

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

# Agricultural and Rural Finance Markets in Transition 

Proceedings of Regional Research Committee NC-1014
St. Louis, Missouri
October 4-5, 2007
Dr. Michael A. Gunderson, Editor
January 2008
Food and Resource Economics
University of Florida
PO Box 110240
Gainesville, Illinois 32611-0240

# An Empirical Investigation of Farm Loan Determinants 

Prepared by<br>Ashok Mishra,<br>Department of Agricultural Economics and Agribusiness Louisiana State University<br>Sergio Lence,<br>Department of Economics Iowa State University

Slide 1


Slide 2

## BACKGROUND

- Sizeable U.S. farm debt
- Average liabilities per farm in 2005:
- $\$ 32,200$ for lower-sales family farms
- \$107,900 for higher-sales family farms
- $\$ 189,800$ for large commercial family farms
- $\$ 493,000$ for very large commercial family farms

Slide 3

## BACKGROUND

## Sizeable U.S. farm debt

- Aggregate U.S. farm debt $=\$ 216$ billion in 2005
- Many sources of farm credit:
- Commercial banks (\$90.0 billion)
- Farm Credit System (\$68.4 billion)
- Life insurance companies (\$11.9 billion)
- Farm Service Agency (\$5.3 billion)
- $\$ 40.0$ billion from other lenders
- Implement dealers and financing corporations
- Input suppliers, cooperatives and other merchants
- Contractors, individuals, etc.

Slide 4

## BACKGROUND

Various types of debt contracts

- Interest rates (e.g., fixed versus variable interest rate loans)
- Collateral (i.e., collateralized loans versus loans without collateral)
- Guarantees
- Term to maturity
- Purpose (e.g., loans for refinancing, operating loans, or loans to acquire new assets)

Slide 5

## BACKGROUND

- However, little is known regarding the determinants of optimal contract choice by farmers and their lenders

Slide 6

## OBJECTIVE

- Investigate "stylized facts" about optimal choice of farm debt contracts (analogous to Ackerberg and Botticini, JPE 2002):

$$
L=\alpha_{A} A+\alpha_{P} P+\alpha_{F} F+\text { error } L
$$

where
L: optimal loan characteristics (e.g., guaranteed)
A: type of farm (e.g., crop, livestock)
P: lender type/characteristics (e.g., monitoring ability, transaction costs)
F: farmer characteristics (e.g., risk aversion, productivity, opportunity cost of effort)

## ESTIMATION PROBLEMS

Farmer characteristics often unobservable (e.g., risk aversion, productivity, opportunity cost of effort):

$$
\mathrm{F}=\beta_{\mathrm{F}} \mathrm{O}+\text { error }_{F}
$$

where O : observable proxies for farm characteristics (e.g., net wealth, education, value of production, age, legal status)
Hence:

$$
L=\alpha_{A} A+\alpha_{P} P+\alpha_{F} \beta_{F} O+\alpha_{F} \text { error }_{F}+\text { error }_{L}
$$

Slide 8

## ESTIMATION PROBLEMS

- But:
- Farm types tend to match with farmers:

$$
\begin{aligned}
A & =\gamma_{\mathrm{F}} \mathrm{~F}+\text { error }_{\mathrm{A}} \\
& =\gamma_{\mathrm{F}} \beta_{\mathrm{F}} \mathrm{O}+\gamma_{\mathrm{F}} \text { error }_{\mathrm{F}}+\text { error }_{\mathrm{A}}
\end{aligned}
$$

- Lenders tend to match with farmers:

$$
\begin{aligned}
P & =\delta_{F} F+\text { error }_{P} \\
& =\delta_{F} \beta_{F} O+\delta_{F} \text { error }_{F}+\text { error }_{P}
\end{aligned}
$$

- Hence, instrumental variable approach is needed:

$$
L=\alpha_{A} A+\alpha_{P} P+\alpha_{F} \beta_{F} O+\alpha_{F} \text { error }_{F}+\text { error }_{L}
$$

## INTUITION OF PROBLEMS

Unobserved Heterogeneity $+$
Endogenous Matching of Agents to Contracts
= Selection Bias on Parameters of Interest

Slide 10

## INTUITION OF PROBLEMS

- Example: Choice between sharecropping and fixed rent contracts (Ackerberg and Botticini, JPE 2002)
- Standard theory predicts:

1. Fixed rent contracts when uncertainty is small
2. Sharecropping when uncertainty is large

- Standard Test:

Probability(Sharecrop) $=\theta$ CropRisk, $\theta>0$

- Problem with standard test:
- Contracts are taken as exogenously given, disregarding possible endogeneity in matching of agents to contracts.
- Valid only if agents facing different contracts do not differ by some otherwise relevant characteristic


## INTUITION OF PROBLEMS

Suppose some agents are risk neutral, rest are risk averse: - Efficiency suggests that risk neutral agents specialize in riskier crops

- Risk neutral agents should also be proposed fixed rent contracts (risk sharing not an issue for them)
- Hence, with heterogeneous risk aversion, fixed rent contracts are likely to be associated with riskier crops
$\square$ Standard prediction is reversed!!!
- Main difficulty: Risk aversion is crucial, but not directly observable
- Conditional on risk aversion, sharecropping more attractive for riskier crops
- Testing this prediction requires controlling for risk aversion, or that endogeneity bias be corrected in some way.

Slide 12

## DATA

- ARMS data for 2004 and 2005
- Farms in Minnesota, lowa, Illinois, Indiana, Ohio, and Missouri


## METHODS

- Logistics regressions in two stages

1. Run state-by-state "matching" regressions to obtain $E(A)$ and $E(P)$
2. Run "optimal loan" regression using $E(A)$ and $E(P)$ instead of $A$ and $P$

Slide 14

| RESULTS: L = Debt vs. No Debt |  |  |
| :---: | :---: | :---: |
|  | $\begin{aligned} & \text { NALVE } \\ & \text { ESTMMATES } \end{aligned}$ | TWo.stage ESTIMATES |
| A- Dummy: Crop | ${ }^{-0.177^{\prime+4}}$ | ${ }^{-0.99^{1+\cdots}}$ |
| -- Housenold Net Weath | 0.0000041* | $0.000041 \cdots$ |
| 0. \% Income from Farm | -0.0079 ${ }^{\text {a }}$ | ${ }^{-0.0017 \times \cdots}$ |
| - - value of Production | 0.0202 ${ }^{\text {+" }}$ | $0.0055^{+\cdots}$ |
| - - Age | -0.029 | -0.046 |
| - Education | ${ }^{0.068{ }^{+\cdots}}$ | 0.13 |
| O- Dummy: Indiv. Propretor | $0.16{ }^{\text {²* }}$ | 0.17 |
| O- Dummy: Partnership | 0.26"* | 0.28** |


| RESULTS: L = LOAN PURPOSE (Real Estate, Production, Non-Real Estate) |  |  |  |
| :---: | :---: | :---: | :---: |
| Expleanaror |  | Estivar | Twossh |
| Imyy Crop | Prod |  |  |
|  | NRE | 0.52 \% |  |
|  | NRE | ${ }_{-0.25}$ | ${ }^{20.022+\cdots}$ |
| P. Dummy Lentere Pank | Prod | ${ }^{2407}$ | -64771. |
|  | Prod |  |  |
|  | NEE | -1.60\% | ${ }^{1.094 . .}$ |
| P. Dummy. Lendef Fcs | prod | 1.82 .1 | ${ }^{4} 1.900 \cdot \mathrm{C}$ |
| O- Housenold Ne weath | ${ }_{\text {prod }}^{\text {NRE }}$ | -0.0.6. | - |
|  | NRE | -0.0009 ${ }^{\text {a }}$ | -0.012 |

Slide 16

RESULTS: L = LOAN PURPOSE
(Real Estate, Production, Non-Real Estate)
$\begin{array}{|llcc|}\hline \text { EXPLANATORY } \\ \text { VARIABLE }\end{array} \quad$ L $\left.\begin{array}{c}\text { NAÏVE } \\ \text { ESTIMATES }\end{array} \quad \begin{array}{c}\text { TWO-STAGE } \\ \text { ESTIMATES }\end{array}\right]$

## RESULTS: L = Guar. vs. Not Guar

| EXPLANATORY <br> VARIABLE | NAÏVE <br> ESTIMATES | TWO-STAGE <br> ESTIMATES |
| :--- | :---: | :---: |
| A - Dummy: Crop | $-0.28^{* * *}$ | $1.97^{* * *}$ |
| P - Dummy: Lender LifeIns | $-1.43^{* * *}$ | $-33.82^{* * *}$ |
| P - Dummy: Lender Bank | $0.29^{* * *}$ | $-6.41^{* * *}$ |
| P - Dummy: Lender FSA | $-3.43^{* * *}$ | $-5.8^{* * *}$ |
| P - Dummy: Lender FCS | $0.056^{* *}$ | $11.84^{* * *}$ |
| O - Household Net Wealth | $0.00030^{* * *}$ | $-0.00097^{* * *}$ |
| O - \% Income from Farm | $0.0069^{* * *}$ | $0.0056^{* * *}$ |
| O - Value of Production | $-0.00037^{* * *}$ | $-0.0002^{* * *}$ |
| O - Age | $0.026^{* * *}$ | $0.075^{* * *}$ |
| O - Education | $-0.062^{* * *}$ | $0.089^{* * *}$ |
| O - Dummy: Indiv. Proprietor | $-0.23^{* * *}$ | $-0.068^{* * *}$ |
| O - Dummy: Partnership | $-0.20^{* * *}$ | $0.055^{* * *}$ |

Slide 18

| RESULTS: L = Fixed vs. Variable |  |  |
| :---: | :---: | :---: |
|  | Estumars |  |
| A. Oumy\%: crop |  |  |
| ${ }^{\text {P. Dummy: Lendel Llens }}$ |  | come |
| my: Lender FSa | ${ }_{2200}$ | ${ }^{-1.24 .}$ |
| P. oumyy Lender fes | ${ }^{1.733^{\prime \prime}}$ | ${ }_{53} 5$ |
| - Housenold Ne Weatul | ${ }^{0.00074 .1 .}$ | -0.0.093? |
| -Value f Production | ${ }^{0.000019}$ | -0.0000 |
| -- Age | 0.0091. | -0.07 |
| -- Etuation |  |  |
| O. oumy: Patresstsip | ${ }_{228}$ | ${ }_{254}$ |

## CONCLUSIONS

- Preliminary findings suggest endogenous matching of ag borrowers and lenders
- Endogenous matching seems important to control for when empirically analyzing the characteristics of optimal ag loan contracts

