning of the market during low price periods.

A somewhat analogous situation is observed

in the case of coffee prices. The two main

differences are that coffee is a perennial crop

and that coffee prices are not substantially af-

fected by agricultural price protection policies.

As in the case of soybeans, coffee yields are

fairly stable on the up side. However, world-

wide supply has been subject to considerable

shortages several times during the last few de-

cades, mainly due to freezes damaging the crop

coming out of Brazil, which is a major pro-

ducer. It is hypothesized that this supply effect

is responsible for the extreme spikes that are

periodically observed in coffee prices. The fact

that Brazilian production usually takes more

than one year to fully recover from a severe

freeze would then cause several consecutive

years of high prices.

Although there are no substantial agricul-

tural policies supporting coffee prices on the

downside, the irreversibility of capital invest-

ment is more pronounced than in the case of

soybeans because coffee is a perennial crop.

Plantations are costly to establish and have

to be considered a long-term (15- to 30-year)

investment. In addition, in many countries,

growing coffee is a family tradition and pro-

ducers will not consider alternative crops, even

in the long run. Thus, when a few years of very

high prices allure the planting of additional

areas and the replanting of very old nearly

unproductive lots, the inevitable result is a long

period of below-average prices. This behavior

is evidenced by the finding that the probabil-

ity distribution of world coffee prices in any

particular year is substantially right skewed

(Ramirez and Somarriba).

Similar arguments to those previously made

in the case of soybean and coffee can be ad-

vanced about many other important agricultural

commodities. Thus, there is no reason to expect

that agricultural time series variables such as

commodity cash or futures prices, crop acre-

age, and so on, exhibit symmetric cycles as

assumed in the standard autoregressive models.

Therefore, models that can account for asym-

metric cycling behavior could be very useful to

provide a better understanding of the inter-

temporal dynamics and for an improved fore-

casting of agricultural time series variables.

The basic tools for modeling asymmetric

cycling behavior in time series variables were

introduced to the econometrics literature by

Tong, who labeled them threshold autoregressive

(TAR) models. In essence, in TAR models the

autoregressive parameters are allowed to switch

values over time as lagged dependent variable

observations cross one or more thresholds.

The most common TAR model specification

exhibits two sets of parameters that apply

depending on whether the previous value of the

dependent variable is below or above a certain

threshold. This implies that the characteristics,

that is, the length and breadth, of the upward

and downward cycles can be substantially dif-

ferent, or in other words, that the cycles can be

asymmetric. In the extreme, there could be

upward but no downward cycling behavior or

vice versa.

Researchers have explored the use of TAR

models in a variety of nonforecasting applica-

tions. Petrucelli and Woolford illustrate the

estimation and use of a first order threshold

autoregressive [TAR(1)] model. Tsay focuses

on the testing for TAR processes, while

Brockwell, Liu, and Tweedie investigate the

existence of stationary TAR moving average

processes. Chang evaluates the consistency and
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limiting distribution of the least squares esti-

mator of a TAR model. Balke and Fomby

propose an approach for testing for cointegra-

tion in the presence of TAR rather than AR

processes.

Recent applications of TAR models include

Granger and Lee’s investigation of production,

sales and inventory relationships using multi-

cointegration and nonsymmetric error-correction

models; Potter’s analysis of the changes in real

U.S. GNP; Bradley and Jansen’s crosscountry

evaluation of business cycle dynamics; Obstfeld

and Taylor’s analysis of purchasing power

parity and the law of one price under imperfect

arbitrage in the presence of transaction costs

and uncertainty; and Goodwin and Piggott’s

evaluation of dairy price linkages among corn

and soybean markets in North Carolina. Such

research corroborates the potential importance

of TAR models in the analysis of agricultural

time series.

In light of this background, the main ob-

jectives of this article are (a) to develop better

time-series forecasting models and add to the

understanding of the cyclical behavior and

price movements in the U.S. soybean and

Brazilian coffee markets, and (b) to evaluate

the ability of TAR models to explain the be-

havior of these two price series in comparison

to standard AR models. A collateral result of

these objectives is an assessment of the poten-

tial of TAR models to provide a better under-

standing of the inter-temporal dynamics and to

improve the forecasting of agricultural prices in

general. In the pursuit of its primary objectives,

this paper also deals with a methodological

issue: the estimation and forecasting from TAR

models with systematic components, that is,

with explanatory variables. Suitable estimation

procedures and the formulas to obtain one-,

two-, and three-period-ahead predictions from

such TAR models are derived.

The TAR models of quarterly U.S. soybeans

future prices and Brazilian coffee spot prices

estimated using the proposed procedures are

found to render substantially more precise

within- and out-of-sample forecasts than the

standard AR models. The estimated TAR

models also provide useful insights on the

markedly different dynamics of the upward

versus the downward cycles exhibited by U.S.

soybeans and Brazilian coffee prices.

Specification and Estimation of TAR Models

The basic TAR models used in the economet-

rics literature are specified as follows:

(1)

yt 5 r0p 1 r1pyt�1 1 . . . 1 rkpyt�k

1 nt if yt�d ³ TR, and yt 5 r0n 1 r1nyt�1

1 . . . 1 rknyt�k 1 nt if yt�d < TR,

where rip and rin (i 5 0,. . . ,k) are autore-

gressive parameters, vt is an independently and

identically distributed (iid) random variable,

TR is a threshold parameter, and d is called

the delay lag. This specification is also known

as the self-exciting threshold autoregressive

(SETAR) model.

More complicated TAR structures with

multiple thresholds have also been explored in

the econometrics literature (Balke and Fomby;

Enders and Granger; Enders and Siklos).

As discussed by Hansen (1997), the model

defined in Equation (1) can be estimated by the

least squares (LS) method which, under the

auxiliary assumption that vt is N(0,s2), is

equivalent to maximum likelihood (ML). Since

the residuals in that model are a nonlinear and

discontinuous function of TR, its parameters

have to be estimated by sequential conditional

LS (SCLS). Under the simplifying assumption

that d 5 1, that is, that the threshold in Equation

(1) is defined in relation to yt–1, this method

involves computation of the autoregressive pa-

rameters and the resulting residual sum of squares

(RSS) for select alternative values of TR.

Specifically, for each TR value, the obser-

vations are divided into two sets depending on

whether yt–1 ³ TR or yt–1 < TR and ordinary

least squares (OLS) is used to compute the

corresponding sets of autoregressive coeffi-

cients (r0p, r1p,. . . , rkp and r0n, r1n,. . . , rkn).

The overall model’s RSS is then obtained by

adding the RSS from those two OLS regres-

sions. Note that, since only T – k observations

can be included in them, there will be at most

T – k different TR values that will change the

sets of observations going into each of the two

regressions, that is, the sets will only change if
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TR is sufficiently increased to equal the value

of the next highest yt–1 (t 5 k 1 1,. . . ,T) ob-

servation. Therefore, the previously described

process only has to be conducted for TR 5 yt–1,

t 5 k 1 1,. . . ,T. The estimated model with the

highest overall RSS across those TR values is

assured to have satisfied the conditions for LS

(and ML) estimation.

This paper considers the following alterna-

tive threshold autoregressive specification for

the modeling of U.S. soybeans and Brazilian

coffee prices:

(2) yt 5 xtb 1 et,

where:

et 5 f1pet�1 1 f2pet�2 1 . . . 1 fkpet�k

1 nt if et�1 ³ TR, and

et 5 f1net�1 1 f2net�2 1 . . . 1 fknet�k

1 nt if et�1 < TR,

where yt is the dependent variable of interest, xt

is a 1 � m vector of exogenous variables, b is

an m � 1 vector of intercept and slope param-

eters, vt is an iid random variable, and TR is the

threshold. Equation (2) follows standard prac-

tice in the specification of time series models

with systematic components, that is, to define

the autoregressive process in relation to the

error term.

This alternative TAR model specification

allows for two different autocorrelation re-

gimes to apply depending on the value of the

error term (et) during the previous time period.

The occurrence of an error (et–1) greater than or

equal to TR prompts the regime implied by the

‘‘p’’ set of autocorrelation parameters fp 5

[f1p f2p . . . fkp], while an error that is less than

TR sets off the alternative ‘‘n’’ regime implied

by fn 5 [f1n f2n . . . fkn]. This allows for an

asymmetric cycling behavior of the error term.

Note that this specification is different from

the traditional TAR model [Equation (1)] in

two aspects of empirical importance: the in-

clusion of a systematic component (xtb) and

the defining of the threshold in relation to the

error term, not the lagged values of the de-

pendent variable. This alternative threshold de-

finition is relevant because, in the presence of a

systematic component, it is reasonable to argue

that, at least in some applications, a potential

switch from one autoregressive regime to an-

other could be related to the magnitude of the

error term rather than the dependent variable.

In other words, the regime switch might be

defined by where the dependent variable value

is in relation to its systematic component rather

than in reference to a constant. An intuitively

appealing threshold is TR 5 0, which implies

that the cycling behavior of the error term (and

thus of the dependent variable) is different when

the dependent variable is above its unconditional

expected value (xtb) than when it is below it.

Estimation of the Proposed TAR Model

As in the traditional TAR model [Equation (1)],

estimation of the proposed threshold autore-

gressive with systematic component (TARSC)

model is based on the least squares method

which, under the auxiliary assumption that vt is

N(0,s2), is also equivalent to maximum likeli-

hood (ML). The residual sum of squares to be

minimized in this case is:

(3) RSS 5
XT

t 5 k11

ðrtÞ2

where, from Equation (2):

rt 5 yt � xtb� f1pet�1 � f2pet�2 � . . .

� fkpet�k if et�1 ³ TR, and

rt 5 yt � xtb� f2net�2 � f2net�2 � . . .

� fknet�k if et�1 < TR.

The estimation problem in this case is charac-

terized by the fact that the RSS is discontinuous

with respect to both TR and b. Specifically, in

certain regions of the b space, an infinitesimal

change in one of the parameters in that vector

will cause one of the residuals (et–1 5 yt–1 –

xt–1b) to transition from being below to being

above TR, or vice versa, which will switch the

set of autoregressive parameter values used to

compute rt and result on a discrete shift in the

RSS. Because of these discontinuities, iterative

search methods of numerical optimization (Judge

et al., pp. 951–979) are generally ineffective in

finding the function’s global minimum.

Note, however, that when TR and b are fixed,

the values of the autoregressive parameters that
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conditionally minimize the RSS can be found

by ordinary least squares (OLS). This suggests

that, as in the case of the traditional TAR model

(Hansen 1997), estimation can be accomplished

by Sequential Conditional Least Squares (SCLS).

In addition, note that et–1 (t 5 2,. . . ,T) can be

computed for any fixed value of b. Therefore,

as in the traditional TAR case, there are at most

T – k TR values that are relevant for estimation

(TR 5 et–1, t 5 k 1 1,. . . ,T).

Given the previously discussed characteris-

tics of the minimization problem, the SCLS

procedure to estimate the parameters of the

proposed TARSC model involves a grid search

of the b space and limited subsets of the TR

space combined with least-squares estimation

of fp 5 {f1p f2p . . . fkp} and fn 5 {f1n

f2n . . . fkn}. The proposed steps for estimating

a TARSC model are:

(a) Select the grid on the b space over which
the search is to be conducted. Guidance
for narrowing down the hyperspace for
the initial grid is provided in the next
section.

(b) For each b on the grid, compute et–1 5

yt–1 – xt–1b (t 5 k 1 1,. . . ,T) and the select
set of T – k TR values that are relevant for
estimation (TR 5 et–1, t 5 k 1 1,. . . ,T).

(c) For each relevant TR value, divide the
errors (et 5 yt – xtb) into two sets
according to whether or not et–1 is less
that TR and estimate fp and fn by OLS
regressions of those two sets of errors on
their lagged values (et–j, j 5 1,. . . ,k).

(d) Using Equation (3), compute the RSS for
each b on the grid and its corresponding
set of TR values from (b) and fp and fn

estimates from (c) above, for a total of T –
k RSS values. Choose the TR and associ-
ated fp and fn estimates that result in the
lowest RSS for that particular b.

(e) Repeat the process for all b values on the
grid. The b, TR, fp, and fn values that
yield the lowest overall RSS are the LS
estimates for those parameters.

A simpler OLS-based procedure to estimate the

proposed TARSC model is also evaluated in

this study. This method involves computing b

by OLS, dividing this OLS model’s errors (et 5

yt – xtb) into two sets according to whether or

not et–1 exceeds a particular TR value, and es-

timating fp and fn by OLS regressions of

those two sets of errors on their lagged values

(et–j, j 5 1,. . . ,k). This process is repeated

over the set of T – k TR values that are relevant

for estimation. As in the previous procedure,

the ‘‘optimal’’ TR and autoregressive parameter

vector estimates are the ones corresponding to

the lowest overall RSS. Note that this method is

in fact an application of Hansen’s standard

TAR model estimation procedure to the OLS

residuals.

Because of what is known about LS esti-

mation of standard autoregressive models with

systematic components (Judge et al., pp 275–

349), it is not expected that this method will

minimize the RSS [Equation (3)] in the case of

TARSC models. However, given the significant

computational requirements of the procedure

that guarantees RSS minimization, it is im-

portant to explore the statistical performance of

this simpler alternative.

Estimation and Forecasting Performance

Results from Monte Carlo experiments evalu-

ating the finite sample estimation and fore-

casting performance of the proposed LS

method, the simpler OLS-based procedure, and

standard AR models are presented in Appendix

A. These results lead to the following general

conclusions:

(1) Although the proposed LS-based method
(LS-TARSC) produces biased estimates
for the intercept (b0) and autocorrelation
coefficients (f1p, f2p, f1n, and f2n), it
appears to be a consistent estimator for all
of those parameters. The degree of bias
steadily decreases with sample size (T)
and, in all cases evaluated, the percentage
bias is negligible at T 5 10,000.

(2) The standard method for estimating AR
models apparently produces biased and
inconsistent estimates for the intercept
of a TARSC model.

(3) Both the proposed LS and the standard
AR method seem to produce unbiased
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and consistent estimates for the slope
parameter (b1). However, LS appears to
be a more efficient estimator for this
parameter. Estimation efficiency differ-
ences range from 7% to over 100%.

(4) The forecasts obtained using the for-
mulas provided in Appendix B seem to
be unbiased both within and out of
sample, although biased LS estimates
for the intercept and autoregressive pa-
rameters are used to compute them.
Interestingly, the predictions from the
AR models, obtained using standard
formulas, appear to be unbiased as well.

(5) Although AR models can be used
to approximate TARSC processes, these
approximations are generally far from
perfect. The average R2s values of the AR
models are 3% to 24% lower than those
obtained when using LS-estimated
TARSC models. Moderate to relatively
high differences in forecasting precision,
as measured by the root mean square of
the within- and out-of-sample forecast
errors, between the AR and LS-TARSC
models are also found. These differences
range from 3% to 65% and average ap-
proximately 20% for both the one- and
the two-period-ahead out-of-sample
forecasts, and are somewhat smaller in
the case of the three-period-ahead pre-
dictions (Appendix A).

(6) The simpler OLS-based alternative for
the estimation of TARSC models (OLS-
TARSC) also produces biased and in-
consistent estimates for the intercept
and the autocorrelation parameters. As
in the case of the AR model, however,
the OLS estimate for the slope parame-
ter seems to be unbiased and consistent.
Depending on the magnitude of the bias
on intercept estimation, the forecasting
precision of the model appears to be
somewhere in between that of the stan-
dard AR and the LS-TARSC.

(7) As expected, the differences in the root
mean square of the one-period-ahead
within sample forecasting errors corre-

sponding to the AR, OLS-TARSC, and
LS-TARSC models (WFE in Appendix
A) are a good relative indicator of the
differences in one-, two-, and three-pe-
riod-ahead out-of-sample forecasting
precision (FE1, FE2, and FE3 in Ap-
pendix A) across the models.

The previously discussed conclusions hint to

the potential of a third estimation procedure for

TARSC models. Since both OLS and standard

AR methods seem to yield unbiased and con-

sistent estimates for the slope parameters in the

systematic component, a modification of the

proposed LS procedure in which those param-

eters are set to their OLS or AR model estimates

in the grid search should be considered. The grid

search then only has to involve the intercept and

its corresponding T – k TR values that are rel-

evant for estimation, which entails simpler

programming and low computational demands

regardless of the number of slope parameters.

The predictions from the models estimated

using this restricted-search LS procedure

(RLS-TARSC) appear to be as efficient as those

from the full-search LS-TARSC, that is, there is

no perceivable difference in these two models’

forecasting precision as measured by the R2,

WFE, FE1, FE2, and FE3 (Appendix A). While,

in a few cases, the average minimum RSS value is

slightly higher for the RLS-TARSC, the averages

of the parameter estimates for b0, f1p, f2p, f1n,

and f2n are practically identical. The only dif-

ference between these two procedures seems to

be in the efficiency of estimation of the slope

parameter(s). Therefore, although applied re-

searchers now have access to substantial com-

putational capacity, the RLS-TARSC might be an

attractive alternative when estimating TARSC

models with a large number of explanatory vari-

ables, particularly if efficiency in the estimation

of the slope parameters is not a concern. In ad-

dition to being simpler to program, depending on

the number of explanatory variables involved, the

RLS-TARSC can reduce estimation time in re-

lation to the LS-TARSC from several minutes or

hours to just a few seconds. Alternatively, the

RLS-TARSC intercept and TR estimates can be

used as a mid starting point to reduce the scope of

the initial grid search in the LS-TARSC procedure.

Journal of Agricultural and Applied Economics, April 2009258



The Asymmetric Cycling U.S. Soybean and

Brazilian Coffee Prices

In this section, TARSC and standard AR

models of U.S. soybean futures and Brazilian

coffee spot (New York) prices are estimated

and compared, with data spanning over the past

four decades. The TARSC models are esti-

mated using the previously discussed LS-,

RLS-, and OLS-based methods. Both price

series are found to be stationary according to

the augmented Dickey-Fuller unit root test

(a 5 0.10). All models are initially specified

with five autoregressive error term lags and a

systematic component (xtb) consisting of an

intercept and a linear trend. The AR models are

estimated utilizing the preprogrammed Gauss

6.0 ARIMA procedure. The LS-, RLS-, and

OLS-TARSC models are estimated using

Gauss 6.0 code developed as part of this re-

search. All Gauss programs used in these ap-

plications will be made available upon request.

In the case of coffee prices, the AR(5) and

LS-TARSC(5) models reach minimum RSS

values of 72,165.19 and 44,896.40, respec-

tively. Box-Pierce statistics of 10.91 and 16.13

do not reject the null hypothesis that the auto-

correlation coefficients between these models’

disturbances and their first 20 lags are jointly

equal to zero (a 5 0.25), suggesting that the

error terms are independently distributed. A

test for whether the difference between the two

RSS is statistically significant can be derived

from the theories of Davies and Andrews-

Ploberger. Specifically, it is known that if the

random error term (nt) is iid, a test with near-

optimal power against alternatives distant from

the null hypothesis is the pointwise F-statistic:

(4) FT 5 TðRSSAR � RSSTARÞ=RSSTAR

The problem, however, is that since TR is not

identified under the null hypothesis, the

asymptotic distribution of FT is not c2. Hansen

(1996, p. 4) proposes a bootstrapping procedure

to approximate the asymptotic distribution of

FT in the case of standard TAR models. Since

the models in this paper have systematic com-

ponents, this procedure is applied on the basis

of the AR and TARSC model residuals to

obtain the critical values for this test statistic

for an a of 0.001. In the case of the coffee price

model, the value is 48.01 versus a computed

test statistic of FT 5 92.93. This implies that

the observed RSS difference is significant at an

a of 0.001, that is, that the LS-TARSC model is

statistically superior to the standard AR.

The fifth-order autoregressive coefficient in

the initial AR(5) model is statistically insig-

nificant (a 5 0.10). Exclusion of this parame-

ter leads to the final AR(4) model presented in

Table 1. A Box-Pierce statistic of 11.02 does

not reject the null hypothesis of no error term

autocorrelation either (a 5 0.25). The initial

LS-TARSC(5) model of Brazilian coffee prices

also includes several statistically insignificant

autoregressive coefficients (a 5 0.10). Exclu-

sion of those parameters leads to the final LS-

TARSC model (Table 1). As in the AR, a Box-

Pierce statistic of 17.79 fails to reject the no

autocorrelation hypothesis (a 5 0.25). The

difference between these two models’ RSS is

significant (a 5 0.001) as well.

As expected, the R2 of the LS-TARSC

model (0.905) is noticeably higher than the

AR’s 0.847. The root mean square of the within

sample forecast error (RMSFE) is 17.74 cents/

lb under the LS-TARSC versus 22.42 cents/lb,

or 26.4% higher, under the AR (Table 1). In

order to further evaluate forecasting perfor-

mance differences, 40 additional sets of models

are estimated on the basis of samples ending

from the first quarter of 1998 to the last quarter

of 2007 and one-, two-, and three-period-ahead

out-of-sample forecasts for the last 40 quarters

are obtained using those models. The RMSE of

these out-of-sample forecasts from the LS-

TARSC models are 9.99, 17.03, and 23.73

cents/lb, respectively, versus 12.44, 20.86, and

25.97 cents/lb in the case of the AR models, for

an average percentage difference of 18.81%.

By any standards, these substantial differences

in forecasting precision would justify using

the more sophisticated LS-TARSC modeling

technique.

In addition, the TARSC model provides

useful insights into the dynamics of Brazilian

coffee price cycles that are quite different from

those implied by the statistically inferior AR

model. Specifically, 39.6% of the residuals are
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Table 1. Key Statistics of Models for Quarterly Brazilian Coffee Spot and U.S. Soybean Future
Prices

Final AR Model of Coffee Prices

PR b0 b1 f1p f2p f3p f4p f5p f1n f2n f3n f4n f5n

PE 135.10 –0.27 1.26 –0.63 0.40 –0.16 0.00 1.26 –0.63 0.40 –0.16 0.00

SE 30.32 0.34 0.08 0.13 0.13 0.08 — 0.08 0.13 0.13 0.08 —

PV 0.00 0.43 0.00 0.00 0.00 0.06 — 0.00 0.00 0.00 0.06 —

RSS 5 72,352.24 WFE 5 22.42 R2 5 0.847

Final LS-TARSC Model of Coffee Prices

PR b0 b1 f1p f2p f3p f4p f5p f1n f2n f3n f4n f5n

PE 240.32 –0.99 0.81 –0.76 0.45 –0.48 0.00 1.12 –0.15 0.00 0.00 0.00

SE — — 0.14 0.17 0.18 0.12 — 0.09 0.09 — — —

PV — — 0.00 0.00 0.01 0.00 — 0.00 0.09 — — —

RSS 5 45,303.04 WFE 5 17.74 R2 5 0.905

Final OLS-TARSC Model of Coffee Prices

PR b0 b1 f1p f2p f3p f4p f5p f1n f2n f3n f4n f5n

PE 135.10 –0.26 1.35 –0.91 0.75 –0.46 0.00 1.27 –0.31 0.00 0.00 0.00

SE — — 0.20 0.33 0.36 0.25 — 0.09 0.09 — — —

PV — — 0.00 0.01 0.04 0.07 — 0.00 0.00 — — —

RSS 5 66,590.47 WFE 5 21.21 R2 5 0.862

Final RLS-TARSC Model of Coffee Prices

PR b0 b1 f1p f2p f3p f4p f5p f1n f2n f3n f4n f5n

PE 214.22 –0.26 0.91 –1.02 0.89 –0.94 0.38 1.29 –0.32 0.00 0.00 0.00

SE — — 0.25 0.31 0.37 0.36 0.23 0.09 0.09 — — —

PV — — 0.00 0.00 0.02 0.01 0.10 0.00 0.00 — — —

RSS 5 56,567.02 WFE 5 19.55 R2 5 0.881

Final AR Model of Soybean Prices

PR b0 b1 f1p f2p f3p f4p f5p f1n f2n f3n f4n f5n

PE 254.83 2.46 0.91 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00

SE 81.69 0.67 0.03 — — — — 0.03 — — — —

PV 0.00 0.00 0.00 — — — — 0.00 — — — —

RSS 5 587,181.41 WFE 5 54.32 R2 5 0.911

Final LS-TARSC Model of Soybean Prices

PR b0 b1 f1p f2p f3p f4p f5p f1n f2n f3n f4n f5n

PE 459.05 2.44 0.45 0.00 0.00 –0.29 0.28 0.87 0.00 0.30 0.00 –0.18

SE — — 0.16 — — 0.15 0.14 0.07 — 0.09 — 0.07

PV — — 0.01 — — 0.06 0.04 0.00 — 0.00 — 0.01

RSS 5 504,981.65 WFE 5 50.37 R2 5 0.923

Final OLS-TARSC Model of Soybean Prices

PR b0 b1 f1p f2p f3p f4p f5p f1n f2n f3n f4n f5n

PE 276.78 2.19 0.78 0.00 0.29 –0.50 0.44 0.92 0.00 0.00 0.00 0.00

SE — — 0.10 — 0.17 0.21 0.17 0.04 — — — —

PV — — 0.00 — 0.10 0.02 0.01 0.00 — — — —

RSS 5 541,556.44 WFE 5 52.17 R2 5 0.918
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expected to be above the estimated error term

threshold (TR 5 –30.59), that is, 39.6% of the

price realizations are anticipated to be above

and 60.4% below the estimated price (yt)

threshold PTR 5 xtb 1 TR 5 240.32 –0.987t –

30.59 5 209.73 – 0.987t. The dynamics of the

upward cycles are found to be very different

from those of the downward cycles (Table 2).

Only 5.66% of the prices crossing PTR from

below are expected not to be followed by at

least one more price realization above that

threshold, while 13.01% of the prices crossing

PTR from above will not be followed by ad-

ditional price occurrences below PTR. Inter-

estingly, the AR implies that 20.27% of the

prices crossing over or under this model’s es-

timated long-term trend equation will go back

across the next quarter.

On the other hand, the LS-TARSC model

suggests that only 5.78% of the upward cycles,

versus 18.78% of the downward cycles, will

last just two or three quarters; while the AR

model implies that 26.30% of the cycles will be

of such length. In contrast, nearly 61% of the

upward cycles, but only 25.90% of the down-

ward cycles (and 25.20% of the AR cycles), are

predicted to last between four and eight quar-

ters. And, while almost 36% of the downward

cycles may last over 10 quarters, less than 19%

of the upward cycles (and about 22% of the AR

cycles) are expected to be that long.

Another practical advantage of TARSC

models is that they are useful to examine pos-

sible differences in error term variability and,

thus, forecasting precision, in upward versus

downward cycles. This can be accomplished by

computing separate RMSFE statistics for

observations above and below PTR. The LS-

TARSC model of coffee prices suggests an ex-

pected prediction error of RMSFEp 5 24.35

cents/lb in the upward cycles and of RMSFEn 5

13.08 cents/lb in the downward cycles. This

indicates that the level of unpredictable varia-

tion in the upward price cycles is nearly twice

as high as in the downward cycles; which is

evident in the observed Brazilian coffee price

data (Figure 1).

In short, the coffee price cycle dynamics

implied by the estimated TARSC model are

markedly asymmetric and, therefore, vastly

different from what can be accommodated by a

standard AR model. The LS-TARSC suggests

that most of the upward cycles will quickly

reach high price levels but be moderately-lived

(four to eight quarters), with only about 1 in 10

lasting more than 3 years. In contrast, it predicts

that nearly one-third of the downward cycles

will be more than 3 years long and close to one-

fifth will last in excess of 5 years. Such long

downward cycles can take coffee prices to very

low levels, but in a gradual manner. Note that

this cycling dynamics implied by the estimated

TARSC model are consistent with the observed

behavior of Brazilian coffee prices (Figure 1).

As previously discussed, the simulation

analysis suggests that both AR and OLS yield

biased intercept and unbiased but inefficient

slope parameter estimates when the error term

process is TAR. In this case, the OLS estimates

for those parameters (135.10 and –0.26) are

noticeably different from the LS-TARSC’s

(240.32 and –0.987). Because the OLS-TARSC

Table 1. Continued.

Final RLS-TARSC Model of Soybean Prices

PR b0 b1 f1p f2p f3p f4p f5p f1n f2n f3n f4n f5n

PE 488.98 2.19 0.28 0.00 0.00 0.00 0.00 0.93 0.00 0.19 0.00 –0.15

SE — — 0.18 — — — — 0.07 — 0.08 — 0.07

PV — — 0.11 — — — — 0.00 — 0.02 — 0.02

RSS 5 515,245.31 WFE 5 50.88 R2 5 0.922

Notes: PR, PE, SE, and PV stand for parameter, parameter estimate, standard error estimate, and p-value; RSS is the minimum

value reached by the residual sum of squares; WFE is the within sample root mean square error of the one-period-ahead

forecasts; and the R2 is computed as the square of the correlation coefficient between the within sample one-period-ahead

autoregressive predictions and the actual dependent variable values. Autoregressive parameters that are statistically insignificant

at the 10% level have been set equal to zero.
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method is based on the OLS estimates, with a

R2 of 0.862, WFE of 21.21 cents/lb and RSS

of 66,590.47, the performance of the OLS-

TARSC model in this application is closer to

the AR’s (R2 5 0.847, WFE 5 22.42 cents/lb,

RSS 5 72,352.24) than to the LS-TARSC’s

(R2 5 0.905, WFE 5 17.74 cents/lb, RSS 5

45,303.04) (Table 1). In contrast, as expected

from the simulation results, the RLS-TARSC

model performance statistics (R2 5 0.881,

WFE 5 19.55 cents/lb, RSS 5 56,567.02) are

relatively close to those of the LS-TARSC.

Therefore, this application supports the contention

that the RLS method for estimating TARSC

models is a suitable albeit not perfect alterna-

tive to the LS procedure.

Table 2. Relative Frequencies of the Cycle Durations Implied by the Estimated LS-TARSC and
AR Models for Brazilian Coffee and U.S. Soybean Prices

Cycle Length

(quarters)

LS-TARSC–

Coffee Prices
AR–Coffee

Prices

LS-TARSC–

Soybean Prices
AR–Soybean

PricesUpward Downward Upward Downward

1 5.66% 13.01% 20.27% 21.51% 34.05% 30.12%

2 2.25% 10.41% 16.55% 9.39% 16.20% 14.16%

3 3.53% 8.37% 9.75% 6.52% 4.89% 8.91%

4 7.10% 7.14% 6.55% 9.50% 2.49% 6.36%

5 13.15% 5.80% 5.70% 8.87% 2.86% 4.76%

6 19.22% 4.81% 4.96% 6.41% 2.41% 3.82%

7 13.65% 4.28% 4.25% 4.98% 2.00% 3.18%

8 7.82% 3.87% 3.73% 3.69% 1.81% 2.70%

9 5.24% 3.34% 3.25% 3.00% 1.80% 2.36%

10 3.77% 3.01% 3.03% 3.01% 1.52% 1.96%

11 2.91% 2.73% 2.62% 2.60% 1.37% 1.88%

12 2.55% 2.40% 2.27% 2.39% 1.20% 1.62%

13 2.22% 2.22% 1.99% 2.05% 1.20% 1.48%

14 2.02% 1.96% 1.78% 1.72% 1.08% 1.34%

15 1.65% 1.98% 1.54% 1.66% 0.99% 1.25%

16 1.34% 1.64% 1.35% 1.37% 1.01% 1.10%

17 1.12% 1.56% 1.29% 1.31% 0.94% 0.95%

18 0.87% 1.47% 1.03% 1.10% 0.79% 0.95%

19 0.75% 1.35% 0.95% 0.98% 0.84% 0.82%

20 0.59% 1.27% 0.84% 0.93% 0.74% 0.78%

21 0.44% 1.16% 0.72% 0.77% 0.74% 0.72%

22 0.39% 1.04% 0.67% 0.72% 0.71% 0.63%

23 0.35% 1.03% 0.57% 0.62% 0.66% 0.58%

24 0.25% 0.88% 0.55% 0.53% 0.59% 0.59%

25 0.21% 0.89% 0.47% 0.47% 0.60% 0.50%

26 0.16% 0.81% 0.38% 0.42% 0.53% 0.50%

27 0.14% 0.67% 0.36% 0.40% 0.54% 0.46%

28 0.13% 0.72% 0.31% 0.35% 0.51% 0.41%

29 0.11% 0.68% 0.25% 0.27% 0.49% 0.38%

30 0.08% 0.60% 0.26% 0.31% 0.44% 0.33%

31 0.07% 0.60% 0.22% 0.21% 0.48% 0.33%

32 0.04% 0.54% 0.19% 0.22% 0.45% 0.32%

33 0.05% 0.51% 0.16% 0.19% 0.42% 0.29%

34 0.04% 0.41% 0.14% 0.17% 0.40% 0.25%

35 0.03% 0.43% 0.11% 0.17% 0.39% 0.23%

36 0.02% 0.40% 0.11% 0.13% 0.34% 0.24%

Note: The Gauss program used to compute these frequencies will be made available upon request.
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In the case of U.S. soybean future prices,

the AR(5) and LS-TARSC(5) models reach

minimum RSS values of 569,146.27 and

496,065.37, respectively. Box-Pierce statistics

of 4.11 and 6.54 do not reject the null hy-

pothesis that the population autocorrelation

coefficients between these models’ errors and

their first 20 lags are jointly equal to zero (a 5

0.25). The critical value of the test statistic for

the significance of the difference between these

two RSS is 30.05, versus a computed value of

FT 5 28.63. That is, the observed RSS differ-

ence is significant at an a of 0.005, that is, the

LS-TARSC model for U.S. soybean future

prices is statistically superior to the AR as well.

In the case of the AR(5) model, only the

first-order autoregressive coefficient is statisti-

cally insignificant (a 5 0.10). Exclusion of the

nonsignificant parameters leads to the final

AR(1) model presented in Table 1. A Box-

Pierce statistic of 12.31 does not reject the null

hypothesis of no error term autocorrelation ei-

ther (a 5 0.25). The initial LS-TARSC(5)

model of U.S. soybean future prices also

contains several statistically insignificant

autoregressive coefficients (a 5 0.10). Exclu-

sion of those parameters leads to the final LS-

TARSC model (Table 1). As in the AR, a Box-

Pierce statistic of 4.48 fails to reject the no

autocorrelation hypothesis (a 5 0.25). The null

hypothesis of equality between the RSS of

these two final models is easily rejected (a 5

0.005) as well.

As expected, the LS-TARSC R2 of 0.923

is higher than the AR’s 0.911. Within sample,

the one-period-ahead RMSFE is 50.37 cents/

bushel under the LS-TARSC versus 54.32 cents/

bushel, or 7.85% higher, under the AR. As with

coffee prices, 40 additional sets of models are

estimated on the basis of samples ending from

the first quarter of 1998 to the last quarter of

2007 and one-, two-, and three-period-ahead

out-of-sample forecasts for the last 40 quarters

are obtained using those models. The RMSE of

these out-of-sample forecasts from the LS-

TARSC models are 59.74, 96.73, and 139.52,

respectively, versus 67.27, 108.75, and 154.54

in the case of the AR models, for an average

Figure 1. Observed versus Predicted Prices and Price Threshold from the LS-TARSC Model of

Brazilian Coffee Prices
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difference of 11.93%. Although these differ-

ences in forecasting precision are not as strik-

ing as in the case of coffee prices, they amply

justify using the more sophisticated LS-TARSC

modeling technique in this application as well.

The TARSC model also provides valuable

insights into the dynamics of soybean price

cycles. Specifically, 35% of the price realiza-

tions are anticipated to be above and 65% be-

low the price threshold PTR 5 xtb 1 TR 5

459.05 1 2.44t – 80.38 5 378.66 1 2.44t.

As in the case of coffee prices, the dynamics of

the upward cycles are very different from

those of the downward cycles (Table 2). For

instance, only 21.51% of the prices crossing

PTR from below are expected not to be fol-

lowed by at least one more price realization

above that threshold equation, while 34.05%

of the prices crossing PTR from above will not

be followed by additional price occurrences

below the threshold. Interestingly, the AR im-

plies that 30.12% of the prices crossing over or

under this model’s estimated long-term trend

equation will go back across the following

quarter.

In contrast, according to the estimated

TARSC model, over 36% of the high-price

cycles will last between three and seven quar-

ters while less than 15% of the downward cycles

(and 27.02% of the AR cycles) are expected to

be of such duration. In addition, 56.40% of the

upward cycles are predicted to span between 3

and 15 quarters while only 25.62% of the low-

price cycles (and 41.61% of the AR cycles) are

expected to be within that range. On the other

hand, only 12.71% of the high-price cycles,

versus 24.13% of the downward cycles, are

likely to last more than 5 years. As in the case

of coffee prices, the cycling behavior implied

by the LS-TARSC model appears to match the

oscillations of the observed soybean price data

(Figure 2).

The LS-TARSC forecast errors are esti-

mated to be RMSFEp 5 67.44 for the upward

and RMSFEn 5 44.89 cents/bushel for the

downward cycles. That is, as in the coffee price

Figure 2. Observed versus Predicted Prices and Price Threshold from the LS-TARSC Model of

U.S. Soybean Prices
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model, unpredictable variation in the upward

price cycles is markedly higher than in the

downward cycles. In short, the estimated LS-

TARSC model suggests that, while they tend

to be more frequent, high price cycles are of

moderate duration, with nearly half of them

lasting between 3 and 10 quarters. Downward

cycles are less frequent, but when they occur,

they tend to last longer. Specifically, out of the

two-thirds of the low-price observations that

extend for more than two consecutive periods,

nearly 40% are likely to turn into cycles of

more than 10 quarters.

Finally, in this application, the OLS-TARSC

model R2 (0.918), RMSFE (52.17 cents/

bushel), and RSS (541,556.44) are more or less

in between the AR’s (0.911, 54.32, and

587,181.41) and the LS-TARSC’s (0.923,

50.37, and 504,981.65) (Table 1). As in the case

of coffee prices, the RLS-TARSC model per-

formance statistics (R2 5 0.922, RMSFE 5

50.88 cents/bushel, and RSS 5 515,245.31) are

quite close to those of the LS-TARSC.

Concluding Remarks

This paper estimates threshold autoregressive

(TAR) models for U.S. soybean and Brazilian

coffee prices and evaluates their ability to ex-

plain the time series behavior of these two price

series in comparison to that of standard AR

models. The TAR models estimated using the

proposed LS-TARSC method provide for sub-

stantially more precise forecasts and a much

improved understanding of the cycle dynamics

of these two price series in comparison to

standard autoregressive (AR) models. In gen-

eral, it is hoped that similar benefits may be

reaped by using TARSC models for the analysis

of other agricultural time series variables.

Simulation results presented in this article

confirm the two main conclusions derived

from the previously discussed applications:

(a) substantial gains in forecasting precision

in relation to the standard AR models can be

achieved by using the proposed (LS- or RLS-

TARSC) estimation method when the dependent

variable is characterized by both a systematic

and a random component and the random

component follows a TAR rather than an AR

process, (b) in such cases, the TARSC models

will also provide empirically valuable insights

about the differential dynamics of the upward

versus the downward cycles of the dependent

variable, which are not afforded by standard AR

models. In short, researchers interested in thor-

oughly understanding the cycling behavior and

obtaining more reliable forecasts for time series

variables should consider using of the proposed

procedures to ascertain if a TARSC model is

more suitable than a standard AR model in a

particular application.

[Received March 2008; Accepted January 2009.]
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Appendix A. Simulation Methods and Results

In the simulation experiments xtb 5 b0 1 b1xt 5

–1 1 1xt, were xt is a Bernoulli random variable with

P 5 0.5. Two TAR(1) [f1p5 0.9, f1n 5 0.0 and f1p 5

0.9, f1n 5 –0.8] and four TAR(2) [f1p 5 1.2, f2p 5

–0.8, f1n 5 0.8, f2n 5 0; f1p 5 1.5, f2p 5 –0.8,

f1n 5 0, f2n 5 0; f1p 5 1.3, f2p 5 –0.6, f1n 5 0.5,

f2n 5 0.4; and f1p 5 1.5, f2p 5 –0.8, f1n 5 –0.9,

f2n 5 0] processes are assumed in conjunction with

this systematic component. Their white noise term

variance (s) is set equal to one. The table below

shows select Monte Carlo simulation statistics about

LS-, OLS-, and RLS-estimated TARSC models and

of standard AR models under these six TAR error

term processes and two sample sizes.

Appendix A.

TAR(1) Process with Parameters f1p 5 0.9, f2p 5 0.0, f1n 5 0.0, f2n 5 0.0

EM T RSS b0 SE1 f1p f2p f1n f2n R2 WFE FE1 FE2 FE3

AR L 1.06 0.35 0.076 0.76 — 0.76 — 0.62 1.03 1.04 1.28 1.42

LS L 1.00 –0.98 0.071 0.89 — –0.02 — 0.65 1.00 1.00 1.24 1.39

OLS L 1.06 0.35 0.076 0.83 — 0.68 — 0.63 1.03 1.03 1.27 1.41

RLS L 1.00 –0.99 0.076 0.89 — –0.02 — 0.65 1.00 1.00 1.24 1.39

AR S 1.04 0.35 0.174 0.73 — 0.73 — 0.59 1.02 1.06 1.31 1.45

LS S 0.96 –0.89 0.166 0.86 — –0.12 — 0.62 0.98 1.03 1.28 1.42

OLS S 1.02 0.35 0.174 0.79 — 0.65 — 0.59 1.01 1.05 1.30 1.44

RLS S 0.98 –0.88 0.174 0.86 — –0.10 — 0.62 0.98 1.03 1.28 1.42

TAR(1) Process with Parameters f1p 5 0.9, f2p 5 0.0, f1n 5 –0.8, f2n 5 0.0

EM T RSS b0 SE1 f1p f2p f1n f2n R2 WFE FE1 FE2 FE3

AR L 1.16 0.62 0.082 0.72 — 0.72 — 0.56 1.09 1.10 1.32 1.43

LS L 1.00 –0.99 0.069 0.90 — –0.80 — 0.64 1.00 1.00 1.26 1.39

OLS L 1.14 0.62 0.082 0.82 — 0.59 — 0.57 1.07 1.08 1.29 1.40

RLS L 1.00 –0.99 0.082 0.90 — –0.79 — 0.64 1.00 1.01 1.27 1.39

AR S 1.12 0.61 0.188 0.68 — 0.68 — 0.53 1.06 1.11 1.33 1.45

LS S 0.98 –0.92 0.163 0.87 — –0.69 — 0.62 0.98 1.03 1.28 1.42

OLS S 1.10 0.61 0.188 0.77 — 0.56 — 0.54 1.05 1.09 1.30 1.43

RLS S 0.98 –0.91 0.188 0.87 — –0.67 — 0.62 0.98 1.02 1.28 1.41

TAR(2) Process with Parameters f1p 5 1.2, f2p 5 –0.8, f1n 5 0.8, f2n 5 0.0

EM T RSS b0 SE1 f1p f2p f1n f2n R2 WFE FE1 FE2 FE3

AR L 1.18 –1.35 0.068 0.97 –0.33 0.97 –0.33 0.62 1.10 1.13 1.58 1.72

LS L 0.98 –1.00 0.057 1.20 –0.80 0.79 0.00 0.69 0.99 1.03 1.47 1.64

OLS L 1.04 –1.35 0.068 1.19 –0.67 0.76 –0.01 0.67 1.02 1.05 1.49 1.65

RLS L 0.98 –1.00 0.068 1.20 –0.80 0.80 0.00 0.69 0.99 1.04 1.48 1.63

AR S 1.14 –1.35 0.158 0.96 –0.34 0.96 –0.34 0.61 1.07 1.12 1.60 1.76

LS S 0.94 –1.01 0.142 1.17 –0.80 0.77 0.00 0.69 0.96 1.04 1.50 1.67

OLS S 1.00 –1.35 0.158 1.17 –0.66 0.76 –0.04 0.66 1.00 1.06 1.52 1.70

RLS S 0.94 –1.01 0.158 1.17 –0.79 0.77 –0.01 0.68 0.96 1.04 1.50 1.68

TAR(2) Process with Parameters f1p 5 1.5, f2p 5 –0.8, f1n 5 0.0, f2n 5 0.0

EM T RSS b0 SE1 f1p f2p f1n f2n R2 WFE FE1 FE2 FE3

AR L 1.42 0.28 0.075 1.03 –0.52 1.03 –0.52 0.63 1.24 1.25 1.80 1.96

LS L 1.00 –1.00 0.049 1.50 –0.80 0.00 0.00 0.76 0.99 1.01 1.60 1.88

OLS L 1.30 0.28 0.075 1.35 –0.78 0.76 –0.33 0.67 1.16 1.16 1.71 1.94

RLS L 1.00 –1.00 0.075 1.50 –0.80 0.00 0.00 0.76 0.99 1.01 1.61 1.89

AR S 1.38 0.28 0.173 1.02 –0.52 1.02 –0.52 0.63 1.21 1.29 1.84 1.98

LS S 0.96 –0.98 0.121 1.48 –0.79 –0.02 0.01 0.76 0.96 1.07 1.64 1.91
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Appendix B. Multi-Period TARSC Model

Forecasts

These formulas needed to compute multi-period

TARSC model forecasts are obtained by computing

the expected values of the future errors conditional

on the previous residuals. The forecasting formulas

for a TARSC(2) are derived next since the

TARSC(1) is a trivial case and the formulas corre-

sponding to higher order processes are a logical

extension of the TARSC(2)’s. As in standard AR(2)

models, the one-period-ahead forecast from a

TARSC(2) model is:

(1)

yFT11 5 E½yT11jeT,eT�1�5 E½XT11b�
1 E½eT11jeT,eT�1�5 xT11b
1 E½ITpf1peT 1 ITnf1neT�
1 E½ITpf2peT�1 1 ITnf2neT�1�;

where the subscript F indicates forecast, T refers to

the time period corresponding to the last available

observation, ITp and ITn are indicator variables such

as ITp equals one if eT–1 ³ TR and zero otherwise and

ITn 5 (1 – ITp), and everything else is as defined

before. Note that (1) is easily computed since eT,

eT–1, ITp, and ITn are known at time T 1 1 and b, f1p,

Appendix A. Continued.

TAR(2) Process with Parameters f1p 5 1.3, f2p 5 –0.6, f1 n5 0.5, f2n 5 0.4

EM T RSS b0 SE1 f1p f2p f1n f2n R2 WFE FE1 FE2 FE3

OLS S 1.26 0.28 0.173 1.32 –0.77 0.77 –0.34 0.67 1.13 1.19 1.76 1.98

RLS S 0.98 –0.98 0.173 1.48 –0.79 –0.01 –0.01 0.76 0.97 1.07 1.65 1.90

TAR(2) Process with Parameters f1p 5 1.3, f2p 5 –0.6, f1n5 0.5, f2n 5 0.4

EM T RSS b0 SE1 f1p f2p f1n f2n R2 WFE FE1 FE2 FE3

AR L 1.28 –1.09 0.077 0.89 –0.09 0.89 –0.09 0.69 1.15 1.17 1.57 1.78

LS L 0.98 –1.00 0.056 1.30 –0.60 0.49 0.40 0.77 0.99 1.02 1.42 1.64

OLS L 1.04 –1.09 0.077 1.25 –0.54 0.52 0.36 0.75 1.02 1.04 1.45 1.67

RLS L 1.00 –1.00 0.077 1.30 –0.60 0.50 0.39 0.77 0.99 1.02 1.43 1.65

AR S 1.22 –1.07 0.176 0.87 –0.11 0.87 –0.11 0.66 1.11 1.18 1.59 1.82

LS S 0.94 –0.99 0.144 1.29 –0.62 0.46 0.38 0.76 0.96 1.05 1.47 1.70

OLS S 1.04 –1.07 0.176 1.18 –0.49 0.56 0.25 0.72 1.02 1.09 1.50 1.73

RLS S 0.94 –1.00 0.176 1.28 –0.61 0.47 0.37 0.75 0.97 1.05 1.47 1.70

TAR(2) Process with Parameters f1p 5 1.5, f2p 5 –0.8, f1n 5 –0.9, f2n 5 0

EM T RSS b0 SE1 f1p f2p f1n f2n R2 WFE FE1 FE2 FE3

AR L 1.96 1.06 0.099 0.99 –0.56 0.99 –0.56 0.61 1.62 1.65 2.33 2.45

LS L 1.00 –1.00 0.048 1.50 –0.80 –0.89 0.01 0.85 0.99 1.01 1.66 1.99

OLS L 1.78 1.06 0.099 1.32 –0.77 0.64 –0.38 0.68 1.47 1.43 2.06 2.34

RLS L 1.00 –1.00 0.099 1.50 –0.80 –0.90 0.00 0.85 1.00 1.02 1.63 1.98

AR S 1.88 1.06 0.229 0.98 –0.57 0.98 –0.57 0.61 1.57 1.69 2.41 2.50

LS S 0.96 –0.98 0.115 1.49 –0.79 –0.85 –0.01 0.84 0.97 1.06 1.69 2.04

OLS S 1.72 1.06 0.229 1.29 –0.76 0.66 –0.41 0.67 1.43 1.49 2.16 2.43

RLS S 1.00 –0.97 0.229 1.48 –0.79 –0.84 –0.03 0.84 0.99 1.06 1.70 2.05

Notes: The statistics are over 10,000 models estimated on the basis of a similar number of simulated samples. EM refers to

the type of model being estimated: AR is the standard autoregressive model; LS is a TARSC model estimated using the

proposed least squares-based method; OLS is a TARSC model estimated on the basis of the OLS residuals; and RLS is a

TARSC model estimated using the proposed restricted least squares procedure, that is, using a grid search over the

intercept with the slope parameter set equal to its OLS estimate, combined with OLS estimation of fp and fn. T is the

sample size [L 5 large (T 5 500), and S 5 small (T 5 100)]. RSS indicates the average minimum value reached by the

corresponding residual sums of squares. b0, f1p, f2p, f1n, and f2n refer to the averages of the estimates for the intercept and

the four autocorrelation process parameters, respectively. SE1 stands for the standard deviation of the 10,000 slope

parameter estimates. The R2 is computed as described in Table 1. WFE stands for the average of the within sample root

mean square error of the one-period ahead forecasts; and FE1, FE2, and FE3 refer to the root mean square errors of the

one-, two-, and three-period-ahead out-of-sample forecasts.
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f1n, f2p, and f2n can be replaced by their LS esti-

mates. The two-period-ahead forecast from a

TAR(2) model is:

(2)

yFT12 5 E½yT12jeT ,eT�1�5 E½xT12b�
1 E½eT12�5 xT12b

1 E½IT11pf1peT11

1 IT11nf1neT11�1 E½IT11pf2peT

1 IT11nf2neT �

where (from here on) all expectations are

conditional on the known eT and eT–1 values and

b, f1p, f1n, f2p, and f2n denote the LS estimates

for these parameters, which are independent of

all other random variables in the following

equations. The last term of (2) is:

(3)
E½IT11pf2peT 1IT11nf2neT �

5 E½IT11p�f2peT 1 E½IT11n�f2neT ,

where the expected values of the indicator

variables at T11 are computed as follows:

(4)

E½IT11p�5 Prob½eT11 > 0�

5 Prob½E½eT11�1nT11 > 0�

5 Prob½nT11 >� E½eT11��

5 Prob½nT11 >� ðITpf1peT

1 ITnf1neT 1 ITpf2peT�1

1ITnf2neT�1Þ�5
ð‘

C

f V ;

where C 5 –(ITpf1peT 1 ITnf1neT 1 ITpf2peT–1

1 ITnf2neT–1) is known at T 1 2 and fv is a

normal density with mean zero and variance

s2; and E[IT11n] 5 Prob[eT11 < 0] 5 1 –

Prob[eT11 > 0]5 1 – E[IT11p].
The second term of (2) (E[IT11pf1peT111

IT11nf1neT11]) is more complicated to compute be-

cause it involves eT11. Specifically, substituting

E[eT11] 1 vT11 for eT11 yields:

(5)

E½IT11pf1peT11 1 IT11nf1neT11�

5 E½IT11pf1pðE½eT11�1 nT11Þ

1 IT11nf1nðE½eT11�1 nT11Þ�

5 E½IT11pf1pE½eT11�

1 IT11nf1nE½eT11��

1 E½IT11pf1pnT11 1 IT11nf1nnT11�.

Since E[eT11] is a known constant (defined

as –C above), E[IT11pf1pE[eT11] 1 IT11nf1n

E[eT11]] 5 –C(f1pE[IT11p] 1 f1nE[IT11n]),

where E[IT11p] and E[IT11n] are computed

as described in equation (4). Calculation of

E[IT11pf1pnT11 1 IT11nf1nnT11], on the other

hand, requires knowledge of E[IT11pnT11] and

E[IT11nnT11], which are obtained as follows:

(6) E IT11pnT11

� �
5

ð‘

C

n f n,

where C and fv are as defined above; and, since

E[IT11nnT11] 1 E[IT11pnT11] 5 E[nT11] 5 0,

E[IT11nnT11] 5 –E[IT11pnT11]. Finally, the first

term of (2) (xT12b) is obtained by replacing b
with its LS estimate. The three-period-ahead

forecast involves the following computations:

(7)

yFT13 5 E yT13jeT ,eT�1½ �
5 E xT13b½ �1 E eT13½ �
5 xT13b 1 E½IT12pf1peT12

1 IT12nf1neT12�
1 E½IT12pf2peT11

1 IT12nf2neT11�

The first term in (7) is obtained by replacing b
with its LS estimate. Then, after substituting

E[eT12] 1 nT12 and E[eT11] 1 nT11 for eT12

and eT11, the second and third terms become:

(8)

E IT12pf1peT121IT 1 2nf1neT12

h i

5 E½IT12pf1pE½eT12��

1E IT12nf1nE½eT12½ ��

1 E IT12pf1pnT12

h i

1 E IT12nf1nnT12½ �,
and

(9)

E IT12pf2peT11 1 IT12nf2neT11

h i

5 E½IT12pf2pE eT11�½ �

1 E IT12nf2nE½eT11½ ��

1 E IT12pf2pnT11

h i

1 E IT12nf2nnT11½ �.

Since E[eT11] is known at T 1 2 (–C above),

the terms in (9) are computed as follows:

(10) E IT12pf2pE eT11½ �
h i

5 �Cf2pE IT12p

� �
;

where E[IT12p] 5 Prob[eT12 > 0] 5

Prob[E[eT12] 1 nT12>0] 5 Prob[nT12 > –
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E[eT12]] 5 Prob[nT12 > –(IT11pf1peT11 1

IT11nf1neT11 1 IT11pf2peT 1 IT11nf2neT)] 5

Prob[nT12 > –(IT11pf1p(E[eT11] 1 nT11) 1

IT11nf1n(E[eT11] 1 nT11) 1 IT11pf2peT 1

IT11nf2neT)] 5
R ‘

D

R ‘

�‘
fv1v2; where D 5

–(IT11pf1p(E[eT11] 1 nT11) 1 IT11nf1n(E[eT11]

1 nT11) 1 IT11pf2peT 1 IT11nf2neT), E[eT11] 5

–C, IT11p 5 0.5(1 1 {eT11/|eT11|}) 5 0.5(1 1

{(E[eT11] 1 nT11)/|E[eT11] 1 nT11|}) 5

0.5(1 1 {(–C 1 nT11)/|–C 1 nT11|}), IT11n 5

1 – IT11p, and fv1v2 is a bivariate normal density

with means [0,0] and variances [s2,s2].

(11) E½IT12nf2nE½eT11��5 �Cf2nE½IT12n�;

where E[IT12n] 5 Prob[eT12 < 0] 5 1 – Prob[eT12 >

0] 5 1 – E[IT12p]; and E[IT12p] is computed as in

(7).

(12)

E½IT12pf2pnT11�5 f2pE½IT12pnT11�

5 f2p

ð‘

D

ð‘

�‘

n1f n1n2;

(13)
E½IT12nf2nnT11�5 f2nE½IT12nnT11�

5 �f2nE½IT12pnT11�.

The last two terms in (8) (E[IT12pf1pnT12] and

E[IT12nf1nnT12]) are analogously computed:

(14)

E½IT12pf1pnT12�5 f1pE½IT12pnT12�;
where E½IT12pnT12�

5

ð‘

D

ð‘

�‘

n2f n1n2;

where E[IT12nf1nnT12] 5 f1nE[IT12nnT12] 5

–f1nE[IT12pnT12] and E[IT12pnT12] is computed as

above. Lastly, computation of the first two terms in

(7) is carried out as follows:

(15)

E½IT12pf1pE½eT12��

5 f1pE½IT12pfIT11pf1pðE½eT11�

1 nT11Þ1 IT11nf1nðE½eT11�

1 nT11Þ1 IT11pf2peT

1 IT11nf2neTg�,
and

(16)

E½IT12nf1nE½eT12��
5 f1nE½IT12nfIT11pðE½eT11�1 nT11Þ

1 IT11nf1nðE½eT11�
1 nT11Þ1 IT11pf2peT

1 IT11nf2neTg�.

Noting again that E[eT11] 5 –C (defined

above), computation of (15) and (16) requires

finding the expected value of products random

variables such as:

(17)

E½IT12pIT11p�5 Prob½eT12 > 0 and

eT11 > 0�5 Prob½E½eT12�1 nT12 > 0

and E½eT11�1 nT11 > 0�
5 Prob½nT12 >� E½eT12� and

nT11>�E½eT11��5
ð‘

D

ð‘

C

f n1n2;

(18)

E½IT12pIT11pnT11�
5 E½nT11jeT12 > 0, eT11 > 0�
5 E½nT11jE½eT12�1 nT12 > 0,

� E½eT11�1 nT11 > 0�
5 E½nT11jnT12>�E½eT12�, nT11 >

�E½eT11��5
ð‘

D

ð‘

C

n1f n1n2.

The expected values of the remaining products

are computed analogously. The Gauss programs

needed to compute these one-, two-, and three-pe-

riod ahead TARSC model forecasts will be made

available upon request.
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