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A Joint Estimation Method to Combine

Dichotomous Choice CVM Models with Count

Data TCM Models Corrected for Truncation

and Endogenous Stratification

Juan Marcos González, John B. Loomis,

and Armando González-Cabán

We update the joint estimation of revealed and stated preference data of previously

published research to allow for joint estimation of the Travel Cost Method (TCM) portion

using count data models. The TCM estimation also corrects for truncation and endogenous

stratification as well as overdispersion. The joint estimation allows for testing consistency of

behavior between revealed and stated preference data rather than imposing it. We find little

gain in estimation efficiency, but our joint estimation might make a significant improvement

in estimation efficiency when the contingent valuation scenarios involve major changes in

site quality not reflected in the TCM data.

Key Words: contingent valuation models, joint estimation, nonmarket valuation,

recreation, travel cost models

JEL Classifications: Q51

In 1992, Cameron proposed a procedure that

combined Revealed Preference (RP) and

Stated Preference (SP) methods in a simulta-

neous estimation framework. The purpose of

this was to allow communication between

models and to arrive at a robust estimation of

both sets of parameters. In Cameron’s study,

Contingent Valuation Method (CVM) estima-

tion is combined with a Travel Cost Method

(TCM) in a structural way, allowing CVM

parameters to be conditional to expected

demand levels for each individual. This first

attempt used a probit and a normal distribu-

tion joint process. The simultaneous estima-

tion done in Cameron’s paper relates the

errors in both methods assuming a bivariate

normal distribution, conditioning the probit

part of the estimation to the error structure in

the TCM portion. Since the publication of this

paper, determining the consistency of SP and

RP has become an important part in the

recreation economics literature (Adamowicz,

Louviere, and Williams; Azevedo, Herriges,

and Kling; McConnell, Weninger, and

Strand).
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SP uses hypothetical scenarios to create or

extend existing market conditions for a public

good and assess marginal consumer behavior

to changes in fees or quality. RP considers

observed behavior from consumers to uncover

a demand schedule, usually to arrive at the

benefit consumers receive with the current

price and quantity. These models are set up to

look at different sides of the same problem.

They differ in their approach, but aim to

obtain the same information from survey data.

TCM looks to estimate an ordinary demand

function through which economists can calcu-

late respondent’s willingness to pay (WTP).

Although CVM obtains surplus measures

directly, looking at utility differentials between

residual income and the visitor’s stated be-

havior, consistency between the two models

requires that the site demand function and

utility difference function come from the same

underlying utility function (McConnell, Wen-

ington, and Strand). Traditionally, this

theoretical expectation has been imposed

through parameter restrictions (Cameron) or

conversion of one type of data to the other

(Englin and Cameron; Loomis 1997; McCon-

nell, Wenington and Strand).

When looked at individually, neither of the

available methods under both types of models

is free of criticism. SP models, typically

developed in the form of Contingent Valua-

tion methods, are of concern because of the

hypothetical nature of the ‘‘transactions’’

used. Although several validation studies have

been done (Bowker and Stoll; Carson et al.;

Loomis 1989) showing that CVM results

provide welfare estimates that are comparable

to RP results, criticism of CVM techniques

have become more focused and direct over

time (Boyle). RP models, typically in the form

of Travel Cost Models (TCMs) and Random

Utility Travel Cost Models (RUM-TCM) are

criticized because of the sensitivity of their

welfare estimates to treatment of travel time

and econometric issues.

However, both SP and RP have useful

properties that aid researchers in their assess-

ment of nonmarket values. SP models allow

the researcher to explicitly evaluate policy-

relevant scenarios that might involve changes

in resource quality beyond the levels observed

in the RP data. This ‘‘data augmentations’’

approach avoids extrapolating beyond the

range of the RP data when evaluating

substantial improvements in environmental

quality. RP data resembles what economists

are used to dealing with when they estimate

demand for a good has a market. That TCM

behavior reflects actual decisions that involve

real payments and thus provides very useful

information for the estimation process.

For these reasons, we adopt the spirit of

Randall’s suggestion that we learn everything

that can be learned from combining these data

without imposing preconceived notions re-

garding the superiority of one type of data

over another. As Azevedo, Herriges, and

Kling mention, discrepancies between the

results obtained with these two methods need

not be a failure of either one. On the contrary,

these differences should be taken as an

indication that the two sources are correcting

the limitations that the other has.

For this research, we also follow the spirit

of Cameron’s work by combining CVM and

TCM data to estimate joint parameters.

Unlike Cameron’s approach, however, our

attempt is primarily computational and does

not use a combined utility function to channel

the TCM model information into the CVM

choice parameters. This leaves us with a joint

error structure but eliminates the need for

parameter restrictions, in that no utility

function needs to be determined (thus, param-

eters are not to be constrained across equa-

tions). In a way, our approach looks at these

equations as a pair of seemingly unrelated

regressions wherein the connection between

equations lies in the error structure rather than

the parameters themselves. When using both

models with the same group of respondents,

the unobservable factors that affect respon-

dents’ number of trips demanded are also

likely to affect respondents’ answers to the

CVM question. These unobservable factors

are contained in the error term of each model,

suggesting that the errors of these models

could be related (McConnell, Weninger, and

Strand). Bringing the two models together and

allowing a correlation parameter between their
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respective error terms provides a way to look

into this possibility and test it. Again, the

purpose here is NOT to impose, but to test

consistency.

This approach has a drawback that should

be mentioned. That is, with no parameter

restrictions, we can potentially obtain two

different welfare measures1 for the same policy

change. Despite this potential drawback, we

see value in relaxing the assumption that both

models respond to a particular underlying

distribution arbitrarily chosen by the research-

er. Estimating separate parameters and ac-

counting only for the potential relation in the

error structure of the models represents, in our

view, a looser enforcement of the known

theoretical relation between the models. Fur-

thermore, in terms of applicability of the

model, this would only be a problem really if

any of the WTP measures changes the balance

between the costs and benefits of a project.

Another contribution of this paper is to

update the joint estimation process presented

by Cameron by taking advantage of the

evolution in parametric estimation models

for TCM data. Fully parameterized trip

frequency count data models have gained

ground with the use of Poisson, Negative

Binomial, and Multinomial Count Distribu-

tions in recreation literature (Creel and

Loomis; Hellerstein and Mendelsohn). They

are seen as a logical extension to accommo-

date the particular properties of trip data

(Shonkwiler). In fact, it has been argued that

the evolution of fully parametric trip frequen-

cy models has made RP models trustworthy

(Hellerstein). With this in mind, we use a

Poisson and Negative Binomial distribution to

exploit the count nature of the TCM data.

Furthermore, these distributions are modified

to account for on-site sampling, a problem

also known as endogenous stratification.

To assess whether welfare calculations

differ between individual and joint estima-

tions, we use an empirical numeric procedure

known as complete combinatorial convolutions.

Poe, Giraud, and Loomis proposed this

method as an alternative to empirically

determine the probability that a random

variable is statistically different from another.

We recognize that an individual’s WTP in

both CVM and TCM models is a random

variable, and we test whether calculated

consumer surplus changes significantly from

one case to another (joint and individual

estimation).

The following sections will expand on the

econometric estimation process and the use of

the convolution method. Results and conclu-

sions are also presented.

Alternative Ways to Combine TCM and

CVM Data

TCM and CVM questions form a continuum,

ranging from seasonal WTP for both (Camer-

on) to marginal trips for both (Loomis 1997).

Loomis (1997) combined TCM and CVM in a

series of dichotomous choices. In this view, the

revealed trip-making behavior reflects an

implicit yes to the first of the bid questions

at existing travel cost, whereas the CVM

question represents the second response to a

higher bid in a panel. McConnell, Weninger,

and Strand also look at combining TCM and

CVM by treating both as utility differentials.

Like Loomis, McConnell argues that the

original trip decision is an implicit yes to a

first dichotomous choice question with a bid

equal to the actual travel cost. His RUM

argument is very appealing because it also

allows for a change in the visitor’s preference

structure after more information about the site

becomes available through a visit. Although

useful, the problem with using such an

approach is that you need to discard the trip

frequency information from the TCM to be

able to use it in a dichotomous choice panel

context.

Others, like Englin and Cameron, do the

opposite, setting up the CVM question in a

way that mimics the TCM framework. Their

1 Carson et al. used more than 600 different CVM

and TCM estimates and concluded that differences

between CVM and TCM WTP were not statistically

significant. If anything, CVM WTP measures are

generally below TCM WTP estimates (roughly .9 of

TCM estimates).
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study looks at a change in trips in response to

higher travel costs. The problem here is that

asking visitors to reassess a full season of trips

given a marginal change in price on site might

be too much of a strain, thus becoming a

source of possible bias or item nonresponses.

The argument is basically the same used with

open-ended questions in which respondents

have a hard time pinpointing the actual WTP

from a wide number of possible values. When

visitors have to reassess the number of trips

made in a season, they are in essence asked to

choose a new value for trip number in an

open-ended format. Certainly this problem

becomes less relevant with visitors that have

fewer visits because this limits the remaining

number of visiting options available.

To our knowledge, the closest prior effort

to test for consistency was done by Azevedo,

Herriges, and Kling. However, three differ-

ences need to be pointed out. First, they use

the same approach that Enlgin and Cameron

had used before. They asked respondents to

reassess their behavior for an entire season

subject to marginal changes in costs. This

provides a nice dataset in which you can

readily pool RP and SP responses into a single

framework. In addition, Azevedo, Herriges,

and Kling still rely on the use of a censored

normal distribution for their estimations. They

do not take advantage of the newer, more

appropriate count data models. They do this

because this allows them to use a bivariate

normal distribution, which provides a familiar

framework to correlate the errors between the

two scenarios. The third difference lies in the

way they test for consistency. Because they

focus on the statistical discrepancies between

TCM and CVM parameters, differences in the

actual variable of interest, WTP, are not

addressed directly.

The objective of this paper is to simulta-

neously estimate both models to take advan-

tage of the commonalities between the two

methods without 1) discarding TCM trip

frequency information, 2) forcing users to

reassess their visits for the full season, and 3)

imposing consistency between the two models

(e.g., instead, allowing testing for consistency).

Our paper fills an important empirical gap in

the analysis of combined RP and SP data: The

case of TCM, with CVM on the most recent

trip. This combination is often used in the

literature. Examples of separate use of these

particular data setups can be found in studies

that range from deer hunting (Loomis, Pierce,

and Manfredo) and mountain biking (Fix and

Loomis) to recreation demand in developing

countries (Chase et al.).

Data

Data for this study come from a research

project that is currently being conducted in the

Caribbean National Forest in the northeastern

part of Puerto Rico, also known as El

Yunque. Surveys were administered during

the summers of 2004–2005 as part of a

comprehensive study on the effect of site

characteristics on social and physical condi-

tions in and around the forest streams.

In-person interviews were conducted at

nine recreation sites along the Mameyes and

Espı́ritu Santo rivers. Data include visitor’s

demographics, site characteristics (fixed and

variable), trip information, and a contingent

valuation question in the form of: ‘‘If the cost

of this visit to this river was $____ more than

what you have already spent, would you still

have come today?’’ Bid amounts ranged from

$1 to $200 per trip.

More than 700 observations were obtained

and coded, of which 450 observations were

used in this analysis. The reason for the

reduction in observations is because only trips

in which visiting the site was the main reason

for traveling are considered valid for the

TCM. This is done to deal with multiple

destination problems (274 trips were not

single-destination trips) that are typically

pointed out as a source of distortion in travel

cost models. Also, because of the complicated

form of the corrected negative binomial

distribution, we eliminated four visitors who

took more than 12 trips because they appear

to be somehow quite different from the vast

majority who take a small fraction of these

trips. This is not uncommon, as pointed out

by Englin and Shonkwiler, who also limited
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their corrected Negative Binomial to visitors

with fewer than 12 trips.

The same variables were chosen in both

models to be able to compare ‘‘apples and

apples’’ between the two. The variable travel

cost (TC) was created from a set of variables

available. Our definition of travel cost follows

the conventional formula

TC ~ 0:33 | per minute incomeð Þ

travel time z
gas cost

No: of adults

� �
,

where travel time (in minutes) and gas costs

are round-trip measures.

The first term of this definition looks at the

opportunity cost of the time spent in the trip

(assuming this time was taken away from

income-generating activities). The second term

looks at the actual cost of traveling to the site

incurred by each adult in the household.

The following are summary statistics of the

sites studied and the variables considered.

Table 1 presents the mean, maximum, mini-

mum, and number of observations per site.

The price variable in the TCM is of course

travel cost as defined above. The bid amount

visitors were asked to pay is the price variable

in the CVM. Common explanatory variables

for both models were mean annual discharge

(as means of flow), distance the river pools

were to the bridge access and road width (as a

measure of accessibility).

Likelihood Estimation

Estimating CVM Parameters

Because CVM deals directly with consumer

reactions to marginal changes, they represent

a straightforward way to obtain compensated

welfare measures. In our study, a dichotomous

choice WTP question format is used. The

welfare measure from a WTP question in

CVM can be summarized in the following

equation,

ð1Þ v p0, Q0, y
� �

~ v p1, Q1, y { c
� �

,

where v( ) is an indirect utility function, p0 is T
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the current price level of the good considered,

Q0 is the current quantity of the good

consumed, and y is income. On the other side

of the equation, p1 and Q1 represent the new

price and consumption level, and c is the

Hicksian compensating variation, or WTP. In

words, this equation states that maximum

WTP is the amount that makes utility levels

equal when considering different price levels,

quantities, and disposable income. Note that

under the current condition (0), disposable

income is y, whereas in the alternative scenario

(1), it is the difference between y and c.

What CVM allows us to do is determine

what the visitors’ WTP is for the good in

question. In other words, we uncover the

population parameter c. In the case of

recreation or site valuation, the two levels

available for consumption are typically all or

nothing. Put differently, we uncover the WTP

that makes the visitors indifferent between

visiting a site or not on their most recent trip.

Because our WTP question format of ‘‘take

it or leave it’’ involves a dichotomous choice

of continuing to visit at the hypothetically

higher travel cost or staying home, economists

have used logit and probit likelihood functions

to obtain WTP measures. For our purpose, we

use a probit in this study for the CVM portion

of the parameter estimation. The general form

of a probit likelihood function is derived from

the Bernoulli distribution. A probit link is

associated to ensure a nonnegative and

bounded probability value (between 0 and 1)

while conditioning the individual probability

function to the set of parameters to be

estimated,

ð2Þ ln L ~ yCVM | ln pð Þz 1 { yCVMð Þ
| ln 1 { pð Þ,

where p 5 W(Xb) and yCVM is the individual’s

response to the CVM question. It is important

to point out that W( ) stands for the standard

normal cumulative density function, X refers

to the set of variables we are conditioning our

probability to, and b is the set of parameters

to be estimated. Among the set of variables X,

we have the bid amount or price increase per

trip.

Estimating the TCM Parameters

For the TCM portion of our estimation we use

a Poisson and a Negative Binomial. Both of

these distributions are used in the estimation of

recreation demand because they are count data

models. This means that they take advantage

of two important characteristics that count

data share: nonnegative and discrete out-

comes. The Poisson and Negative Binomial

distribution have been used successfully in the

past to estimate seasonal demand for sites.

One important consideration that was

raised by Shaw and later showed empirically

by Creel and Loomis is that truncated versions

of these distributions should be used when on-

site sampling takes place. Truncation of the

dependent variable arises because all visitors

must take at least one trip to be sampled. In

addition, we also correct for what is known as

endogenous stratification, or that on-site

sampling results in an overrepresentation of

more frequent visitors in the sample data.

In general, correcting for truncation is

done by dividing our probability distribution

function by the probability of the outcomes

ruled out (i.e., unobserved). Analytically this

could be represented as

ð3Þ Pr Y ~ y y w ajð Þ~ Pr Y ~ yð Þ=Pr Y w að Þ:

In our particular case, a 5 0, so

ð4Þ Pr Y ~ y y w 0jð Þ~
Pr Y ~ yð Þ= 1 { Pr Y ~ 0ð Þ½ �:

Note that because we are using count data

models, we only need to find the probability

that Y 5 0 and use its complement by

subtracting it from 1.

When using the Poisson distribution, the

resulting truncated version looks like

ð5Þ Pr Y ~ y y w 0jð Þ~
e{lly
� �

y! 1 { e{lð Þ ,

where l 5 e(Xb) and a resulting log likelihood

function that can be represented in the

following way:

ð6Þ ln Lpoisson

� �
~ {l| ln yTCM!ð ÞS̆ ln 1 { e{l

� �
:
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Alternatively, the Poisson distribution has a

very particular and useful property for cor-

recting for endogenous stratification; that is,

the truncated Poisson distribution provides

the same results as using a regular (without

truncation) Poisson when subtracting 1 from

the dependent variable Y.

However, the Poisson distribution imposes

the restriction that the mean of the distribu-

tion equals its variance, something often

rejected by trip data. A more general form of

the Poisson count data that tests for and

relaxes this mean-variance equality is the

Negative Binomial model. The standard like-

lihood function of the on-site corrected

Negative Binomial is

ð7Þ Lrp ~
C a z yTCMð Þ

C að Þ yTCM { 1ð Þ!

� �
|

að Þ
l z að Þ

� �a
l yTCM{1ð Þ

l z að ÞyTCM
:

This was derived by Englin and Shonkwi-

ler, wherein, again, l 5 e(xb), and a is the

overdispersion parameter. In the case of the

Negative Binomial distribution, this conve-

nient property of the Poisson for correcting

for on-site sampling does not hold, and a more

complicated correction to the likelihood func-

tion is needed. See Englin and Shonkwiler for

the derivation and expression.

Simultaneous Estimation

Using Cameron’s structure, we define our

joint estimation process taking advantage of

the known fact that a joint probability is equal

to a conditional probability multiplied by a

marginal probability:

ð8Þ f x, yð Þ~ f x yjð Þf yð Þ:

Just as in her case, we define the conditional

probability in a direct manner by making the

CVM estimation conditional to the TCM

expected outcome. This expectation is used

as an avidity measure to ‘‘inform’’ the CVM

part of the estimation. It is however a

statistical convenience to be able to incorpo-

rate a correlation parameter while treating the

individual likelihood functions separately.

This is an ad hoc approach that simplifies

the estimation process by allowing the re-

searcher to simply multiply the two probabil-

ities obtained from our individual models.

This in turn allows the possibility of simply

adding the two log likelihood functions

together when using a bivariate distribution.

When choosing the bivariate distribution

for this application, we are faced with a

particular challenge. Because we use a count

data distribution for our TCM estimation, we

cannot use a regular bivariate normal distri-

bution as has been used in the past. To

accomplish the simultaneous estimation of

these equations, we use the joint Poisson and

probit distribution derived in Cameron and

Englin. Although developed for a different

purpose, the joint density is ideal for the job.

Unfortunately, Cameron and Englin did not

derive a Negative Binomial and probit joint

density, so another contribution of this paper

is to derive such a joint estimator to incorpo-

rate overdispersion into our regression. Fur-

thermore, both our densities are also modified

to incorporate endogenous stratification. Ap-

pendix A shows in detail how these distribu-

tions were derived. Analytically, our new

Negative Binomial joint likelihood function

for the ith observation looks like

ð9Þ Li ~ hið ÞyCVM,i 1 { hið Þ1{yCVM,i

h i
|

C a z yTCM,ið Þ
C að Þ yTCM,i { 1ð Þ!

� �
|

að Þ
li z að Þ

� �a
l

yTCM,i{1ð Þ
i

li z að ÞyTCM,i
,

where

hi ~ W xib z srZið Þ
.

1 { r2
� �0:5

h i
and

Zi ~ yTCM,i { E yTCMm,ið Þ½ �
.

Var yTCM,ið Þ½ �0:5:

The log likelihood version of the joint

estimation is simply the sum of the new CVM

probit likelihood and the chosen TCM likeli-

hood function. The probit portion is modified

with the normalized TCM variable and

accounting for individual variances and their

(7)

(9)
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joint covariance. Because we expect that the

error term in the CVM equation should

change with changes in the expected trip

demand, we also allow for this heteroskedastic

process by setting s ~ e cE yTCMð Þ½ �.

One point of clarification is necessary

before finalizing this section. Special care must

be taken when using the NB modified

distribution. Because we are correcting it for

endogenous stratification, the first and second

moments used in the definition of Z are not

the ones usually considered but are also

modified to account for the correction. Englin

and Shonkwiler define these corrected mo-

ments for the Negative Binomial as

ð10Þ E yjy w 0ð Þ~ l z 1 z a0

and

ð11Þ V yjy w 0ð Þ~ l z a0 z a0l z a2
0,

where a0 5 a/l.

We will estimate recreation benefits with

three empirical models: (1) the dichotomous

choice CVM estimated with a probit model,

(2) the TCM with Poisson and NB, and (3) a

joint RP-SP model. From each of these

models, an estimator of net WTP for a trip

is calculated. Now we turn to evaluation of

whether these benefit estimates are different

from each other and their respective confi-

dence intervals (CIs) as a measure of the

precision of the benefit estimates with each of

the 3 methods. To do this, we use a method

proposed by Poe, Giraud, and Loomis called

empirical convolution. The next section pre-

sents these methods and relates it to the task at

hand, comparing the resulting WTP from all

the models used in this paper.

Convolutions Method for Testing

Differences in WTP

We use the method of convolution to compare

WTP estimates. Convolution is a mathemat-

ical operator that takes two functions and

produces a third function that represents the

amount of overlap between them. Poe, Gir-

aud, and Loomis proposed an alternative that

can use a complete combinatorial approach to

measure the differences between independent

distributions. As mentioned before, convolu-

tion creates a third random variable that is

formed by some relationship between the

original functions considered. In Poe’s exam-

ple, this relationship is a difference between

the two random variables of interest. This new

random variable can be expressed as

ð12Þ Z ~ X { Y :

Although several approaches have been

used to assess differences between benefit

estimates, some important issues are addressed

with the use of the complete combinatorial

approach. With this method, we do not have

sampling errors from the use of random

sampling or overstate significance with the

use of Nonoverlapping Confidence Intervals.

More importantly, this method does not

require the assumption of normality for the

difference parameter obtained.

The complete combinatorial method as-

sumes that the researcher generates two

independent distributions that approximate

random variables X and Y. The way in which

these empirical distributions are obtained does

not affect the operation by which we deter-

mine the difference between them. Poe,

Giraud, and Loomis follow the argument that

resampling methods approximate the under-

lying distribution of two independent random

variables or calculated parameters. Each event

in both distributions is given the same

probability, although repeated outcomes are

easily incorporated without losing generality.

Poe, Giraud, and Loomis showed that this

empirical application can be related to the

summation of polynomial products, which,

itself, goes back to the formal definition of the

convolution method. For more details on the

approach used by Poe, you can refer to

Appendix B at the end of this paper.

In our study, X and Y refer to WTP vectors

for the individual and joint estimations,

respectively. A vector with random draws

from the feasible values for each WTP is

generated by the Krinsky Robb approach. A

total of 4,000 draws were made and sorted.

Each element of these vectors is subtracted
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from the other, as suggested in Appendix B.

This results in 4,000! possible combinations of

the elements in both vectors. To obtain the

one- and two-sided p-value, the proportion of

nonpositive values is calculated. This repre-

sents the empirical probability that {x 2 y} #

0, or the area in one distribution that overlaps

the other. We use the convolution method to

test consistency between CVM and TCM joint

and individual estimation. This method aids

us in looking beyond mean values in the WTP

distributions and allows us to determine

statistically whether the difference between

the two estimation approaches is significant in

the part that matters the most, surplus values.

Testing Efficiency Gains of Joint

Estimation

As explained above, the method known as

convolution allows us to assess the probability

that two empirical distributions are different

(whether WTPjoint 5 WTPindividual). In our

particular case, we want to test whether the

distribution of the WTP obtained from a joint

estimation is statistically different from the

one obtained in the individual estimation

process. This allows us to test whether

simultaneous estimation yields significantly

different benefit estimates. We can evaluate

in other important ways how different these

results are from those obtained in separate

regressions. For this matter, we rely on more

traditional hypothesis-testing methods. That

is, we use two different hypothesis tests to

determine whether 1) the data generating

processes of both equations are related in

some way and 2) the resulting parameters for

joint and individual estimations are equal.

Formally, this would be

ð13Þ H0 : r ~ 1 and H1 : r = 1

ð14Þ H0 : bjoint ~ bindividual and

H1 : bjoint
= bindividual:

To determine whether to accept the null

hypotheses in Tests (13) and (14), we use the

traditional t-test and likelihood ratio ap-

proach, respectively. We assess whether Rho

is statistically different from 1 with a t-test. To

test equality of joint and individual coeffi-

cients, we use the sum of log likelihoods of

individual estimations against the joint esti-

mation likelihood value. Together with the

convolution method, these set of tests should

aid us in having a clearer idea of whether

simultaneous estimation in this empirical case

provides more efficient parameters.

Results

Results for the models estimated are summa-

rized in Table 2. The values shown are the

parameters’ estimated values and their corre-

sponding t-values. This table shows results for

the individual and joint estimations with the

use of the Negative Binomial (NB) distribu-

tions because preliminary statistical results

indicated that the overdispersion parameter

alpha was statistically significant. This sug-

gests that the Negative Binomial is closer to

the actual data-generating process and thus

should be used rather than the Poisson when

determining WTP.

As can be seen, theoretically consistent

results were obtained for both TCM and

CVM regressions. Results seem to suggest

that our empirical case supports the theoret-

ical expectation of negative slope parameters

for travel cost and bid amount variables. The

table not only reports the individual log

likelihoods for the separate estimations, but

also includes the sum of both TCM and CVM

likelihood values. Results also suggest that the

CVM and TCM results were very robust

because all parameters from individual and

joint estimations remain very close under the

two estimation approaches.

Also notable is that, in both our separate

and joint estimations, calculated WTP for

CVM and TCM were considerably different.

The two-tail p-value for the empirical convo-

lution between the TCM and CVM WTP (for

the joint and the individual Negative Binomial

estimation) was around .02. This suggests that

the disparity found between the two WTP

measures is not an artifact of our joint

estimation but instead could be the reason

(14)
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behind the little improvement found between

these approaches.

Results for the likelihood ratio test per-

formed between simultaneous and individual

regressions are included in Table 2 also. The

individual likelihood values for the separate

regressions are reported along with the pooled

log likelihood value. The difference between

the sum of the individual log likelihoods and

the simultaneous estimation likelihood is

multiplied by 2 to obtain the likelihood ratio

statistic x2 reported. The likelihood ratio value

computed is not significant for the x2 test with

two degrees of freedom (critical value for 90%

confidence level equals 3.84). With regard to

Hypothesis Tests (13) and (14), we see that in

the joint estimation, rho appears to be an

insignificant variable. Through both an insig-

nificant rho value and likelihood ratio for the

joint model, the joint estimation process, as

used here, does not seem advantageous in our

case study over the separate regressions

approach. Finally, our estimate for s also

appears to be insignificant, suggesting that our

error term in the CVM portion does not vary

with changes in the expected number of trips.

As for the results of the convolution testing

for significant differences in mean WTP, the

most commonly used confidence levels (90%

and 95%) are reported in Table 3. The values

presented as maximum and minimum WTP in

each case come from our convolution method;

thus, these would vary in case of replication

because of the random nature of the process.

The mean values presented are the ones

obtained directly from the parameters esti-

mated using the appropriate WTP formulas.

On the other hand, we fail to reject the null

hypothesis of equality or no difference in

separately estimated versus joint estimation of

TCM and CVM benefits. Note that the p-

value under this test represents the probability

that the difference between the two empirical

distributions is less than or equal to zero.

These results seem to reflect the small gain in

efficiency obtained with the joint estimation

process in the case for our data. In our table,

the comparisons between the joint and indi-

vidual empirical WTP variables appear, for all

practical purposes, identical for both the TCM

and the CVM. The similarity of consumer

surplus estimates from the individual and joint

models can be seen in the near equivalence of

the Travel Cost coefficients in Table 2. In the

individual Negative Binomial and Joint Neg-

ative Binomial model, the coefficients are

again almost identical (2.1250 and 2.1263),

yielding a consumer surplus per day of $8.

This also suggests that, in our particular

dataset, we do not observe any significant

Table 2. Results from Individual and Joint

Estimations

Variable

Separate

Estimation

Joint

Estimation

Negative binomial

Intercept 0.8022 1.0412

(0.334188) (0.4373899)

TC 20.1250 20.1263

2(2.996302) 2(3.1975384)

Road 0.4683 0.3512

(0.561003) (0.4433266)

Mean annual

discharge

23.8705 23.8259

2(1.561611) 2(0.9744921)

Distance, bridge

to pool

20.0420 20.0324

2(0.849035) 2(0.799866)

Alpha 3.9238 3.9131

(8.5631) (8.1664354)

Probit

Intercept 1.4846 1.3562

(1.332047) (3.3689947)

Bid 20.0107 20.0095

2(8.889946) 2(4.5358031)

Road 20.0770 20.0556

2(0.563755) 2(0.856263)

Mean annual

discharge

20.0142 20.0485

2(0.021363) 2(0.2651793)

Distance, bridge

to pool

20.0010 20.0011

2(0.199364) 2(0.4629103)

Rho 0.0642

(0.390131)

Sigma 0.0253

(0.6286091)

LL negative

binomial 2764.5786

LL probit 2236.4633

LL joint 21001.0418 21000.7478

Likelihood ratio 0.588

Implied WTP $ 8.00 $ 7.92

TCM

CVM $ 110.12 $ 114.32

Note: Results present coefficients, with t-values in parentheses.
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connection between the two models through

unobservables. Perhaps, imposing a theoreti-

cal relation between the parameters in the

models could increase the relation between the

error structures.

Because all comparisons between joint and

individual estimations show us a two-tail p-

value close to 1 (.97 for the TCM and .98 for

the CVM), we can understand that the entirety

of one of the distribution tails is covered by

the tail of the other distribution; thus, one

empirical distribution lies on top of the other.

It is important however to recall the huge

difference in WTP between the two methods

(CVM and TCM). Perhaps this is one reason

why our results are not benefiting from the

joint estimation. This might be what McCon-

nell, Weninger, and Strand called Transitory

Preference Structure, wherein the unobserva-

bles between the two equations are not related.

It is called this because it is assumed that,

under this situation, visitors completely up-

date their information set, leading to a new

preference structure.2 Other possible explana-

tions include problems with the way the CVM

question was presented, with the way travel

cost was determined, or both, but both of

these were done following very standard

assumptions.

An alternative explanation for the differ-

ence between TCM and CVM WTP could lie

in the geographical characteristics of the

studied area. Particularly because we are

dealing with an on-site sample (no zeros or

choke prices are observed), we might be facing

a truncated spatial TCM market for the

studied sites. We call this issue ‘‘Island effect,’’

and it basically says that the implicit spatial

market requirement in the TCM could be

broken by the geographical limitations that

the island dimensions impose, biasing TCM

welfare measures downward. Because the

maximum amount that local visitors are able

to pay might be limited by the size of the

island, the observed variation in the implicit

price could be truncated in our application. In

other words, we do not observe the full range

of prices that locals are willing to pay for

the services received at these sites; hence, the

inverse demand function estimated by the

TCM does not reflect the full benefit accrued

to visitors on each visit. In fact, any point that

should lie above the ‘‘spatial choke price’’

would not be observed. Instead, individuals

with a WTP above the choke price would be

found somewhere below their true demand

points. If this is the case, not only our TCM

WTP will be underestimated because of the

portion missing above the spatial choke price,

but because we are using fully parametric

estimations, our results would suffer from

Table 3. Summary for Convolution WTP Confidence Intervals (CIs) for Individual and Joint

Models

CI

Joint Individual

Min Meana Max Min Meana Max

TCM (negative binomial)

95 $4.89 $8.00 $9.28 $4.84 $7.92 $11.96

90 $5.19 $8.00 $9.45 $5.16 $7.92 $11.52

CVM (probit)

95 $95.37 $110.12 $160.62 $96.30 $114.32 $126.78

90 $97.33 $110.12 $156.13 $98.23 $114.32 $123.57

a Means are calculated using 1/btc for the TCM and b0/abs(bbid), where b0 is a grand constant term (it includes all nonbid

coefficients multiplied by the respective mean value of the variables). Minimum and maximum values come from the

convolution method. These represent the minimum and maximum values of the random WTP vectors generated and

compared under each estimation type.

2 Although unlikely, it is worth mentioning that the

nature of the rainforest under study causes significant

and sudden changes in precipitation and water flow

levels. These sudden changes can considerably alter

the nature of the scenario faced by visitors when

compared with the information individuals had at

hand when they made their visiting decision.
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further bias because our methods will take the

biased observations under the choke price as

good and try to accommodate our regression

results to them. Again, this could be a

problem, particularly because we do not

observe zeros in our data and hence do not

have observations on the price axis that would

tilt our regressed demand curve up toward the

real demand function.

Conclusions and Future Research

In this paper, we provide an empirical

modeling procedure that allows for testing

whether joint estimation of stated and re-

vealed preference models increase efficiency

when compared with individual estimations

and consistency between TCM and CVM

responses. In our data, the CVM WTP

question involved willingness to pay to visit

the site under current conditions, a scenario

quite conceptually similar to what is estimated

with TCM. In this situation, the improvement

from joint estimation was quite small. How-

ever, joint estimation could result in larger and

significant efficiency gains in the situation in

which the CVM WTP scenario deviates

substantially from the existing situation in

terms of quality of the site. Empirically testing

this conjecture awaits suitably designed CVM

and TCM datasets.

Another avenue of future research would

be to integrate both models more, perhaps

updating the joint utility theoretical approach

that Cameron used to reflect the utility

structure of count data models presented by

Hellerstein and Mendelsohn. Another alterna-

tive is to derive the expected constraints for

different utility specifications and again use

the simultaneous equation or estimation only

to test which utility specification is supported

by the data.

For this case, our simultaneous estimation

process can be seen as a general unconstrained

version of Cameron’s earlier work and opens

the door to determine which type of joint

preferences should be used before the actual

constrained estimation. Because of the com-

plexity of estimating a constraint utility

theoretic specification, more information on

the constraints that are supported by our

empirical analysis should save researchers a

great amount of effort, while providing a

better understanding of the behavior that

guides both stated and revealed preferences.

At the methodological level, a contribution

of this paper is updating the TCM portion of

the joint estimation statistical technique used

by Cameron to reflect the count data models

now commonly used for recreational demand

modeling. The use of count data models repre-

sents an improvement over the original simul-

taneous estimation suggested by Cameron.

[Received March 2007; Accepted December 2007.]
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Appendix A. Deriving the Joint Density Function

The derivation of the Joint Negative Binomial and probit distribution comes almost directly from Cameron

and Englin. In that article, the authors look at two different random variables, Z1 and Z2, and relate them

to the probit and probit distributions. For a corrected Negative Binomial and a probit, we just need to

follow Cameron and Englin’s steps but change the Poisson portion for a corrected Negative Binomial. So

we start by defining two random variables Z1 and Z2 and relating them to the following moments:

E Z1½ �~ l z 1 z a; V Z1½ �~ l z a z al z a2;

E Z2½ �~ 0; V Z2½ �~ 1:

We can relate Z1 and Z2 to the variables of interest in the following way:

Trip ~ Z1;

WTP ~ s r Z1 { E Z1½ �ð Þ
. ffiffiffiffiffiffiffiffiffiffiffiffi

V Z1½ �
ph in

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 { r2ð Þ

q
Z2

�
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It can be shown that the moments of these new random variables are

E Trip½ �~ l z 1 z a; V Trip½ �~ l z a z al z a2; E WTP½ �~ m; V WTP½ �~ 1:

The covariance between the two random variables is determined by

E Trip { E Trip½ �ð Þ WTP { E WTP½ �ð Þ½ �~ E

Trip { E Trip½ �ð Þ|

s
r Trip { E Trip½ �ð Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Trip½ �

p� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 { r2ð Þ

p
WTP

 !" #8><>:
9>=>;

E Trip { E Trip½ �ð Þ WTP { E WTP½ �ð Þf g~ rs l z a z al z a2
� �2

Therefore the covariance term can be defined as r.

Now, the joint density of these two variables, assuming independence between them, is

defined by

f Z1,Z2ð Þ~ C a z Z1ð Þ
C að Þ Z1 { 1ð Þ!

� �
að Þ

l z að Þ

� �a�
l Z1{1ð Þ

l z að ÞZ1

)
1ffiffiffiffiffiffi
2p
p exp

{Z2ð Þ2

2

" #( )
:

By solving Trips and WTP for Z1 and Z2, substituting in the joint density, and scaling by the

Jacobian

J ~ 1 { r2
� �{0:5

,

we obtain the joint density function

f Trips, WTPð Þ~ 1ffiffiffiffiffiffi
2p
p s2 1 { r2

� �� �{0:5
C a z Tripsð Þ

C að Þ Trips { 1ð Þ!

� �
að Þ

l z að Þ

� �a�
l Trips{1ð Þ

l z að ÞTrips

)

| exp

WTP { m { sr

Trips { E Trips½ �f g
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V Trips½ �
p� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 1 { r2ð Þ
p

266664
377775

2
8>>>>><>>>>>:

9>>>>>=>>>>>;
:

Because it is easier to deal with a joint density that is defined in terms of a conditional and a

marginal density function, we try to do this for our joint distribution. We know that the

marginal density of trips is defined as

g Tripsð Þ~ C a z yTCMð Þ
C að Þ yTCM { 1ð Þ!

� �
að Þ

l z að Þ

� �a
l yTCM{1ð Þ

l z að ÞyTCM
:

By dividing our joint density f(Trips, WTP) by the marginal density of trips, we obtain the

conditional density

h WTPjTripsð Þ~ 1ffiffiffiffiffiffi
2p
p s2 1 { r2

� �� �{0:5

| exp

WTP { m { sr

Trips { E Trips½ �f g
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V Trips½ �
p� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 1 { r2ð Þ
p

266664
377775

2
8>>>>><>>>>>:

9>>>>>=>>>>>;
:

Note that this is the normal distribution with the following moments:
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E WTPjTrips½ �~ m z sr Trips { E Trips½ �ð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V Trips½ �
p� �

, V WTPjTrips½ �~ s 1 { r2
� �

:

Now we have everything we need to define our joint density as a product of a marginal and a

conditional probability function. Because our CVM response is really a latent variable, we know

that

ycvm ~ 0 if Bid v WTPð Þ, ycvm ~ 1 if Bid § WTPð Þ:

For this setup (and when assuming the variable WTP follows a normal distribution), we use a

probit link with a Bernoulli Distribution. With this final assumption, we can present our joint

likelihood function,

Li ~ hið Þycvm,i 1 { hið Þ1{ycvm,i

h i
|

C a z yTCM,ið Þ
C að Þ yTCM,i { 1ð Þ!

� �
að Þ

li z að Þ

� �a
l

yTCM,i{1ð Þ
i

li z að ÞyTCM,i
,

where

hi ~ W xib z srZið Þ
.

1 { r2
� �0:5

h i
and

Zi ~ ytcm,i S̆ E ytcm,ið Þ
& '.

Var ytcm,ið Þ½ �0:5:

Appendix B. Empirical Convolution Method

The empirical convolution method was first proposed by Poe, Giraud, and Loomis. It uses all

possible differences between randomly selected values of two random variables to determine the

probability that these variables are statistically the same. Note that Equation (12) can also be

presented by adding the X distribution to the distribution of Y flipped around zero (thus

obtaining the negative value):

Z ~ X z {Yð Þ:

Assuming that the corresponding probability functions of X and Y are fx(x) and gy(y),

respectively, the distribution of their sum is represented by the integral

f 6 {gð Þ~ hz zð Þ~
ð?

{?

fx z { {yð Þ½ �gy {yð Þdy:

This expression provides the probability that each combination of the original function

produces. This can be shown to be related to the sum of the product of each combination from a

polynomial multiplication.

The complete combinatorial approach offers a simpler way to use the empirical convolution

method. The empirical distribution of the difference can be expressed as

bXXi { bYYj ~ bXXi z {bYYj

* +
Vi ~ 1, 2, 3, :::, m, j ~ 1, 2, 3, :::, n,

wherein each difference is given the same weight.
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