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Abstract

 The set of Cobb-Douglas production functions is usually fitted by first linearizing the models through

logarithmic transformation and then applying method of least squares. However, this procedure is

valid only when the underlying assumption of multiplicative error-terms is justified. Unfortunately,

this assumption is rarely satisfied in practice and accordingly, the results obtained are of doubtful

nature. Further, nonlinear estimation procedures generally yield parameter estimates exhibiting extremely

high correlations, implying thereby that the parameters are not estimated independently. In this paper,

use of expected-value parameters has been highlighted and the advantages of their use have also

been discussed. Finally, the developed methodology has been illustrated by applying it to the wheat

yield time-series data of Punjab.

Introduction

 A large number of research papers (see e.g.

Anupama et al., 2005; Mandal et al., 2005;

Mruthyunjaya et al., 2005; Pouchepparadjou et al.,

2005; Shaheen and Shiyani, 2005; Srinivas and

Ramanathan, 2005) dealing with Cobb-Douglas

production functions published in the area of

agricultural economics is a testimony to the important

role played by these models. The model, in its simplest

form, when there is only one explanatory variable

(U) and one response variable (Y), is given by

Equation (1):

bU a    Y = …(1)

where, a is scale parameter and b is a measure of

curvature. To estimate the parameters, the usual

procedure is to assume a multiplicative error exp(ε)

in Equation (1) so that the model may be linearized

by means of logarithmic transformation, giving

Equation (2):

ln (Y) = ln (a) + bln (U) + ε …(2)

This equation is then fitted to data using “method of

least squares” and goodness of fit is assessed by

computing coefficient of determination R2.

 Main drawback in this procedure is that a proper

justification of assumption of multiplicative error is

hardly ever provided and this assumption is usually

made only for mathematical convenience. As pointed

out by Ratkowsky (1990), the assumption tends to

be valid only when variability of response variable Y

increases with increasing values of explanatory

variable U, which happens very rarely. Further, one

frequent mistake occurs when goodness of fit of even

the original nonlinear model given by Equation (1) is

assessed by reporting the same value of R2 as has

been obtained for the linearized model given by

Equation (2). In fact, as discussed in detail by

Prajneshu and Chandran (2005), it is not at all possible

to get R2 for Equation (1) from that for Equation (2).

 Accordingly, in this paper, procedure that should

be followed for fitting Cobb-Douglas production

functions has been discussed. An illustration for wheat

yield time-series data of Punjab state has also been

presented.
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Suggested Procedure

 In order to apply Equation (1) to data, an additive

error-term, assumed to be independently and

identically distributed, is added on the right hand side

of this equation, thereby yielding corresponding

“statistical model”. It may be noted that parameters

(a, b) appear in a nonlinear manner. Thus, nonlinear

estimation procedures, like ‘Levenberg–Marquardt

algorithm’, or ‘Does not Use Derivatives (DUD)’

procedure are required to be employed for fitting the

models to data. A good description of these

procedures is given in Draper and Smith (1998).

Fortunately, most of the software packages, like

SPSS, SAS, SPLUS and GENSTAT contain

computer programs to accomplish the task.

Subsequently, residual analysis may be carried out

by employing “Run test” (Gujarati, 2004) to examine

validity of assumption of independence of errors.

Finally, goodness of fit of fitted models may be

examined by computing mean square error (MSE).

 However, quite often, when above procedure is

followed, it is found that the parameter estimates have

very large correlations, implying thereby that the

parameters have not been estimated independently.

As the scale parameter a is related to shape of the

curve determined by the curvature parameter b, any

change in the latter requires a corresponding change

in the former. Therefore, the likelihood contours are

bound to be extremely elongated ellipsoids. Hence, it

is very important to reduce correlations between

parameter estimates, as it is these that make the

algorithms for “nonlinear estimation” inaccurate or

fail to converge.

 One way out for the above problem is through

‘re-parameterization’ by using ‘expected-value

parameters’ (Ratkowsky, 1990). These parameters

correspond to the fitted (predicted) values of the

response variable Y. The only restriction on expected-

value parameters is that they should fall within the

observed range of data.

Finding Expected-Value Parameters

 To find the expected-value parameters

corresponding to k parameters, k values of

explanatory variable U are chosen. The new

parameters are the expected values, denoted by y1,

y2, …, yk, after the original parameters are eliminated.

For the two-parameter model given by Equation (1),

the first step is to choose values U1 and U2 of the

explanatory variable U; they may respectively be

minimum and maximum observed values of U in the

data set. Then, y1 and y2 may be obtained by solving

the two equations, viz. Equations (3) and (4):

b
1U a    y =1

…(3)

b
2U a    y =2

…(4)

Solving these equations, we get

a = y1 / U1 
ln(y1 / y2) / ln (U1/U2) …(5)

and

b = ln (y1/y2) / ln (U1/U2) …(6)

Substituting these values of a and b in original

Equation (1), one gets:

Y = y1 (U/U1)
ln(y

1
/y

2
) / ln(U

1
/U

2
) …(7)

which may be rewritten as Equation (8):

Y = y1 (y1/y2)
ln(U/U

1
) / ln(U

1
/U

2
) …(8)

It may be easily verified that when U = Ui , the

value of Y
^
 = y^i, and i = 1, 2 . This procedure has

eliminated the original parameters a and b in favour

of new parameters y1 and y2. Equation (8) appears

to be more cumbersome in appearance than the

original Equation (1).  However, it has three

advantages. First, rapid convergence is ensured as

the new model is close-to-linear. Second, initial

parameter estimates can easily be obtained. Third,

the expected-value parameters are more suitable for

inference as resultant estimators are close to being

unbiased, normally distributed, minimum variance

estimators.

The above procedure can be extended in a

straightforward manner when there are two or more

explanatory variables. For the case of two

explanatory variables U and V, Cobb-Douglas

production function is given by Equation (9):

21 bb
VU a     Y = …(9)

Choose three values (ui , vi ), i = 1,2,3, of the two

explanatory variables U and V; the first pair of values

may be in the beginning, second in the middle, and



Prajneshu : Fitting of Cobb-Douglas Production Functions 291

third towards the end of the values of U and V in the

data set. Corresponding expected–value parameters

yi , i = 1,2,3, satisfy the Equation (10):

yi = a ui
b1 vi

b2, i = 1, 2, 3 …(10)

On solving these equations, final expressions for

original parameters in terms of expected-value

parameters yi , i=1,2,3, are obtained as:

a = y1 / (u1
b1 v1

b2),

b1 = [ln (y1/y2) – b2 ln (v1/v2)] / ln (u1 / u2)

b2 = [ln (u2/u3) ln (y1/y2) – ln (u1/u2) ln (y2/y3)] /
[ln (u2/u3) ln (v1/v2) – ln (u1/u2) ln (v2/v3)

 …(11)

Evidently, the models with more than two explanatory

variables can be handled in a similar manner but the

expressions become more cumbersome.

An Illustration

As an illustration, annual time-series data for

wheat for the state of Punjab for the period 1971-

2000 was considered. The response variable (Y) was

‘Yield’ (quintals/ha), while explanatory variable (U)

was ‘quantity of fertilizer’ (kg/ha). The SAS, Ver.

9.1 software package was used for the entire data

analysis carried out in this paper. In the first instance,

Equation (2) was fitted to data using method of least

squares. It was noticed that the assumption of

multiplicative errors was not justified for this data

set as variability of response variable Y did not increase

with increasing values of explanatory variable U.

Subsequently, Equation (1) was fitted to data through

‘nonlinear estimation procedures’. However,

magnitude of correlation coefficient between

parameter estimates, ignoring sign, was found to be

as high as 0.999, thus necessitating the need for re-

parameterization.

Subsequently, Equation (8) was fitted to data

using ‘nonlinear estimation procedures’. To this end,

the initial values of the parameters (y
1
, y

2
) were

needed. U1 was assumed to be some value towards

the beginning of data set, say the fifth value, viz.

112.54 and so the initial value of parameter y1 was

the corresponding value of response variable, viz.

24.87. Similarly, U2 was assumed to be some value

towards the end of the data set, say the twenty-fifth

value, viz. 212.26 and so the initial value of parameter

y
2
 was the corresponding value of response variable,

viz. 42.46. Thus, the initial values of the parameters

(y
1
, y

2
) were taken as (24.87, 42.46). On fitting

nonlinear Equation (8) to data, it was found that the

absolute value of correlation coefficient between

parameter estimates was reduced to 0.234, implying

thereby that the two expected-value parameters y
1

and y
2
 had been estimated almost independently.

Further, residual analysis indicated that the assumption

of independence of error-terms was not rejected at

5 per cent level, as the calculated value of Z using

Run test, computed as 0.088, was not greater than

the tabulated value of 1.96. Parameter estimates of

y
1
 and y

2
 along with their standard errors (within the

brackets) were obtained as follows:

y^1 = 23.881 (1.230),  y^2 = 39.587 (1.057) …(12)

It was noted that both the standard errors were

much less in comparison with the respective estimates

and so the parameters had been estimated efficiently.

Finally, the value of MSE = 15.099, not being very

high, indicated that Cobb-Douglas production function

with single explanatory variable provided a reasonably

good fit to the data. The final model was obtained as

Equation (13):

Y = 23.881 (0.603)1.576 ln(112.54/U) …(13)

As indicated earlier, it is better to use the above

parameterization. However, for academic interest,

the equivalent form of Equation (13), on using

Equations (5) and (6), was obtained as Equation (14):

Y = 0.555U
0.797

…(14)

Attempts were then made to fit Cobb-Douglas

production function with two explanatory variables.

The second explanatory variable, viz. V represented

‘Human labour’ (hours). When Equation (9) was

fitted through ‘nonlinear estimation procedures’, the

correlation coefficients between various parameter

estimates were computed as follows:

r(a^, b 
^

1) = -0.921,  r(a^, b 
^

2) = -0.965,

r(b 
^

1, b 
^

2) = -0.786, …(15)

Large values of the magnitude of above

correlation coefficients reflect the need for re-

parameterization.
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 Equation (10), which is nonlinear, was then fitted

to data using three expected-value parameters. To

this end, the values of (Ui, Vi), i = 1,2,3 were

respectively taken as (109.53, 450.46), (168.35,

356.86), (217.84, 301.15) and so the initial estimates

of parameters (y
1
, y

2
, y

3
) were (22.60, 25.20, 48.34).

The correlation coefficients between various

parameter estimates were then computed as:

r(y^1, y
^
2) = -0.206,  r(y^1, y

^
3) = -0.062,

r(y^2, y
^
3) = 0.065, …(16)

All the above values were considerably reduced

in magnitude. Residual analysis indicated that the

assumption of independence of error-terms was not

rejected at 5 per cent level, as the calculated value

of Z, using Run test, was 1.301. Parameter

estimates of y1, y2, and y3 along with their standard

errors (within the brackets) were computed as

follows:

y^1 = 24.334 (1.324)

y^2 = 33.904 (0.858)

y^3= 41.849 (1.325) …(17)

Again, it was noted that all the standard errors

were much smaller in comparison with the respective

estimates and so the parameters had been estimated

efficiently. The fitted model in terms of (y^
1 , y

^

2 , y
^

3
)

can be written down in a straightforward manner

but the expression is very cumbersome. However,

for academic interest, its equivalent form, on using

Equation (11), was Equation (18):

0.389561.0 V  U  756.18Y = …(18)

Finally, the low value of MSE = 3.797 implied

that Cobb-Douglas production function with two

explanatory variables provided a good fit to the data.
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