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Abstract:  The total factor productivity (TFP) of a multiple-output multiple-input firm can be 
defined as the ratio of an aggregate output to an aggregate input.  With this definition, index 
numbers that measure changes in TFP can be expressed as the ratio of an output quantity index to 
an input quantity index.  This paper uses the term multiplicatively complete to describe TFP index 
numbers that are constructed in this way.  O'Donnell (2008) shows that, irrespective of the returns 
to scale and/or scope properties of the production technology, all multiplicatively complete TFP 
index numbers can be decomposed into widely-used measures of technical change and technical 
efficiency change, as well as unambiguous measures of scale and mix efficiency change.    
Members of the class of multiplicatively complete TFP index numbers include the Fisher, 
Tornquist and Moorsteen-Bjurek indexes, but not the popular Malmquist index of Caves, 
Christensen and Diewert (1982a).  This paper uses data envelopment analysis (DEA) to compute 
and decompose Moorsteen-Bjurek indexes of world agricultural TFP change for the period 1970-
2001.  In a DEA model that prohibits technical regress, only two countries are found to maximize 
TFP during the study period: Nepal from 1970 to 1995, and Thailand for several years in the late 
1990s.  The paper explains how changes in the agricultural terms of trade have drawn other larger 
agricultural producers away from TFP-maximizing input-output points.  The annual rate of 
technical progress in global agriculture is estimated to be less than 1% per annum.   
  
 
 
 

 
1.   INTRODUCTION 
  
Improvements in agricultural productivity are a fundamental pre-condition for economic development.  Sachs 
(2008, p.26) puts it in very simple terms: “when agricultural productivity is low – so that the typical family farm 
basically feeds itself, with only a small surplus to trade with urban dwellers – most of the population must be 
engaged in food production in order to subsist.  It is only when agricultural productivity is very high – so that a 
farm family can feed many urban residents – that a significant share of the population can reside in urban areas 
and be engaged in manufacturing and services”.  In more general terms, when agricultural productivity is high, 
land, labour, capital and other resources can be released from food production to expand the non-agricultural 

                                                 
1 Much of the work was completed while the author was visiting the Universitat Autònoma de Barcelona.  The project was financially 
supported by the Generalitat de Catalunya. 
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sectors of the economy.  Valuable resources such as land and water can also be preserved for environmental use.   
In coming decades, if populations continue to grow and natural resource stocks continue to be depleted, growth in 
agricultural productivity will become increasingly important for maintaining the environment and improving 
standards of living. 
 
Effective public policy in this area requires identification of the main drivers of productivity growth.  In 
agriculture, two of the main drivers are technical progress and technical efficiency improvement.  Technical 
progress usually refers to the expansion in the production possibilities set that comes about through increased 
knowledge, while technical efficiency improvement essentially refers to increases in output-input ratios made 
possible by eliminating mistakes in the production process.   Public policies designed to improve agricultural 
productivity can be targeted at these different components.  Policies to improve productivity through technical 
progress include, for example, any policies leading to investment in scientific research and development.  
Examples of complementary policies designed to increase productivity through improvements in technical 
efficiency include education, training and extension programs.  By carefully defining the various components of 
agricultural productivity change, this paper provides insights into the ways different public policy options can 
promote or retard growth.  Included among these are public policies that alter the agricultural terms of trade. 
 
To empirically measure the components of productivity growth, we first need a precise definition of productivity, 
and then a productivity index number formula that is consistent with this definition.   In the case of multiple-
output multiple-input firms, total factor productivity (TFP) can be defined as the ratio of an aggregate output to an 
aggregate input.  This definition underpins the seminal work of Jorgenson and Grilliches (1967) and is the 
definition used throughout this paper.   With this definition, index numbers that measure changes in TFP can be 
expressed as the ratio of an output quantity index to an input quantity index (a measure of output growth divided 
by a measure of input growth).   I use the term multiplicatively complete1 to refer to index numbers constructed in 
this way.  The class of multiplicatively complete TFP indexes includes the well-known Paasche, Laspeyres, Fisher 
and Tornquist TFP indexes2.   However, the popular Malmquist TFP index of Caves, et al. (1982a) is incomplete.  
There also exists a class of additively complete TFP index numbers, and this class includes indexes of the type 
proposed by Bennet (1920).  Indexes that are not complete are said to be incomplete, with the implication that they 
are generally biased measures of TFP change. 

 
Multiplicatively-complete TFP index numbers are important for two reasons.  First, O'Donnell (2008) has used an 
aggregate quantity-price framework to demonstrate that profitability can be decomposed into the product of a 
multiplicatively-complete TFP index number and an index measuring the change in the terms of trade.  Second, he 
shows that all multiplicatively complete TFP index numbers can be further decomposed into an unambiguous 
measure of technical change and several recognizable measures of efficiency change.  Among the efficiency 
change components are input- and output-oriented measures of technical, scale and mix efficiency change.  The 
technical and scale efficiency change components are the familiar components discussed in the literature, but the 
mix efficiency change component appears to be new.  In the output-oriented case, mix efficiency is a measure of 
the maximum increase in TFP that is technically feasible when outputs can vary but inputs are held fixed.  The 
difference between output-oriented measures of technical and mix efficiency is that the former preserves the output 
mix while the latter allows outputs to vary freely.  Input- and output-oriented measures of mix efficiency are 
closely related to well-known measures of allocative efficiency.  However, the two sets of measures are generally 
distinct, coinciding if and only if aggregate quantities are computed using price-weighted linear aggregator 
functions. 
 
The structure of the paper is as follows.   Section 2 demonstrates that the Moorsteen-Bjurek TFP index is 
consistent with the most basic definition of TFP as the ratio of an aggregate output to an aggregate input. Section 3 
defines measures of technical, scale and mix efficiency in terms of these aggregate outputs and inputs, and 
demonstrates that the Moorsteen-Bjurek index can be written as the product of a measure of technical change and 
these efficiency components.  Section 4 outlines the DEA programs required to compute and decompose the 
Morrsteen-Bjurek index.  Section 5 applies the methodology to FAO data on the agricultural inputs and outputs of 
88 countries from 1970 to 2001.   A similar FAO data set was also used by Coelli and Rao (2005) to investigate 
agricultural TFP growth.  The paper is concluded in Section 6. 
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2.   DISTANCE-BASED TFP INDEXES 
 
With a view to eventually computing and decomposing distance-based Malmquist and Moorsteen-Bjurek indexes, 
it is convenient to start with a distance-based representation of the production technology.  The Shephard (1953) 
input and output distance functions can be written: 
 
(2.1) ( , ) max{ 0 : ( , ) }t t

ID x q x q T
ρ

= ρ > ρ ∈    and  (input distance function) 

(2.2) ( , ) min{ 0 : ( , ) }t t
OD x q x q T

δ
= δ > δ ∈      (output distance function) 

 
where Jq +∈ℜ  and Kx +∈ℜ  denote vectors of outputs and inputs, and tT denotes the period-t production 
possibilities set.  The input distance function measures the largest radial contraction of the input vector that is 
technically feasible while holding the output vector fixed, while the output distance function measures the inverse 
of the largest radial expansion of the output vector that is possible while holding the input vector fixed.  The 
output distance is the Farrell (1957) output-oriented measure of technical efficiency, while the input distance is the 
inverse of the Farrell (1957) input-oriented measure.  Irrespective of the returns to scale or scope properties of the 
technology, the output and input distance functions are linearly homogeneous and non-decreasing in output 
quantities and input quantities respectively.   
 
Let M

ntq +∈ℜ  and K
ntx +∈ℜ  denote the observed output and input vectors of firm n in period t.  O'Donnell (2008) 

motivates distance-based input quantity indexes by observing that the ratios ( , ) / ( , )t t
I nt nt I ms ntD x q D x q  and 

( , ) / ( , )s s
I nt ms I ms msD x q D x q  only depart from unity as ntx  departs from .msx  This makes them natural measures of 

input quantity change.   The Malmquist input quantity index suggested by Caves, et al. (1982a, p.1397) is the 
geometric average of these two ratios: 

 

(2.3) 
1/ 2

,
( , ) ( , )
( , ) ( , )

t s
M I nt nt I nt ms
ms nt t s

I ms nt I ms ms

D x q D x q
X

D x q D x q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

  (Malmquist input index) 

 
where the ordering of the subscripting on ,

M
ms ntX  means that the index measures the difference between the inputs 

of firm n in period t and the inputs of firm m in period s using the latter as the base.  The corresponding output 
index is: 
 

(2.4) 
1/ 2

,
( , ) ( , )
( , ) ( , )

t s
M O nt nt O ms nt
ms nt t s

O nt ms O ms ms

D x q D x q
Q

D x q D x q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (Malmquist output index) 

 
The monotonicity and homogeneity properties of the two distance functions ensure that these indexes satisfy basic 
axioms of index number theory, including monotonicity, homogeneity, identity and proportionality.   
 
The input and output distance functions can be used to not only construct input and output quantity indexes, but 
also to construct TPF indexes.  Three distance-based TFP indexes are: 
 

(2.5) 
1/ 2 1/ 2

,
( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

t s t s
MB O nt nt O ms nt I ms nt I ms ms

ms nt t s t s
O nt ms O ms ms I nt nt I nt ms

D x q D x q D x q D x q
TFP

D x q D x q D x q D x q
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (Moorsteen-Bjurek) 

 

(2.6) 
1/ 2

,
( , ) ( , )
( , ) ( , )

t s
IM I ms ms I ms ms

ms nt t s
I nt nt I nt nt

D x q D x q
TFP

D x q D x q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and (input-oriented Malmquist) 

 

(2.7) 
1/ 2

,
( , ) ( , )

( , ) ( , )

t s
OM O nt nt O nt nt

ms nt t s
O ms ms O ms ms

D x q D x q
TFP

D x q D x q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

  (output-oriented Malmquist) 
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The Moorsteen-Bjurek TFP index is the ratio of the output quantity index and the input quantity index given by 
(2.3) and (2.4), and is compatible with the idea that TFP growth is simply the excess of output growth over input 
growth.  The input- and output-oriented TFP indexes given by (2.6) and (2.7) are the geometric averages of period-
t and period-s input- and output-oriented Malmquist TFP indexes proposed by Caves, et al. (1982a, p.1402).  These 
Malmquist TFP indexes (and their geometric average) cannot in general be expressed as the ratio of an output 
quantity index to an input quantity index.  Thus, they are multiplicatively incomplete.   
 
The popularity of Malmquist indexes derives partly from the fact that they can be decomposed.  For example, Fare, 
Grosskopf, Norris and Zhang (1994b, p.71) rewrite the input-oriented index as: 
 

1/ 2

,
( , ) ( , ) ( , )

(2.8)
( , ) ( , ) ( , )

s t t
IM I ms ms I nt nt I ms ms

ms nt t s s
I nt nt I nt nt I ms ms

D x q D x q D x q
TFP

D x q D x q D x q
⎛ ⎞

= ×⎜ ⎟
⎝ ⎠

  

 
The first term on the right-hand is the ratio of input-oriented technical efficiency measures defined in Section 3 
below – it is unambiguously a measure of pure input-oriented technical efficiency change.  The second term is 
interpreted by Fare, et al. (1994b, p.71) as a measure of technical change. 
 

The ability to write a TFP index as the ratio of an output index to an input index is a necessary but not sufficient 
condition for multiplicative completeness.  It must also be possible to write the output and input indexes 
themselves as ratios of aggregate outputs and inputs.  Fortunately, most, if not all, common output and input 
quantity indexes can be written in this way.  Indeed, the entire economic theory approach to index number 
construction is based on the idea that index numbers can be derived from particular aggregator functions, and that 
the properties of different index number formulas are directly related to the properties of the different aggregator 
functions on which they are based – examples of different types of aggregator functions can be found in Diewert 
(1976) and Caves, Christensen and Diewert (1982b).  O'Donnell (2008) observes that the aggregator functions 
underpinning (2.3) and (2.4) are 
 

(2.9) ( )1/ 2
( ) ( , ) ( , )t s

k I k nt I k ms kX x D x q D x q X= ≡    and     
   
 
(2.10)  ( )1/ 2

( ) ( , ) ( , )t s
k O nt k O ms k kQ q D x q D x q Q= ≡         

    
 
for , .k ms nt=   This means that the index number formulas given by equations (2.3) to (2.5) can be written in the 
more compact form: 
 

(2.11) ,
M nt
ms nt

ms

X
X

X
=   (Malmquist input index) 

 

(2.12) ,
M nt
ms nt

ms

Q
Q

Q
=  and (Malmquist output index) 

 

(2.13) ,
,

,

/
/

M
ms ntBM nt nt nt

ms nt M
ms ms msms nt

Q Q X TFP
TFP

Q X TFPX
= = =   (Moorsteen-Bjurek) 

 
where /nt nt ntTFP Q X≡  denotes the TFP of firm n in period t.    Equations (2.11) to (2.13) reveal that the 
Moorsteen-Bjurek index is consistent with the most basic definition of TFP as the ratio of an aggregate output to 
an aggregate input.  That is, the Moorsteen-Bjurek index is multiplicatively complete. 
 
Associated with the aggregate quantities ntQ  and ntX  aggregate prices ntP  and ntW  with the properties 

′= ≡nt nt nt nt ntP Q p q R  and .′= ≡nt nt nt nt ntW X w x C   These properties are known as product rules and are trivially 
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satisfied.  Importantly, they allow us to write profitability change as the product of a TFP index and a measure of 
the change in the terms of trade: 
 

(2.14)  , ,
/ /
/ /

Γ
Γ ≡ = = ×

Γ
nt nt nt nt nt

ms nt ms nt
ms ms ms ms ms

R C P W
TFP

R C P W
       

  
where  /Γ ≡nt nt ntR C  denotes profitability.  Re-arranging (2.14) yields 
 

(2.15) , ,
,

, ,

/
/

= ms nt ms nt
ms nt

ms nt ms nt

R P
TFP

C W
 

 
where , / ,=ms nt nt msR R R  , / ,=ms nt nt msC C C  , /=ms nt nt msP P P  and  , /=ms nt nt msW W W  are revenue, cost and output and 
input price indexes respectively.  Thus, TFP change can be measured as the ratio of an implicit output quantity 
index to an implicit input quantity index. 
 
 
3.   DECOMPOSING MULTIPLICATIVELY-COMPLETE TFP INDEXES 
 

O'Donnell (2008) uses an aggregate quantity-price framework to demonstrate that all multiplicatively-complete 
TFP indexes can be decomposed into a measure of technical change and several measures of efficiency change.  
The demonstration is aided greatly by the ability to depict the TFP of a multiple-input multiple-output firm in two-
dimensional aggregate quantity space.   The basic idea is illustrated in Figure 1.  In this figure, the TFP of firm n in 
period t is given by the slope of the ray passing through the origin and point A, while the TFP of firm m in period s 
is given by the slope of the ray passing through the origin and point Z.  Let lower-case a and z denote the angles 
between the horizontal axis and the rays passing through points A and Z.  Then the TFP index that measures the 
change in TFP between the two firms can be compactly written , tan / tan .ms ntTFP a z=   This ability to write a 
multiplicatively-complete TFP index as the ratio of (tangent) functions of angles in aggregate quantity space is 
used by O'Donnell (2008) to conceptualise several alternative decompositions of TFP change.  For example, let e 
denote the angle between the horizontal axis and the ray passing through the origin and any non-negative point E.  
Then it is clear from Figure 1 that the change in TFP between the two firms can be decomposed as 

, tan / tan (tan / tan )(tan / tan ).ms ntTFP a z a e e z= =   
 
Within this framework, a potentially infinite number of points E can be used to effect a decomposition of a 
multiplicatively-complete TFP index.  O'Donnell (2008) focuses only on those points that feature in common 
definitions of input- and output-oriented measures of efficiency.  Expressed in terms of aggregate quantities, the 
efficiency measures that feature in an output-oriented decomposition of TFP change are: 
  

(3.1) nt
nt

nt

Q
OTE

Q
=  (output-oriented technical efficiency) 

 

(3.2) 
/
/

nt nt
t

nt nt

Q X
OSE

Q X
=  (output-oriented scale efficiency) 

 

(3.3) ˆ
nt

nt
nt

Q
OME

Q
=  (output-oriented mix efficiency) 

 

(3.4) * *

ˆ /
/

nt nt
nt

t t

Q X
ROSE

Q X
=  (residual output-oriented scale efficiency) 

 

(3.5) * *

/
/

nt nt
nt

nt nt

Q X
RME

Q X
=  (residual mix efficiency) 



 6

 

(3.6) * *

/
/

nt nt
nt

nt nt

Q X
TFPE

Q X
=  (TFP efficiency) 

 
where / ( , )t

nt nt O nt ntQ Q D x q≡  is the maximum aggregate output that is technically feasible when ntx is used to 
produce a scalar multiple of ;ntq  ˆ

ntQ  is the maximum aggregate output that is feasible when using ntx  to produce 
any output vector;  tQ  and tX  are the aggregate output and aggregate input obtained when we maximize TFP 
subject to the constraint that the output and input vectors are scalar multiples of ntq  and ntx  respectively; and *

tQ  
and *

tX  are the aggregate output and aggregate input at the point where TFP is unconditionally maximized.   The 
maximum TFP that is possible using the production technology available in period t is * * */ .t t tTFP Q X≡   
 
The technical efficiency measure defined by (3.1) is the measure proposed by Farrell (1957), while the scale 
efficiency measure is defined by, for example, Balk (2001).  The output-oriented mix efficiency measure (3.3) 
does not appear to have been previously defined in the literature, although it is closely related to a measure of 
revenue-allocative efficiency first proposed by Farrell (1957).  To motivate this unfamiliar measure, O'Donnell 
(2008) considers the two-output case where the aggregator function is linear: 1 1 2 2( ) .nt nt ntQ q q q= +α α   Figure 2 
depicts this special case in output space.  In this figure, the curved line passing through points V and C is the 
familiar production frontier representing all technically-efficient output combinations that can be produced using 

.ntx  The dashed line passing through point A is an iso-output line that maps all output combinations that have the 
same aggregate output as at point A.  If the output mix and the input vector are held fixed, then aggregate output 
and TFP are maximized by radially expanding outputs to point C.  However, if restrictions on the output mix are 
relaxed, aggregate output and TFP are maximized by moving around the frontier to point V.  The ratio of the 
distance 0A to the distance 0C in Figure 2 is the output-oriented measure of technical efficiency defined in 
equation (3.1): .nt nt ntOTE Q Q A C= =  The ratio of the distance 0H to the distance 0V is the output-oriented 
measure of mix efficiency: ˆ .nt nt ntOME Q Q H V= =   Output-oriented mix efficiency is simply a measure of the 
increase in TFP that comes about by relaxing restrictions on output mix.  In the same way that scale efficiency is a 
measure of the potential productivity gains that can be achieved through economies of scale, mix efficiency is a 
measure of the potential gains that can be achieved through economies of scope.   
 
To obtain further insights into the relationships between aggregate quantities and measures of efficiency, 
O'Donnell (2008) maps input-output combinations into aggregate quantity space.   Figure 3 presents such a 
mapping for the input-output combinations represented by points A, C and V in Figure 2.  In Figure 3, the curve 
passing through points C and D represents the frontier of a restricted production possibilities set.  The set is 
restricted insofar as it only contains input and output vectors that can be written as scalar multiples of ntx and .ntq   
When these mix restrictions are relaxed, the firm has access to the expanded (or unrestricted) production 
possibilities set bounded by the curve passing through points V and E.  Output-oriented technical efficiency 
measures the proportionate increase in TFP as the firm moves from point A to point C, output-oriented mix 
efficiency measures the increase in TFP as the firm moves from C to V, while output-oriented scale efficiency 
measures the increase in TFP as the firm moves from C to D.   
 
In Figure 3, point D represents the input-output combination that maximizes TFP when the input and output mixes 
are held fixed.  For this reason, point D is known as the point of mix-invariant optimal scale (MIOS).  When mix 
restrictions are relaxed, the input-output combination that maximizes TFP is the combination represented by point 
E.  For this reason, point E is known as the point of maximum productivity (MP).  The residual output-oriented 
scale efficiency measure defined by (3.4) measures the proportionate increase in TFP that takes place as the firm 
moves from point V to point E.  O'Donnell (2008) uses the term scale for this measure because “any movement 
around an unrestricted production frontier is a movement from one mix-efficient point to another, so any 
improvement in TFP is essentially a scale effect ... [He also uses] the term residual because, even though all the 
points on the unrestricted frontier are mix-efficient, they may nevertheless have different input and output mixes ... 
Thus, what is essentially a measure of scale efficiency may contain a residual mix effect” (p.20).  Another 
important residual measure of efficiency is residual mix efficiency, defined by (3.5).  This is a measure of the 
proportionate increase in TFP that occurs as the firm moves from point D to point E.  The term residual is also 
used here because, although the move from point D on the mix-restricted frontier to point E on the unrestricted 
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frontier is primarily a mix effect, it may also involve a change in scale.  Residual mix efficiency can also be 
viewed as the component of TFP change that remains after accounting for pure technical efficiency and pure scale 
efficiency effects. 
 
Finally, the measure of TFP efficiency defined by (3.6) measures the proportionate increase in TFP as the firm 
moves all the way from point A to point E.  Figure 3 illustrates two of many pathways from A to E, and therefore 
illustrates two of many decompositions of TFP efficiency: in terms of angles,  
 

(3.7) tan tan tan tan tan tan tan
tan tan tan tan tan tan tannt

a a c v a c dTFPE
e c v e c d e

⎛ ⎞ ⎛ ⎞= = × × = × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

 
or, in terms of aggregate quantities, 
 

(3.8) * * * * * *

ˆ/ / / /
ˆ/ / //

nt nt nt nt nt nt nt nt nt nt nt
nt

nt ntnt nt t t nt ntnt ntnt

Q X Q Q Q X Q Q X Q X
TFPE

Q QQ X Q X Q XQ XQ

⎛ ⎞ ⎛ ⎞
= = × × = × ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

  

 
or, in terms of measures of efficiency, 
 

(3.9) ( ) ( )*
nt

nt nt nt nt nt nt nt
t

TFP
TFPE OTE OME ROSE OTE OSE RME

TFP
= = × × = × ×   

 
These decompositions provide a basis for an output-oriented decomposition of a multiplicatively complete TFP 
index.  The easiest way to see this is to rewrite (3.9) as: 
 
(3.10) ( ) ( )* *

nt t nt nt nt t nt nt ntTFP TFP OTE OME ROSE TFP OTE OSE RME= × × × = × × ×   
 
A similar equation holds for firm m in period s.  Thus, 
 

(3.11) 
* *

, * *
nt t nt nt nt t nt nt nt

ms nt
ms ms ms ms ms ms mss s

TFP TFP OTE OME ROSE TFP OTE OSE RME
TFP

TFP OTE OME ROSE OTE OSE RMETFP TFP
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

= = × × × = × × ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
The first term in parentheses on the right-hand side of equation (3.11) measures the difference between the 
maximum TFP possible using the technology available in period t and the maximum TFP possible using the 
technology available in period s.  Thus, it is a natural measure of technical change.  The economy/industry 
experiences technical progress or regress as * */t sTFP TFP   is greater than or less than 1.  The other ratios on the 
right-hand side of (3.11) are obvious measures of technical efficiency change, (residual) mix efficiency change, 
and (residual) scale efficiency change. O'Donnell (2008) derives the input-oriented counterparts to equations (3.7) 
to (3.11) and demonstrates that the input- and output-oriented measures of technical change are plausibly 
identical.  For the sake of completeness, the input-oriented counterpart to (3.11) is given by: 
 

(3.12) 
* *

, * *
nt t nt nt nt t nt nt nt

ms nt
ms ms ms ms ms ms mss s

TFP TFP ITE IME RISE TFP ITE ISE RME
TFP

TFP ITE IME RISE ITE ISE RMETFP TFP
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

= = × × × = × × ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
where 
 

(3.13) nt
nt

nt

X
ITE

X
=  (input-oriented technical efficiency) 

 

(3.14) 
/
/

nt nt
nt

nt nt

Q X
ISE

Q X
=  (input-oriented scale efficiency) 
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 (3.15) 
ˆ

nt
nt

nt

X
IME

X
=  (input-oriented mix efficiency) 

 

(3.16) * *

ˆ/
/

nt nt
nt

nt nt

Q X
RISE

Q X
=  (residual input-oriented scale efficiency) 

 
and ntRME is the measure of residual mix efficiency defined by equation (3.5).   In equations (3.13) to (3.16), 

/ ( , )t
nt nt I nt ntX X D x q≡  is the minimum aggregate input that is possible when using a scalar multiple of ntx  to 

produce ,ntq  while ˆ
ntX  is the minimum aggregate input that is possible when using any input vector to produce 

.ntq   
  
 
4.   USING DEA TO COMPUTE AND DECOMPOSE TFP INDEXES 
 
In principle, any multiplicatively-complete TFP index can be decomposed using the framework outlined in 
Section 3.  This section presents the DEA problems needed to compute and decompose the Moorsteen-Bjurek 
index.  I selected this index from among the class of multiplicatively-complete indexes primarily because it is a 
distance-based index and DEA methodology for estimating distances is relatively straightforward.  A second 
reason is that it is closely related to the multiplicatively-incomplete Malmquist index that has for some time been 
the index number of choice in the productivity decomposition literature.  For purposes of comparison, this section 
also presents the DEA problems used by Fare, Grosskopf, Lindgren and Roos (1994a) to compute and decompose 
that index. 
 
The DEA Approach 
 
Input- and output-oriented DEA models are both underpinned by the assumption that the production frontier is 
locally linear.  In the input-oriented case, local linearity means that for any input vectors in the neighbourhood of 

ntx  the production frontier takes the linear form  
 
(4.1)  nt ntq x′ ′= +µ α υ     
 
where µ and υ  are non-negative and α  is unsigned.  The fact that α  is unsigned means the technology 
potentially exhibits variable returns to scale (VRS): if  0α <  the technology exhibits local increasing returns to 
scale (IRS); if 0≥α  it exhibits local non-increasing returns to scale (NIRS); if  0>α  it exhibits local decreasing 
returns to scale (DRS); and if 0α =  it exhibits local constant returns to scale (CRS).   In the output-oriented case, 
local linearity means that for output vectors in the neighbourhood of ntq  the production frontier takes the form 
 
(4.2)  nt ntq x′ ′= +η β φ     
 
whereη and φ  are non-negative and the intercept β  is again unsigned to allow for variable returns to scale.  
Different notation is used for the parameters in (4.1) and (4.2) to make it clear that they are defined with reference 
to possibly different neighbourhoods.   
 
Associated with the (local) frontiers (4.1) and (4.2) are the (local) input and output distance functions: 
 

(4.3)  ( , ) 1t nt
I nt nt

nt

x
D x q

q
υ

µ α
′

= ≥
′ −

  and 

 

(4.4)  ( , ) 1t nt
O nt nt

nt

q
D x q

x
′

= ≤
′+

η
β φ
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DEA involves selecting values of the unknown parameters to minimize the value of the input distance function  
(4.3) and/or maximise the value of the output distance function (4.4).  
 
A word of caution is in order concerning notation.  Strictly speaking, the unknown parameters in equations (4.1) 
to (4.4) should also have firm and time subscripts to indicate that these relationships only hold for observations in 
the neighbourhoods of ntx  (in the input-oriented case) and ntq  (in the output-oriented case).  Different functions 
(i.e., different parameters) may be relevant in the neighbourhoods of other input and output vectors msx  and .msq   
I have chosen to suppress these subscripts, partly for notational simplicity, but mainly for consistency with the 
way DEA problems are presented in the efficiency literature.  However, it needs to be remembered that these 
parameters may change from point to point, so the ratios on the right-hand sides of (4.3) and (4.4) cannot be 
blindly substituted into equations (2.9) and (2.10) in order to identify the aggregate inputs and outputs 
corresponding to different input and output vectors.    
 
Primal Problems 
 
The primal input-oriented DEA problem involves selecting values of ,µ  υ  and α in order to minimise 

( , )t
I nt ntD x q  (or, equivalently, choosing parameters to maximize its inverse).   Aside from the non-negativity 

restrictions on µ  and υ , the only constraints on the parameters are that they must satisfy ( , ) 1t
I ir irD x q ≥  for 

1,...,i N=  and 1,..., .r t=   Imposing these constraints at these particular data points (i.e., at the input-output 
choices of all firms in all periods up to and including period t) implicitly prohibits technical regress; if technical 
regress is to be permitted then the constraints should only be imposed for 1,...,i N=  and r t=  (all firms in period 
t only).  Irrespective of the number of points at which the constraints are imposed, there are infinitely many 
solutions to the resulting minimisation problem3.  A common method of identifying a unique solution is to set 

1.ntxυ′ =    With this normalizing constraint, the input-oriented DEA linear program (LP) for firm n in period t 
takes the form: 
 

1

, ,
(4.5a) ( , ) max

(4.5b) s.t. 0 for 1,...,  and 1,...,
(4.5c) 1
(4.5d) , 0

t
I nt nt nt

ir ir

nt

D x q q

q x i N r t
x

− ′= −

′ ′− − ≤ = =
′ =

≥

α µ υ
µ α

µ υ α
υ
µ υ

 

 
Primal output-oriented DEA problems involve selecting values of ,η  κ  and β  in order to maximise 

( , ).t
O nt ntD x q   In the case where technical regress is prohibited, the unknown parameters are constrained so that 

( , ) 1t
O ir irD x q ≤  for 1,...,i N=  and 1,..., .r t=  A local solution can be identified using the normalisation 1,ntqη′ =  

in which case the output-oriented analogue of LP (4.5) is 
 

1

, ,
(4.6a) ( , ) min

(4.6b) s.t. 0 for 1,...,  and 1,...,
(4.6c) 1
(4.6d) , 0

t
O nt nt nt

ir ir

nt

D x q x

q x i N r t
q

− ′= +

′ ′− + + ≥ = =
′ =

≥

α µ υ
β φ

η φ β
η
η φ

 

 
Problems (4.5) and (4.6) can be solved using standard LP software packages.  However, sometimes it is more 
convenient and enlightening to obtain solutions after rewriting the problem in an alternative, dual, form. 
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Dual Problems 
 
Every normal primal linear program has a dual form with the property that if the primal and the dual LPs both 
have feasible solutions  then the optimized values of the two objective functions are equal.  The dual form of the 
normal maximisation LP (4.5), for example, is  
 

1

,

1 1

1 1

1 1

(4.7a) ( , ) min

(4.7b) s.t.

(4.7c) 0

(4.7d) 1

(4.7e) , 0 for 1,...,  and 1,..., .

t
I nt nt

N t

ir ir nt
i r

N t

nt ir ir
i r

N t

ir
i r

ir

D x q

q q

x x

i N r t

−

= =

= =

= =

=

≥

− ≥

=

≥ = =

∑∑

∑∑

∑∑

ρ θ
ρ

θ

ρ θ

θ

ρ θ  
 
If the production possibilities set is convex then this dual input-oriented problem has a very simple interpretation.  
Convexity of the production possibilities set means that any convex combination4 of observed data points, such as 
the double-summations in (4.7b) and (4.7c), are technically feasible output and input levels.  This particular LP 
seeks to scale down the input vector while holding the output vector fixed.  Here, the role of the constraints (4.7b) 
and (4.7c) is to ensure that the observed output and scaled-down input vectors are technically feasible.  The 
constraint (4.7d) holds with strict equality because α  in the primal problem (4.5) was unsigned to allow for 
variable returns to scale.  If  0α ≥  (non-increasing returns to scale) then the constraint (4.7d) becomes: 
 

1 1
(4.8) 1

N t

ir
i r= =

≤∑∑θ  

 
If 0tα =  (constant returns to scale) then the constraint (4.7d) is absent from the dual problem altogether.   
Irrespective of the form of the returns to scale constraint, a basic feasible solution (BFS) to this problem is 1ρ =  
and ( , ),ir I i n r tθ = = =  where (.)I is an indicator function that takes the value 1 if the argument is true and 0 
otherwise. 
 
The dual form of the output-oriented problem (4.6) has a similar structure: 
 

1

,

1 1

1 1

1 1

(4.9a) ( , ) max

(4.9b) s.t. 0

(4.9c)

(4.9d) 1

(4.9e) , 0 for 1,...,  and 1,..., .

t
O nt nt

N t

nt ir ir
i r

N t

ir ir nt
i r
N t

ir
i r

ir

D x q

q q

x x

i N r t

−

= =

= =

= =

=

− ≤

≤

=

≥ = =

∑∑

∑∑

∑∑

λ θ
λ

λ θ

θ

θ

λ θ  
This particular LP seeks to scale up the output vector while holding the input vector fixed.   The constraints (4.9b) 
and (4.9c) ensure the observed input and scaled-up output vector are technically feasible, while the constraint 
(4.9d) allows for variable returns to scale.  Again, to allow for NIRS we simply replace (4.9d) with (4.8), and to 
allow for CRS we omit (4.9d) altogether.  A BFS is 1λ =  and ( , ).ir I i n r tθ = = =  
 
Several other LP problems are needed to compute and decompose the Malmquist and Moorsteen-Bjurek TFP 
indexes given by equations (2.5) to (2.7).  To avoid repetition, the remainder of this section focuses on input-
oriented problems.  Corresponding output-oriented LPs are presented in the appendix.  
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Additional LPs for Computing and Decomposing the Input-Oriented Malmquist Index 
 
Either of the dual LPs given by (4.7) or (4.9) can be used to identify the production technology 
(production frontier), but this alone does not allow us to compute and decompose Malmquist 
TFP indexes. In the input-oriented case, that involves solving the following additional LPs5: 
 

1

,

1 1

1 1

1 1

(4.10a) ( , ) min

(4.10b) s.t.

(4.10c) 0

(4.10d) 1

(4.10e) , 0 for 1,...,  and 1,..., .

t
I ms ms

N t

ir ir ms
i r

N t

ms ir ir
i r

N t

ir
i r

ir

D x q

q q

x x

i N r t

ρ θ
ρ

θ

ρ θ

θ

ρ θ

−

= =

= =

= =

=

≥

− ≥

=

≥ = =

∑∑

∑∑

∑∑

 
 
and 
 

1

,

1 1

1 1

1 1

(4.11a) ( , ) min

(4.11b) s.t.

(4.11c) 0

(4.11d) 1

(4.11e) , 0 for 1,...,  and 1,..., .

s
I nt nt

N s

ir ir nt
i r

N s

nt ir ir
i r

N t

ir
i r

ir

D x q

q q

x x

i N r s

ρ θ
ρ

θ

ρ θ

θ

ρ θ

−

= =

= =

= =

=

≥

− ≥

=

≥ = =

∑∑

∑∑

∑∑

 
 
These problems do not always have a solution, even under the assumption of constant returns to scale.  For 
example, problem (4.10) is always infeasible if technical regress is permitted and no firms in period t produce a 
positive amount of an output that is produced by firm m in period s.  In that case, irrespective of the returns to 
scale assumption, there are no values of  irθ  that can satisfy constraint (4.10b).   If solutions to problems (4.10) 
and (4.11) are available then it is straightforward to compute the index and implement the Fare, et al. (1994b, 
p.71) decomposition given by equation (2.8) 
  
Additional LPs for Computing and Decomposing the Moorsteen-Bjurek Index 
 
Computing (but not decomposing) the Moorsteen-Bjurek TFP index involves solving two slightly different, and 
also possibly infeasible, input-oriented problems: 
 

1

,

1 1

1 1

1 1

(4.12a) ( , ) min

(4.12b) s.t.

(4.12c) 0

(4.12d) 1

(4.12e) , 0 for 1,...,  and 1,..., .

t
I ms nt

N t

ir ir nt
i r

N t

ms ir ir
i r

N t

ir
i r

ir

D x q

q q

x x

i N r t

ρ θ
ρ

θ

ρ θ

θ

ρ θ

−

= =

= =

= =

=

≥

− ≥

=

≥ = =

∑∑

∑∑

∑∑

 
 
and 
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1

,

1 1

1 1

1 1

(4.13a) ( , ) min

(4.13b) s.t.

(4.13c) 0

(4.13d) 1

(4.13e) , 0 for 1,...,  and 1,..., .

s
I nt ms

N s

ir ir ms
i r

N s

nt ir ir
i r

N s

ir
i r

ir

D x q

q q

x x

i N r s

ρ θ
ρ

θ

ρ θ

θ

ρ θ

−

= =

= =

= =

=

≥

− ≥

=

≥ = =

∑∑

∑∑

∑∑

 
 
Decomposing the index into the components identified by O’Donnell (2008) then involves solving a further two 
LPs.  To motivate these additional LPs it is convenient to rewrite the dual problem (4.7) in the alternative form: 

 
1

, ,

1 1

1 1

1 1

(4.14a) / min ( ) ( )

(4.14b) s.t.

(4.14c) 0

(4.14d) 1

(4.14e) 0

(4.14f ) , , 0 for 1,...,  and 1,...,

nt
nt nt K nt K ntv

N t

ir ir nt
i r

N t

nt ir ir
i r

N t

ir
i r

nt t nt

nt ir

X X x v

q q

v x

v x

v i N r t

ρ θ
ι ι

θ

θ

θ

ρ

ρ θ

−

= =

= =

= =

′ ′=

≥

− ≥

=

− =

≥ = =

∑∑

∑∑

∑∑

 
 
where Kι  denotes a  1K ×  vector of ones, and ntX  and ntX  are the aggregate inputs used in Section 3 to define 
input-oriented technical efficiency: 1/ ( , ) .t

nt nt nt I nt ntITE X X D x q −= = .  To see that the two problems (4.7) and 
(4.14) are equivalent, simply substitute the equality constraint (4.14e) into both the inequality constraint (4.14c) 
and the objective function (4.14a).  The fact that K ntxι′  is a known scalar means the objective function is still linear 
in the decision variables, meaning the problem (4.14) is still a linear program.  This formulation is useful because 
the constraint (4.14e) makes it explicit that input-oriented technical efficiency involves holding the input mix 
fixed.   Input-oriented mix efficiency measures the improvement in TFP when this constraint is relaxed.  When 
(4.14e) is relaxed, the dual input-oriented DEA problem simply becomes: 
 

1

,

1 1

1 1

1 1

ˆ(4.15a) / min ( ) ( )

(4.15b) s.t.

(4.15c) 0

(4.15d) 1

(4.15e) , 0 for 1,...,  and 1,...,

nt nt K nt Kv

N t

ir ir nt
i r

N t

ir ir
i r

N t

ir
i r

ir

X X x v

q q

v x

v i N r t

θ
ι ι

θ

θ

θ

θ

−

= =

= =

= =

′ ′=

≥

− ≥

=

≥ = =

∑∑

∑∑

∑∑
 

 
where ˆ

ntX  is the maximum aggregate output that is possible holding the output vector fixed, and 
ˆ /nt nt nt ntX X IME ITE= ×  is the product of the input-oriented measures of mix and technical efficiency introduced 

in Section 3.   A basic feasible solution to this problem is ntv x=  and ( , ).ir I i n r tθ = = =   At this BFS the value 
of the objective function is one, implying that the minimized value of the objective function (a measure of the 
product of technical and mix efficiency) lies in the unit interval.   
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Observe that problem (4.15) allows the input vector to be chosen freely while holding the output vector fixed.  A 
closely-related LP that relaxes all constraints on both the output and input vectors is given by  
 

*

, ,

1 1

1 1

(4.16a) max ( )

(4.16b) s.t. 0

(4.16c) 0

(4.16d) 1

(4.16e) , , 0 for 1,...,  and 1,...,

ir
t Kz v

N t

ir ir
i r

N t

ir ir
i r

K

ir

TFP z

z q

x v

v

z v i N r t

θ
ι

θ

θ

ι

θ

= =

= =

′=

− ≤

− ≤

′ =

≥ = =

∑∑

∑∑

 
 
where * * */t nt ntTFP Q X=  denotes the maximum TFP that is possible using the technology available in period t (see 
Section 3).   The constraints (4.16b) and (4.16c) ensure that the input and output vectors are technically feasible, 
while the normalizing constraint (4.16d) identifies a unique solution to the problem in much the same way that 
constraint (4.5c) identified a unique solution to problem (4.5).  A BFS is 10 ,J Kz v Kι −= = ×  and 0irθ =  for  
all  1,...,i N=  and  1,..., ,r t=   where 0J  denotes a 1J ×  vector of zeros.  At this BFS the value of the objective 
function is zero, implying * 0.tTFP ≥    
 
Solutions to the LPs given by (4.5), (4.12) to (4.16) and their output-oriented counterparts are all that is required 
to decompose the Moorsteen-Bjurek index into the measures of efficiency change defined by O’Donnell (2008).  
They are also sufficient to separately identify the levels of technical efficiency, scale efficiency and mix efficiency 
for all observed input-output combinations: 
 
(4.17) 1( , )t

nt I nt ntITE D x q −=  

(4.18) ( , ) / ( , )t t
nt I nt nt I nt ntISE D x q H x q=  and 

(4.19) ˆ( , ) ( / )t
nt I nt nt nt ntIME D x q X X= ×  

 
where ( , )t

I nt ntH x q is the input-distance under the assumption of constant returns to scale.  

 
 
5.   EMPIRICAL EXAMPLE 

  
Coelli and Rao (2005) use DEA to compute and decompose output-oriented Malmquist TFP indexes of 
agricultural productivity change for 93 countries from 1980 to 2000 permit technical regress and assume the 
technology exhibits constant returns to scale.   This section computes and decomposes Moorsteen-Bjurek TFP 
indexes using the methodology described in Sections 3 and 4.  Technical regress is prohibited and the technology 
is assumed to exhibit variable returns to scale. 
  
Data 

 
The data was originally sourced from the FAO6 and comprises observations on the agricultural inputs and outputs 
of 88 countries for the period 1970 to 2001.  Thus, the panel is longer in time-series and slightly shorter in cross-
section than the panel used in the Coelli and Rao (2005) study.   Data was available for two outputs (crops and 
animals) and five inputs (land, labour livestock, tractors and fertilizer).   For details concerning the construction of 
these variables, see Coelli and Rao (2005, p.121-122).  Some descriptive statistics are reported in Table 1.  
Observe from Table 1 that all variables have been normalized to have unit means.   
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Efficiency Scores 
 
Output- and input-oriented measures of technical, scale and mix efficiency for a subset of countries in a subset of 
years are reported in Table 2.   Methods for identifying levels of residual mix and scale efficiency are currently 
unavailable, so this table only reports pure technical, scale and mix efficiency scores.  Before examining the 
numbers more closely, three points should be made.  First, the technical and scale efficiency measures reported in 
this table are the measures that have been used by efficiency and productivity analysts for decades – it is only the 
measures of mix efficiency that are new.  Second, the technology has been estimated using DEA, which makes no 
allowance for statistical noise, so any measurement errors in the data will be manifest in these estimates of 
efficiency.  Third, like the vast majority of efficiency studies appearing in the literature, the technology has been 
specified in a way that does not take proper account of risk, and there is strong evidence that this failure can lead 
to downwardly biased estimates of technical efficiency – see O'Donnell, Chambers and Quiggin (2006). 
 
With this in mind, observe that, in 1970 and 1971, Australian farmers were technically and scale efficient, and 
were producing a productivity-maximizing combination of outputs.  However, they were input-mix inefficient – 
then, as now, Australian agricultural production was characterised by large land to labour and land to capital 
ratios.  Also observe that New Zealand agriculture was highly inefficient in 1975 and in 1979.   There was a large 
increase in recorded output-oriented technical efficiency in 1976, and an equally large fall in that measure in 1979.  
These changes give rise to a pattern of TFP change that is slightly more exaggerated than the pattern observed in 
other estimates of NZ agricultural TFP – see Forbes and Johnson (2001).  Finally, observe that Zimbabwe was 
technically-, scale- and mix-efficient in 1999.  However, the efficiency measures reported in Table 2 are not 
exhaustive, and residual measures of efficiency for Zimbabwe are less than one. 
 
The Components of TFP Change 
 
The efficiency estimates reported in Table 2 have been used to compute the estimates of TFP and efficiency 
change reported in Table 3.  All values reported in this table are non-cumulative firm-specific index numbers, 
which means they measure year-on-year changes for individual countries.  Among other things, the estimates 
reported in Table 3 indicate that productivity in Australian agriculture was pretty much the same in 1971 as it had 
been in 1970, despite the fact that there had been significant technical progress – at that time there was a 10.5% 
increase in the maximum TFP possible using the available technology.  The frontier moved, Australia stood still, 
and this was measured as a fall in efficiency.  Table 3 also reveals that NZ agricultural TFP was 2.2 times higher 
in 1971 than it had been in 1970, mainly due to the large increase in output-oriented technical efficiency evident 
in Table 2.  The magnitude of this increase was matched only by the magnitude of the fall a couple of years later – 
the maximum and minimum values reported at the bottom of Table 3 reveal that the large increases and decreases 
in NZ TFP during the 1970s were, in fact the largest increases and decreases in TFP recorded in the sample.  
Finally, the fastest rate of technical progress was 10.5%, snd that occurred in the first year of the sample.  The 
average rate of technical change across the entire sample was 0.9% per annum, slightly less than the 1.1% 
reported by Coelli and Rao (2005) using a Malmquist approach and allowing for technical regress.   
 
A clearer picture of the nature of TFP change in Australia, New Zealand and the USA is provided in Figures 5 to 
7.  These graphs are cumulative measures of the components of TFP change:.  The dotted lines are the estimated 
indexes of technical change, while the solid black lines are the TFP indexes.  Only these two lines are indexes, and 
they are normalized to take the value 1 in 1970.  The remaining lines are levels of pure technical, scale and mix 
efficiency.  Importantly, these pure efficiency effects and are not exhaustive – there are some residual scale and 
mix efficiency indexes that do not appear on these graphs.   
 
Observe from Figure 5 that the index of technical change is non-decreasing, in line with the decision to rule out 
technical regress.  TFP in Australian agriculture fell behind world’s best practice in periods 6 through 20 (1975 to 
1990) due to technical inefficiency.   Governments can improve technical efficiency through education and 
extension programs, and it would be interesting to see what was happening to agricultural extension services 
during the late 1980s.   By the end of the sample period, Australian agricultural TFP was only 10% higher than it 
had been in 1970.  This represents an annual average increase in TFP of only 0.3%, only a fraction of the rate 
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estimated broadacre agriculture Mullen, Scobie and Crean (2008).  This suggests that TFP growth in broadacre 
agriculture has outpaced TFP growth in agriculture more generally. 
  
Figure 6 shows that, with the exception of a couple of years in the mid-1970s, NZ farmers have been technically 
inefficient for most of the sample period.  This graph suggests raises questions concerning the quality of the data 
in the late 1970s.  Smoother estimates of TFP change would almost certainly be obtained if the technology was 
estimated using a methodology that accounted for statistical noise.   
 
Finally, Figure 7 reveals that the rate of TFP growth in US agriculture has been twice the rate of technical 
progress.  All pure efficiency scores have been quite high, implying that this improvement in TFP has been driven 
by residual scale and mix effects.  Indeed, the average annual rate of growth in residual input scale efficiency was 
2.7%.  Interestingly, this number is fairly close to the TFP growth rate estimated by Coelli and Rao (2005).  This 
is not surprising – those authors used a constant-returns-to-scale Malmquist methodology that does not properly 
account for the effects of either mix or scale. 
 
Peers  
  
Within this framework it is straightforward to compute peers and targets for each country in each time period.  Of 
most interest is the TFP-maximizing country in each time period.  Table 4 lists these countries and the estimated 
maximum TFP.   Maximum possible TFP was approximately 35%% higher at the end of the sample period than it 
was at the start of the sample period.   Observe that only two countries are represented in Table 4: Nepal and 
Thailand.   
 
Profitability 
 
Changes in the agricultural terms of trade may have drawn large agricultural producers away from TFP-
maximizing input-output points.  The importance of the terms of trade is illustrated in Figure 4, which depicts a 
measure of profit efficiency in aggregate output space.  In Figure 4, the dashed lines passing through points A, E 
and K are isoprofit lines with the same slope /t tW P  but different intercepts.   Among other things, Figure 4 
illustrates that i) Firm A maximizes profit at the technically-efficient but scale-inefficient point K, ii) the profit-
maximizing point of production does not necessarily coincide with the TFP-maximizing point of production, iii) 
the profit efficiency of Firm A can be decomposed into a component measuring the change in profits as Firm A 
moves to maximize TFP (at point E), and a further change in profits as Firm A moves to maximize profits (at point 
K), and iv) the profit- and TFP-maximizing points coincide (at point E) if and only if maximum TFP (the slope of 
the ray through point E) equals the inverse of the terms of trade (the slope of the isoprofit line) (i.e., if 

* */ / tan ).t t t tQ X W P e= =    
 
 
6.   CONCLUSION 
 
One of the main aims of this paper has been to demonstrate that decomposition of the Moorsteen-Bjurek index is 
empirically feasible using large real-world data sets.   Estimates of TFP and efficiency change were obtained 
using DEA programs that prohibited technical regress but allowed for variable returns to scale.  A problem with 
DEA methodology is that it makes no allowance for statistical noise.  Some of the large variations in the estimates 
reported in this study may be due to noise, but they may also arise from failure to properly account for the risky 
nature of the production process.  There is scope to use existing econometric estimators and more flexible 
representations of the technology to obtain even more reliable estimates of agricultural TFP and TFP change.  In 
summary: 
 

• there is a large class of TFP indexes that can be decomposed into measures of technical change, technical 
efficiency change, mix efficiency change, and scale efficiency change. 

• Improvements in technical efficiency will lead to increases in both TFP and profitability.  Policies 
designed to improve technical efficiency include education and extension programs. 
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• Except in very special cases, maximising TFP reduces profitability. 
• Changes in the terms of trade can be expected to induce changes in production patterns and measures of 

TFP change. 
• Restrictions on input and output choices may prevent countries from maximizing TFP and/or 

profitability. Restrictions may take the form of absolute resource constraints (e.g., land) and government 
regulations (e.g., restrictions on the production of GM food). 
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APPENDIX 
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Figure 1.  Total Factor Productivity Change 

 
 

 
 
 
 
 

 

      
 

Figure 2. Output-Oriented Mix Efficiency for a Two Output Firm 
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Figure 3.  Output-Oriented Decompositions of TFP Efficiency 

 
 
 
 
 
 

     
Figure 4.  Profit Efficiency for a Multiple-Input Multiple-Output Firm 
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Figure 5.  Components of TFP Change: Australia, 1970-2001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.  Components of TFP Change: New Zealand, 1970-2001 
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Figure 7.  Components of TFP Change: United States, 1970-2001 
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  Table 1.  DESCRIPTIVE STATISTICS  
  _________________________________________________________________________  
 
                                     Mean        SD        Min        Max   
  _________________________________________________________________________  
 
   CROP_OUT                         1.000      2.695   0.003852      32.24   
   ANIMAL_O                         1.000      2.604   0.009128      31.37   
   AREA                             1.000      2.063    0.01215      12.84   
   LABOUR                           1.000      4.420   0.005800      42.97   
   LIVESTOC                         1.000      2.401    0.01012      20.77   
   TRACTORS                         1.000      2.830 1.406e-005      24.69   
   FERTILIZ                         1.000      3.142 8.273e-005      33.44   
  
   CROP_OUT per AREA                2.068      2.671   0.001237      20.25   
   CROP_OUT per LABOUR              4.132      6.932     0.1424      52.22   
   CROP_OUT per LIVESTOC            1.446      1.859   0.008842      13.29   
   CROP_OUT per TRACTORS            29.29      201.5    0.05071      5382.   
   CROP_OUT per FERTILIZ            17.90      82.66    0.09166      2098.   
  
   ANIMAL_O per AREA                2.764      4.900   0.009106      39.07   
   ANIMAL_O per LABOUR              10.92      22.69    0.04081      142.4   
   ANIMAL_O per LIVESTOC            1.282      1.248     0.1186      7.868   
   ANIMAL_O per TRACTORS            12.68      38.53     0.1931      718.6   
   ANIMAL_O per FERTILIZ            8.555      27.37     0.1420      529.8   
  
   CROP_OUT per ANIMAL_O            1.834      2.115    0.01802      14.17   
  
   AREA     per LABOUR              8.908      33.26    0.06434      306.3   
   AREA     per LIVESTOC            1.794      4.195     0.1080      59.78   
   AREA     per TRACTORS            54.42      222.2    0.01228      3138.   
   AREA     per FERTILIZ            38.00      137.5    0.05208      2528.   
   LABOUR   per LIVESTOC            1.190      1.581    0.01088      9.832   
   LABOUR   per TRACTORS            59.00      390.1   0.009331 1.110e+004   
   LABOUR   per FERTILIZ            33.71      153.5    0.01353      2894.   
   LIVESTOC per TRACTORS            35.66      150.2    0.03641      3631.   
   LIVESTOC per FERTILIZ            23.39      91.15    0.05846      1900.   
   TRACTORS per FERTILIZ            1.746      4.188  0.0005408      98.15   
  _________________________________________________________________________



  Table 2. MEASURES OF TECHNICAL, SCALE and MIX EFFICIENCY  
  _____________________________________________________________________________________  
 
   Obs    Year   Country      OTE       OSE       OME       ITE       ISE       IME     
                              (D)       (E)       (F)       (H)       (I)       (J)       
 _____________________________________________________________________________________ 
 
     2    1970     ANG       0.5011    0.9777    0.9992    0.4901    0.9997    0.2210   
     3    1970     ARG        1.000     1.000     1.000     1.000     1.000    0.5178   
     4    1970     AUS        1.000     1.000     1.000     1.000     1.000    0.3464   
     5    1970     AUT       0.9046    0.9274    0.9849    0.9903    0.8472   0.09643   
   
    90    1971     ANG       0.4719    0.9522    0.9933    0.4594    0.9781    0.2267   
    91    1971     ARG        1.000     1.000     1.000     1.000     1.000    0.5137   
    92    1971     AUS        1.000     1.000     1.000     1.000     1.000    0.3327   
    93    1971     AUT       0.8175    0.9624    0.9199    0.9533    0.8253   0.09910   
   
   497    1975     NZL       0.5145    0.8985    0.8978    0.5577    0.8288    0.5354   
   585    1976     NZL        1.000     1.000     1.000     1.000     1.000    0.3256   
   673    1977     NZL        1.000     1.000     1.000     1.000     1.000    0.3388   
   761    1978     NZL        1.000    0.9179    0.9712     1.000    0.9179    0.3452   
   849    1979     NZL       0.2631    0.8492    0.9958    0.5277    0.4234    0.6716   
   
  2724    1999     USA        1.000     1.000     1.000     1.000     1.000    0.5393   
  2725    1999     URU       0.8424    0.7193    0.9483    0.7036    0.8613    0.8755   
  2726    1999     VEN        1.000    0.9878    0.9908     1.000    0.9878    0.4218   
  2727    1999     VIE        1.000     1.000     1.000     1.000     1.000    0.8697   
  2728    1999     ZIM        1.000     1.000     1.000     1.000     1.000     1.000   
   
  2812    2000     USA        1.000     1.000     1.000     1.000     1.000    0.5468   
  2813    2000     URU       0.8049    0.7150    0.9267    0.6530    0.8813    0.8525   
  2814    2000     VEN        1.000     1.000     1.000     1.000     1.000    0.4274   
  2815    2000     VIE        1.000     1.000     1.000     1.000     1.000    0.9281   
  2816    2000     ZIM       0.9787    0.9858    0.9675    0.9891    0.9754    0.9338   
 
   Mean                      0.8037    0.8518    0.9494    0.7917    0.8647    0.5214   
   Minim                     0.1854    0.2959    0.4907    0.2007    0.2959   0.06205   
   Maxim                      1.000     1.000     1.000     1.000     1.000     1.000  
_____________________________________________________________________________________ 
 



  Table 3. OUTPUT-ORIENTED DECOMPOSITION OF MOORSTEEN-BJUREK TFP INDEX   
  _________________________________________________________________________________________ 
  
                          TFP      Tech      Eff                                             
   Obs   Year  Ctry      Index =   Change x  Change     dOTE      dOSE      dOME     dROSE   
                          (A)       (B)       (C)        (D)       (E)       (F)       (G)   
  ________________________________________________________________________________________ 
     
    90   1971   ANG     0.9462     1.105    0.8561    0.9418    0.9738    0.9942    0.9144      
    91   1971   ARG     0.9258     1.105    0.8377     1.000     1.000     1.000    0.8377      
    92   1971   AUS     0.9951     1.105    0.9003     1.000     1.000     1.000    0.9003      
    93   1971   AUT     0.9610     1.105    0.8695    0.9037     1.038    0.9340     1.030    
     :     :     :          :        :         :         :          :        :         :       
   497   1975   NZL      1.253     1.000     1.253     1.171     1.085    0.9949     1.075      
   585   1976   NZL      2.244     1.000     2.244     1.944     1.113     1.114     1.036      
   673   1977   NZL     0.9838     1.000    0.9838     1.000     1.000     1.000    0.9838      
   761   1978   NZL     0.9562     1.000    0.9562     1.000    0.9179    0.9712    0.9846      
   849   1979   NZL     0.4017     1.000    0.4017    0.2631    0.9252     1.025     1.489      
   937   1980   NZL      1.671     1.000     1.671     1.488     1.045     1.004     1.118  
    :     :     :          :        :         :         :          :        :         :       
  2812   2000   USA      1.013     1.003     1.010     1.000     1.000     1.000     1.010      
  2813   2000   URU     0.9686     1.003    0.9659    0.9555    0.9939    0.9773     1.034    
  2814   2000   VEN      1.008     1.003     1.005     1.000     1.012     1.009    0.9961    
  2815   2000   VIE      1.002     1.003    0.9993     1.000     1.000     1.000    0.9993    
  2816   2000   ZIM     0.9957     1.003    0.9928    0.9787    0.9858    0.9675     1.049   
  
  Mean                   1.013     1.009     1.004    0.9992    0.9992    0.9993     1.006  
  Minim                 0.4017     1.000    0.4017    0.2631    0.5625    0.5878    0.5919  
  Maxim                  2.244     1.105     2.244     1.944     1.864     1.696     1.681  
___________________________________________________________________________________________ 
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Table 4. TFP-MAXIMIZING COUNTRIES  
  ______________________________  
 
     Year   Country       TFP    
  _______________________________ 
 
     1970     NEP        1.032     
     1971     NEP        1.140   
     1972     NEP        1.209   
     1973     NEP        1.209   
     1974     NEP        1.209   
     1975     NEP        1.209   
     1976     NEP        1.209   
     1977     NEP        1.209   
     1978     NEP        1.209   
     1979     NEP        1.209   
     1980     NEP        1.209   
     1981     NEP        1.209   
     1982     NEP        1.209   
     1983     NEP        1.209   
     1984     NEP        1.209   
     1985     NEP        1.209   
     1986     NEP        1.209   
     1987     NEP        1.209   
     1988     NEP        1.209   
     1989     NEP        1.209   
     1990     NEP        1.209   
     1991     NEP        1.209   
     1992     NEP        1.209   
     1993     NEP        1.209   
     1994     NEP        1.209   
     1995     NEP        1.226   
     1996     THA        1.232   
     1997     THA        1.232   
     1998     THA        1.254   
     1999     THA        1.347   
     2000     THA        1.347 
     2001     NEP        1.351  
   _____________________________  
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1 O’Donnell (2008) uses the term multiplicatively admissible, with the harsh implication that any index number 
that violates this property is inadmissible as a TFP index.  However, TFP indexes that violate this property can 
still be used provided we recognize that they overlook one or more components of TFP change.  The term 
multiplicatively complete carries with it the more palatable implication that any index number that violates this 
property is simply incomplete. 
2 There also exists a class of additively complete TFP index numbers. Bennet (1920) -type TFP indexes are 
members of this class.  
3 To see this, simply observe from the structure of the input distance function (4.3) that if  * * *( , , )α µ υ  minimises 

( , )t
I nt ntD x q  then * * *( , , )λα λµ λυ  also minimizes ( , )t

I nt ntD x q  for all 0.λ >    
4 A convex combination is a linear combination of points where all coefficients are non-negative and sum to 1.  A 
convex combination of two points lies on the straight line segment connecting those two points. 
5 Computing the input-oriented Malmquist index also involves computing ( , ).s

I ms msD x q   This distance measure is 
simply the value of ( , )t

I nt ntD x q  for the base firm in the base period.  Thus, it can be computed using LP (4.7). 
6 I am grateful to Tim Coelli and Prasada Rao for providing the data.  


