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Taste Indicators and Heterogeneous

Revealed Preferences for Congestion in

Recreation Demand

Abstract

Researchers using revealed preference data have mostly relied on the Mixed
Logit (ML) framework to model unobserved heterogeneity. In this paper, we
suggest an extension of this model where we integrate direct measures of taste
and revealed preferences, under a unified econometric setting, to describe het-
erogeneous preferences for congestion in recreation demand. ML is a random
parameter discrete choice model, which decomposes the coefficients of the re-
gression equation into a mean effect shared by all individuals in the sample,
and a deviation with respect to this mean, specific to each individual. Within
this structure, heterogeneity is summarized using a parametric density function
for the coefficients of the model. From this distribution one can identify the
portion of people who like or dislike an attribute of the good. On the other
hand, taste indicators, represented in a like-dislike scale, constitute complemen-
tary information about the distribution of tastes in the population. We combine
both sources of information to characterize preferences in our model. The tra-
ditional ML suggests almost 60% of people in the sample like crowded places
while our integrated model implies almost 100% of the people dislike congestion.
These results show the beneof using taste indicators to describe heterogeneous
preferences for attributes describing alternatives of a choice set.
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Abstract

Researchers using revealed preference data have mostly relied on the Mixed Logit (ML)

framework to model unobserved heterogeneity. In this paper, we suggest an extension of this

model where we integrate direct measures of taste and revealed preferences, under a uni�ed

econometric setting, to describe heterogeneous preferences for congestion in recreation demand.

ML is a random parameter discrete choice model, which decomposes the coe¢ cients of the

regression equation into a mean e¤ect shared by all individuals in the sample, and a deviation

with respect to this mean, speci�c to each individual. Within this structure, heterogeneity

is summarized using a parametric density function for the coe¢ cients of the model. From this

distribution one can identify the portion of people who like or dislike an attribute of the good. On

the other hand, taste indicators, represented in a like-dislike scale, constitute complementary

information about the distribution of tastes in the population. We combine both sources of

information to characterize preferences in our model. The traditional ML suggests almost 60%

of people in the sample like crowded places while our integrated model implies almost 100%

of the people dislike congestion. These results show the bene�ts of using taste indicators to

describe heterogeneous preferences for attributes describing alternatives of a choice set.

�The paper bene�ted from discussions with Kenneth Train, Je¤LaFrance, Ricardo Cavazos, and participants at the
ARE summer 2007 workshop, and at the research seminar at the College of Natural Resources and the Environment,
University of Massachusetts, Amherst.
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1 Introduction

Preference heterogeneity plays an important role in the modern econometric analysis of dis-

crete and discrete/continuous consumer choice behavior. Alternative econometric approaches

�for example random coe¢ cient logit versus classical logit �di¤er in how they character-

ize preference heterogeneity. From a policy perspective, too, preference heterogeneity can

be important, whether in the policy context of designing di¤erent interventions that target

di¤erent groups with di¤erent preferences and behavior patterns or in the political econ-

omy context of being able to identify winners and losers and deal with them appropriately.

Similarly, for marketing purposes, the ability to chart preference heterogeneity can have

important practical applications.

One way to identify this type of heterogeneity in the population is to use direct measures

of tastes, sometimes called psychometric indicators or attitudinal measurements because they

are intended to capture underlying psychological factors a¤ecting decisions. The measure-

ment of tastes may involve presenting people with a series of statements about their attitudes

or perceptions of attributes of the commodity and ask them to identify how strongly they

agree or disagree with each statement on an ordinal scale. The responses may be coded

as a positive or negative value depending on whether the respondent agrees or disagrees

with the statement. Such measures have been used broadly in the latent variables literature

(Train et al., 1987a; Ben-Akiva et al., 1999a) where they were considered proxy variables for

unobservable explanatory variables in a discrete choice model.

A more sophisticated approach is to estimate a random parameter discrete choice model

using observed behavior (i.e., a revealed preference approach). A random parameter model

is an extension of the traditional �xed parameter model in which coe¢ cients associated with

the explanatory variables are assumed to be identical for everybody in the sample. The

sign of the coe¢ cient on an attribute in a �xed parameter logit model indicates whether

on average people like it or dislike it but, in this framework, it is impossible to know how
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large a proportion of the sample likes or dislikes it. In the random parameter framework,

by contrast, coe¢ cients of attributes are decomposed into a mean value, representing the

average attitude over the whole sample, and a deviation from the mean which is speci�c

to each person in the sample. Within this structure, heterogeneity is summarized using a

parametric density function for the coe¢ cients in the model; this distribution re�ects how

preferences are distributed across the sample, and from this, one can estimate the proportion

of the sample who likes an attribute and the proportion who dislikes it (Train, 1998).

The most extensively used random parameter discrete choice model is the Mixed Logit

model, which has been utilized to represent preference heterogeneity in many areas of applied

econometrics including industrial organization (Berry, 1994; Berry et al., 1995, 1998; Nevo,

2000), marketing (Louviere et al., 2002; Wedel et al., 1999; Ben-Akiva et al., 1999a; 1999b)

and nonmarket valuation (Train, 1998; Von Haefen et al., 2004).

Results in a ML model depend strongly on the assumptions made about the distribution

of the unknown component of the coe¢ cients. For some coe¢ cients, there is a theoretical

basis for assessing whether the estimated distribution of a coe¢ cient on an attribute has a

reasonable shape. However, on some occasions we do not know the theoretically correct sign

or the appropriate shape of the distribution for the coe¢ cient of interest. In other words,

we do not know whether the outcome of the random parameter estimation re�ects the true

taste variation in the sample. Often, it is for those coe¢ cients that we may be most likely

to employ a random parameter speci�cation; we want to estimate the entire distribution of

the coe¢ cient because we want to interpret this distribution as a re�ection of taste variation

in the population.

Here are examples of these two situations in the context of recreation demand models.

First, consider a travel cost (price) coe¢ cient, and assume the random component of this

coe¢ cient is normally distributed over the population. With this setup, it is often found that

a portion of the coe¢ cient�s distribution lies in the positive part of the real line. This implies
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there is a nonzero probability of a positive price coe¢ cient for some individuals, though this is

not plausible theoretically. Given this prior belief about the sign of the coe¢ cient, researchers

solve this inconsistency constraining the support of the distribution so that the estimated

model satis�es the theoretical restrictions, for example, using a lognormal distribution for

the coe¢ cient (Walker and Ben-Akiva, 2002; Train, 2003).

Second, consider a parameter associated with a variable measuring the crowding condi-

tions in a recreational site. Again, using a normal distribution assumption for the unknown

random component, we will probably obtain a portion of the estimated distribution in both

the positive and negative parts of the real line. Evaluation of this result is more di¢ cult

because we do not have an unambiguous prior belief for the sign of the parameter. We could

always develop arguments to support either sign.1 On one hand, we could justify a negative

sign for the coe¢ cient by arguing people dislike crowds, which is typically called a congestion

e¤ect. On the other hand, a positive coe¢ cient would suggest an agglomeration e¤ect, i.e.,

people like to be in sites other people like (and are therefore crowded).

It could be argued that the same considerations involved in assessing a correct distribution

for the price coe¢ cient should also apply to the crowding coe¢ cient, or whatever is the

coe¢ cient of interest. If so, we should proceed in the same way as with the distribution for

the price coe¢ cient, i.e., using a predetermined criterion or some external information (or

possibly our own belief) regarding the correct location of the distribution, and impose the

necessary restrictions to make it conform to this location. Unfortunately, unlike the price

example, we do not have information coming from economic theory to specify how people

should react to this attribute.

The common practice in random parameter models is to adjust the distribution of those

coe¢ cients for which we have prior beliefs, but to accept as correct the empirically estimated
1A similar situation can be found in the traditional �xed parameter estimation. Given the lack of theory or

additional information about the relationship between an explanatory variable and the dependent variable, almost
any sign of the coe¢ cient and sometimes any magnitude of it can be explained by some creative relationship between
the variables.

4



distributions of those coe¢ cients for which we do not have such priors. In this way we treat

di¤erent coe¢ cients asymmetrically, and there is no reason to think that only some of the

distributions are correct.

Forming the wrong conclusion about the congestion e¤ect can have serious policy con-

sequences. For example, if closing a site to sport�shing increases congestion at other sites,

this sorting e¤ect will be harmful for visitors to the other sites if they dislike congestion

but bene�cial if they like being with other people. The problem is we may not be able in

practice, to identify the correct sign for the coe¢ cient on crowding because, in the data, the

crowding variable is highly correlated with other attributes of the site such as the abundance

of �sh or low travel cost.

The problem arises because, if we rely only on observed behavior, our inference su¤ers

from the lack of an experimental design that would more completely reveal preferences.

With observational data, we do not have control over the combinations of attributes among

the choice alternatives and cannot provide a comprehensive set of alternatives involving all

possible combinations of attribute levels. Certain combinations of attributes and alternatives

will inevitably be missing from our data. Consequently, if we observe a person visiting a

very crowded site, this does not necessarily mean he likes crowding; it might be that he

tolerates crowded sites because other characteristics of the site make it attractive despite the

crowding.

Asking people directly about their attitudes towards crowding and other attributes may

help to overcome this informational limitation and may permit us to better characterize the

distribution of tastes in the population. However, relying exclusively on psychometric ques-

tions to infer preferences does not take into account the fact that people do make decisions

under constraints and are willing to make trade-o¤s among attributes. It seems desirable,

therefore, to combine both sources of information to characterize preference heterogeneity.

In this article we integrate revealed preferences and taste indicators to account for het-
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erogeneity of preferences among individuals in a Mixed Logit (ML) framework. Our model

incorporates psychological aspects in�uencing the decision making process and, therefore,

determine the observed outcomes of a discrete choice model (the model can be classi�ed as

an hybrid model following Ben-Akiva et al., 2002 and Walker and Ben-Akiva, 2002).

Ben-Akiva et al. and Walker and Ben-Akiva suggest the use of psychometric measure-

ments or taste indicators to provide information on attitudes and perceptions about at-

tributes of alternatives and use this information in the estimation process to enrich the

model. This leaves open the questions of how these indicators have to be measured and

to what extent they can provide additional information to identify the distributions of the

parameters. These questions are the focus of the present research.

In our application, the ML model by itself indicates that around half of the people in

the sample like crowding. However, the psychometric scale alone implies people strongly

dislike crowding. Integrating the psychometric scale in the estimation of the choice model

leads to quite a di¤erent conclusion compared to either on its on: nobody in the sample likes

congestion.

In the next section we discuss brie�y previous literature on congestion and compare them

to ours. We then describe the theoretical background of random parameters in the context

of ML: This section presents the econometric tools needed to estimate the model and to

characterize the distribution of taste among individuals. It also describes several ways to

incorporate additional information to characterize this distribution suggested in the litera-

ture. Section 4 describes the data, the estimated model and the main econometric results.

Finally, we present a robustness analysis of these results, including di¤erent de�nitions of

the beta coe¢ cient, other distributions for the simulation process such as the lognormal and

multivariate normal distributions. We also present an extension of the ML model known

as the Generalized Mixed Logit model (Fiebig et al., 2007), which allows us to identify the

portion of the variability in the coe¢ cients of the model explained by the variation of the
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variance of the error term. The last part of this section performs a test on endogeneity of

the crowding index.

2 Literature review

Previous literature on congestion has found both positive and negative signs for parameters

associated with crowding (Cicchetti and Smith, 1973; Deyak and Smith, 1978; McConnell,

1977; Berrens et al., 1993; Boxall et al., 2003; Schuhmann and Schwabe, 2004).2 As men-

tioned above, both results are justi�ed as the existence of agglomeration or congestion e¤ects.

An alternative approach suggests that the e¤ect at low levels of crowding is positive but af-

ter a certain threshold, crowding becomes detrimental to people�s utility. Schuhmann and

Schwabe (2004) estimate a model with linear and quadratic e¤ects of crowding and �nd re-

sults consistent with this hypothesis; there is a positive linear e¤ect and a negative quadratic

e¤ect.

Only a small number of these studies have estimated congestion e¤ects using revealed

preference methods (Deyak and Smith, 1978; Bell and Leeworthy, 1990) and most of them

use stated preferences (McConnell, 1977; Boxall et al., 2003).

The di¤erences in the sign of the parameter in these applications and the prevalence of

stated preference studies can be explained by two factors. First, there is not a clear consensus

about how to measure congestion in recreation demand models (Shelby, 1980; Jakus and

Shaw, 1997; Boxall et al., 2003). Some authors use objective measures of congestion such

as intensity of use, de�ned as aggregate demand per unit of area, parking spots available,

waiting times for using resources like boat ramps or climbing walls, number of encounters

with other users, etc., while other researchers focus on subjective measures or perceived

measures of congestion. Second, Boxall et al. (2003) argue the problem with revealed

preference estimations of congestion e¤ects is that aspects such as expectations, experience
2Earlier literature discussing congestion from a theoretical perspective are Anderson and Bonsor (1974), Freeman

and Havemann (1977), Cesario (1980), Smith (1981), and McConnell (1988).
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and mitigation behavior are confounded with the measure of congestion and it is di¢ cult

to disentangle the e¤ect of congestion from other aspects of the decision process due to its

endogeneity.

None of revealed preference studies mentioned above use a discrete choice model similar to

the one presented in this paper. Recently, Timmins and Murdock (2007) developed a method

to estimate a revealed preference discrete choice model taking into account the endogeneity

of congestion. Endogeneity in their model is the result of people sorting across sites, in other

words, congestion is a¤ected by similar unobservable attributes determining site selection.

They apply this model to estimate welfare measures for �shing activities while O�Hara (2006),

using a similar approach, estimates the e¤ect of congestion in the demand for rock climbing.

In order to capture part of the unobservable site attributes a¤ecting selection Murdock (2006)

suggests the estimation of a full set of alternative speci�c constants. The inclusion of this

full set of alternative constants implies parameters varying only across alternatives are not

identi�ed. Their methodology relies on an instrumental variable regression approach that

requires a large number of choice alternatives.

Finally, Freeman and Havemann (1977) and McConnell (1988) have shown theoretically

that heterogeneity in willingness to pay and in aversion to crowding a¤ect the optimal price

required to achieve a socially optimum level of congestion. Furthermore, in their results,

heterogeneity also determines the composition of users of the sites, since users with lower

price sensitivity and higher aversion to crowding switch their demand to sites with higher

entrance fees.

Previous literature on congestion has either ignored heterogeneity in preference for crowd-

ing or dealt with it through the estimation of di¤erent models for di¤erent groups of indi-

viduals, or di¤erent coe¢ cients for di¤erent activities or sites. All of these approaches to

congestion belong to the �xed parameter framework. Even though the sorting model of

Timmins and Murdock (2007) can be extended to a random parameter model, they do not
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provide any estimation of heterogeneity for the congestion parameter and Murdock�s (2006)

empirical results on heterogeneity are unusual and contradict expected theoretical results.

Our paper provides a simpler way to deal with heterogeneity of preferences based on

actual measures of crowding together with indicators of attitudes toward crowding. The

model is easier to estimate and produces qualitatively similar results to those in the litera-

ture mentioned above. Additionally, our methodology can be applied with any number of

alternatives as long as one has an explicit measure of congestion. Our congestion measure

can be classi�ed as an actual (no subjective) measure because it has been measured inde-

pendently of the anglers by somebody outside of the sample. Therefore, following Jakus and

Shaw (1997) it can be considered exogenous to the individual.3

Once the model has been estimated, any welfare calculation should take into account the

sorting over sites produced by changes in the number of available sites or in the quality of

them. We provide estimates of welfare measures under several assumptions about the sorting

e¤ects.

3 Model Speci�cation

The traditional random parameter model (Train, 1998; 2003) starts with the de�nition of a

utility function for individual n in period t given that he chose alternative j; denoted by

Unjt = �
0
nxnjt + "njt; (1)

where xnjt is a vector of observed attributes of the alternatives, �n is a vector of unobserved

coe¢ cients varying randomly over individuals and "njt is an identically and independently

distributed extreme value error term, independent of �n: The vector of coe¢ cients is de�ned

as �n = b + �n; where b is the average e¤ect and �n represents an individual�s deviation

with respect to the average, in other words, �n is characterized by a probability distribution,
3We will test this hypothesis in our estimation process.
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�n � g(� j� ), where � is a set of parameters de�ning the distribution g(:): Replacing this

de�nition in (1) the utility function is

Unjt = (b+ �n)
0 xnjt + �njt = b

0xnjt + �
0
nxnjt + "njt:

Given the assumption for the error term "njt, and conditioning on the random component

�n; the probability that individual n chooses alternative j in period t is

Lnjt =
e�

0
nxnjtP

i e
�0nxnit

; (2)

which is the formulation of a conditional logit model.

Typically, the researcher observes a panel of N individuals making decisions over T

periods. Grouping all decision occasions for the same individual, the joint probability that

individual n chooses a sequence of alternatives ynj = hynj11; :::; ynjTT i is given by

Lnj(�) = Lnynj11 � ::: � LnynjTT =
TQ
t=1

Lnynjtt =
TQ
t=1

JQ
j

�
e�

0
nxnjtP

i e
�0nxnit

�ynjt
; (3)

with ynjt equal to 1 if person n chose alternative j in period t and 0 otherwise. Since we

do not observe �n; the unconditional probability is obtained integrating out this random

component, that is,

Pnj =

Z
�

Lnj(�)g (�j �) d� =
Z
�

TQ
t=1

JQ
j

�
e�

0
nxnjtP

i e
�0nxnit

�ynjt
g (�j �) d�;

and the log of the likelihood function is

` = lnL(�) =
NX
n

ln

 Z
�

TY
t

JY
j

(Lnjt)
ynjt g (�j �) d�

!
:

The integral in the likelihood function is approximated using simulation techniques, i.e.,

we take R random draws from the distribution g (�j �) ; and the integral inside the likelihood
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function, which represents the probability Pnj; is replaced by

�Pnj =
1

R

RX
r=1

 
TQ
t=1

JQ
j

�
e�

r0xnjtP
i e
�r0xnit

�ynjt!

where �r denotes the r-th random draw. The estimated parameters �̂ obtained by maximiz-

ing this likelihood function are called the simulated maximum likelihood estimators.

The random coe¢ cient �n can be de�ned as a function of observed variables with the

purpose to correctly capture observed sources of variation in individuals�preferences. For

instance, Harris and Keane (1999), Berry (1994) and Berry et al. (1995) incorporate individ-

uals�information in the de�nition of �n; so that the randomness of this coe¢ cient depends on

some observable information and not just on the assumptions about the random component

�n. In theML model including individual characteristics will turn into interactions between

characteristics and attributes of the good.

Ben-Akiva et al. (1999a; 1999b) and Walker and Ben-Akiva (2002) suggest including

taste indicators in the model. The simplest way to incorporate these indicators is to treat

them as additional explanatory variables and plug them directly into the de�nition of the

random parameter �n as in Harris and Keane (1999).
4 In summary, the �rst attempt to

improve the description of heterogeneity is to include both taste indicators and demographic

information in the de�nition of �n; that is

�n = b+ !Dn + �Hn + �n; (4)

where Dn are demographic variables and Hn are variables re�ecting individual�s opinions
4See Walker and Ben-Akiva (2002) for a full literature review on di¤erent ways to extend the traditional random

utility model.
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about the attributes of the goods (taste indicators). The utility function becomes

Unjt = (b+ !Dn + �Hn + �n)
0 xnjt + "njt (5)

= !Dnxnjt + �Hnxnjt + (b+ �n)xnjt + "njt: (6)

This model includes new sources of heterogeneity through interactions between individual�s

information and attributes, Dnxnjt and between indicators and attributes, Hnxnjt:

Ben-Akiva et al. (1999a; 1999b) and Walker and Ben-Akiva (2002) suggest a di¤erent

way to exploit the information provided by taste indicators. Their proposed model deals with

latent explanatory variables; thus, it applies in cases where the researcher does not observe all

the relevant explanatory variables, and the taste indicators provide a measure of how people

feel about the unobserved variables. In our case we do observe the relevant explanatory

variables, but we want to represent how each individual feels about this attribute; in other

words, we want to describe the distribution of the coe¢ cients associated with these variables.

We adjust the Ben-Akiva and Walker model to �t our objective.

The structural model propose by Ben-Akiva and Walker includes the utility equation

given in (1) and the equation that characterize the random parameters given in (4) but

without taste indicators, i.e.,

��n = h(Dn; $) + � = b+ !Dn + �n; (7)

Dn is the matrix of explanatory variables including any relevant information except taste

indicators. Ben-Akiva et al. de�ne measurement equations that allow one to identify the

structural model. In the choice case we have already de�ned these equations, which are the

indicators ynit explained above. This measurement provides the choice probability equation

given by either (2) and (3) depending on whether we have a cross section or a panel data.

12



Finally, we have to de�ne the taste indicator measurement equations

IS = w (W;�
�
n;�) + � � � D (0;��) ;

these indicator equations are the responses to S psychometric questions that capture with

some level of certainty the individuals�true tastes, which we want to identify. The de�nition

includes any functional form for w(:) and also any set of explanatory variables,W; beside the

de�nition of ��n: Putting all these equations together we obtain a model similar to the ML

described above, but with the inclusion of an additional element capturing the information

provide by the taste indicator equations. The probability that an individual n chooses a

sequence of alternatives, ynj; is

Pnj (ynj jxnj; Dn ;$; �; ") =

Z
��
Lnj (y jxnj; �� ;$; �; ") g (�� jDn ;$; �) d�

�:

Compared to the previous choice probability formula we only introduced new notation to

show this probability depends on the coe¢ cients of the function de�ning ��, i.e., coe¢ cients

in $; on the error components of this equation �; and the error de�nition of ".

Now introducing the indicator component into the model and assuming independence

among error terms in the three equations, the joint distribution of ynj and I is

f (ynj; I jxnj; Dn;W ;$;�; �; �; ") =Z
��
Lnj (y jxnj; �� ;$; �; ") f (I jW;�� ;$; �) g (�� jDn ;$; �) d�

�;

where f (I jW;�� ;$; �) is the density function associated with the indicator equations.

Again this integral can be calculated by simulation. Assuming an extreme value distribution

for "; and a linear form for the indicators, Is = �0s�
�
n + �s; with �s normally distributed, we
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obtain

f (ynj; I jxnj; Dn;W ;$;�; �; �; ") =

Z
��

TQ
t=1

JQ
j

�
e�

�0
n xnjtP

i e
��0n xnit

�ynjt
�

rY
r=1

1

��s
�

�
Is � �0s��n
��s

�
g (�� jDn ; 
; �) d�

�;

which is calculated using simulations as

f (ynj; I jxnj; Dn;W ;$;�; �; �; ") =
1

R

X
r

 
TQ
t=1

JQ
j

�
e�

�r0xnjtP
i e
��r0xnit

�ynjt!
�

SY
s=1

1

��s
�

�
Is � �0s��r

��s

�
:

Clearly, there are many ways to capture heterogeneity. The simplest way is to include

individual characteristics interacting with attributes of the good that have �xed coe¢ cients.

The coe¢ cients are �xed, but since the characteristic varies among individuals, the at-

tribute�s e¤ect is speci�c to each individual. This is analogous to incorporating individual

characteristics Dn and/or taste indicators Hn in the de�nition of the random parameters as

shown in equation (5) since these variables will enter in the model as interactions with at-

tributes of the alternatives with a �xed coe¢ cient. Second, together with the interactions we

could include a random component in the model that captures unobserved individual e¤ects.

Finally, we could use indicators, assuming they partly describe the true latent parameter ��;

and incorporate their distributions directly in the de�nition of the likelihood function. In

this way the taste indicators are not a direct part of the random parameter de�nition but

instead they contribute to calibrating the estimated distribution of the random parameter

in order to make this distribution consistent with how people perceived these attributes.

Any of these modeling strategies provides a taste distribution for the whole sample;

however, it might be useful to describe a distribution of taste for a speci�c consumer or

group of consumers. We could follow Revelt and Train (1999) and Train (2003, ch. 11) to
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characterize a conditional distribution of taste for a subgroup of individuals. Their procedure

narrows the area where a particular consumer lies in the original distribution of tastes using

information of his/her previous choices. Therefore, we can predict the mean value of beta for

each individual in the sample, and from this deduce whether he likes or dislikes the particular

attribute.

Revel and Train (1998) distinguish between the distribution of tastes in the population

and the distribution of tastes in a subpopulation of people who made a particular sequence

of choices. We denote the former distribution by g(� j� ), and the latter distribution by

h(� ji; x; � ), following their notation. From our estimates we can only say that an individ-

ual�s parameter lies somewhere in the support of the distribution g(� j� ) without specifying

whether he is in the positive or negative part of the distribution. The distribution h(� ji; x; � )

will provide better information about the relative position of an individual or group of indi-

viduals sharing the same chosen alternatives over time. Naturally, the quality of the infor-

mation derived from the data depend on the number of observed choices available for each

individual, with a greater precision for cases with several observed choices per individual.

The distribution of the subpopulation is obtained using the Bayes�Rule. The joint density

of yn and � can be written as

f (yn; � jxn; � ) = P (yn jxn; � ) g(� j� ) = h (� jyn; xn; � )P (yn jxn; � ) ;

then

h (� jyn; xn; � ) =
P (yn jxn; � ) g(� j� )

P (yn jxn; � )
:

From this distribution Train (2003) shows how to derive statistics conditional on yn. For

example, the mean is given by

��n =

Z
�h (� jyn; xn; � ) d� =

Z
�
P (yn jxn; � ) g(� j� )

P (yn jxn; � )
d� =

R
�P (yn jxn; � ) g(� j� )d�R
P (yn jxn; � ) g(� j� )d�

; (8)
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which can also be estimated using simulation, i.e. we get a random draw from g(� j� ) and

estimate �� =
P
wr�r where wr = P (yn jxn; �r ) =

P
r P (yn jxn; �

r ) : For this simulation we

need to consider g(� j� ) depends on �: The distribution for these estimators is normal with

mean �̂ and variance Ŵ . These estimators are the outcomes from the maximization of the

likelihood function. We could replace these point estimators in ��n(:) and take random draws

from g(�
����̂ ) to calculate the value of ��n; or we could take a random draw from N(�̂; Ŵ );

and calculate ��r based on this random value (�r); i.e., take the random draws of g(� j� ) after

replacing �r on it and repeat this procedure R times.

4 Application

In the standard revealed preference approach with panel data, we observe N individuals

making a recreational trip to one of a number of di¤erent destination zones in a period

of time t; during T periods. Our data consists of 434 Alaskan anglers who made �shing

trips to catch king salmon during the summer of 1986 (18 weeks). For each individual n;we

have information on his travel cost (TCnj) to each of the 21 sites where king salmon is

available. We also have information on the quality of �shing (Qjt) at each site on each

decision occasion. This is based on detailed sport�shing advisories published each week by

the Alaska Department of Fish & Game (ADFG) describing �shing conditions at sites around

the state. They de�ne the �shing in qualitative terms using adjectives and descriptors, rather

than predicting a speci�c catch rate per hour of e¤ort. Accordingly, we view this as an ordinal

measure of �shing quality. Based on the advisories, our variable is coded as an eight-level

indicator of �shing quality, starting from 1 (�no �sh are available�) to 8 (�excellent �shing�).

The �sh advisories are speci�c to di¤erent types of �sh; we use here the advisory for king

salmon. Additionally, we have a three-level indicator of crowding conditions (CRjt) at site j

in period t, with 0 for not crowded, 1 for somewhat crowded and 2 for very crowded. This is

based on information provided by ADFG. There is also a dummy variable indicating whether
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people have a cabin in site j (CAnj) and a measure of the amount of king salmon harvested

in site j in the previous year (HARj). Finally, there are several individual information

variables that will be described below. We use weekly data because �shing opportunities

vary signi�cantly from week to week as di¤erent runs of �sh return to their spawning sites.

The weekly variation in �shing is re�ected in both the weekly �shing quality index for each

site and also the speci�c set of sites at which king salmon is available week by week.

For an indication of the main characteristics of the data consider �gure 1 which shows

average values of quality, crowding and travel cost for each site in the sample. Sites are sorted

according to quality in an increasing order, and to account for the di¤erences in magnitudes

of the three variables we plot the relative di¤erence of each characteristic with respect to its

mean (that is, [xi � �x] =�x):

There are several patterns we can highlight from this graph. First, sites with lower travel

cost and lower level of quality have consistently lower level of crowding (for example, sites 3,

4, and 5). Second, high quality and low cost always have high level of crowding (sites 10, 11,

13, 14, 16 and 21, among others). In other words, crowding moves in an opposite direction

to price and in the same direction as quality. Third, the positive e¤ect of quality is o¤set

by cost at sites with a very high travel cost, especially at sites with the highest levels of

quality. For instance, for sites 17 and 20 the travel cost is so high that it totally dominates

the e¤ect of quality. Lastly, there are a few exceptions to these patterns; site 2 has a low

level of quality, a high price, and a high level of crowding.

In summary, the level of crowding is highly correlated with the other two explanatory

variables and there is substitution among these characteristics. In other words, people tol-

erate higher levels of congestion because the quality of the �shing activities is good in that

area. This is especially important with king salmon because many people want to catch a

trophy size �sh and, to do this, they have to go to sites with good �shing quality and put

up with the congestion there.
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The particular de�nition of the utility function in equation (1) is

Unjt = �
1
n ln(TCnjt) + �

2
n �Qjt + �3n � CRjt + �4 � CAnj + �5 ln(HARj) + "njt:

For identi�cation purposes we assume only the �rst three coe¢ cients are random. Even

though the model can be estimated with all the coe¢ cients being random, there have been

concerns in the random parameter literature about the identi�cation of models in that case

(Walker, 2002; Ben-Akiva et al., 2001).

Table 1 presents the results of a �xed coe¢ cient, ML, and the integrated ML model

excluding any additional explanatory variable in the de�nition of beta.5 While this table

contains the main result of the paper, the tables following it show several variants of the

simple models in order to check the robustness of our main result. The numbers on the �rst

row of the table describe the di¤erent models, follows by a row with the name of the model

and a summary of the coe¢ cient and/or the components of the model. For instance, the

�rst column denoted by (1), shows the �xed parameter model where we estimate only the

coe¢ cient b, while column (2) presents results for the ML in which we have estimated the

coe¢ cient b and used simulation to integrate out the component �: The third column (3)

adds the letter I which means we have integrated the taste indicators.

In all of these models we assume the coe¢ cients have independent normal distributions.

We use 100 Halton sequences as the sampling procedure for the R draws needed in the cal-

culation of the integral discussed above.6 In these regressions, all coe¢ cients are statistically

signi�cant except for the crowding coe¢ cient in the �xed parameter model. The �xed co-

e¢ cient model and the integrated models yield a negative sign for the crowding coe¢ cient

while the ML model suggests a completely di¤erent conclusion about people�s preferences
5 It useful to have in mind that in the random parameter estimation there are two parameters to estimate; the

mean value and the standard deviation. Additionally, as in any other estimation we obtain the standard error for
those parameters. These standard errors are used for the calculation of the t statistics.

6Actually, a Halton sequence is a systematic sampling procedure instead of a random procedure, which increases
the coverage and reduces the variance of the simulator. See Train (1999; 2003) for a discussion on Halton sequences
and other topics on simulation.
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for crowding levels.

In comparison with the �xed parameter model, the random parameter models improve

our information about the crowding parameter because they show a signi�cant standard de-

viation for the coe¢ cient, which implies a signi�cant level of unobserved taste heterogeneity

in the population. In the ML model, all the distributions have part of their mass on both

sides of the real line. For the price coe¢ cient, we observed a probability of 10% that an

individual has a nonnegative value for the parameter, which is inconsistent with economic

theory. Similarly from the distribution for the quality indicator we conclude that around

9% of the sample prefers sites with lower quality. These outcomes arise because we have not

constrained the distributions to be only in the positive or negative part of the real line. We

could do this using a log normal distribution for those coe¢ cients or we could just discard

the portion of the distribution that is outside of the expected range.7

As noted above, the crowding coe¢ cient is not signi�cant in the �xed parameter regres-

sion; however, it is signi�cant in the ML estimation with a standard deviation that is also

signi�cant. Using results from the ML model, �gure 2 shows the distribution g(� j� ) under

the name ML distribution. These results imply that around 60% of the population likes

crowding. If this were the case, it would explain why this coe¢ cient is not signi�cant in

the �xed parameter estimation; negative values for some individuals cancel out with positive

values of other individuals.

In the integrated models we use several taste indicators obtained in a Likert scale or like-

dislike ranking. In one of these questions individuals were asked about how desirable was to

�sh in a site with few other �shermen around, the results are presented in table 2. For most

of the people, crowded places are undesirable (Notice that -2 means people like uncrowded

places). In �gure 2, we also show the distribution of this ranking using the mean and the

variance on table 2 and assuming a normal distribution for it (under the title psychometric
7Same results are obtained with normal draws, so they are not presented in the analysis.
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information).

There is an inconsistency between what people mentioned in the survey about their

preferences for congestion and what we infer from the estimation of the ML model. There

are several ways to deal with this inconsistency. First, we could ignore the information

from table 2 arguing people do not answer this type of questions carefully, and what really

matters is what they do and not what they say. This is an acceptable strategy only if we

have a clear notion about how the lack of an experimental design a¤ects the possibility of

recovering the true taste parameters. As mentioned above, in revealed preference studies

with observational data, individuals do not face all possible combinations of alternatives and

attributes. Therefore it may not be possible to recover the unconstrained taste distribution.

The integrated ML model takes this into account by incorporating the taste indicators in

the estimation of the model.

We use six indicators. All of them have a �ve-level response ranging from very undesirable

to very desirable, or from de�nitively no to de�nitively yes. Two of them are directly related

to crowding. For instance, the variable NOCROWD represents the answer about how

desirable is "A site with few other �sherman around." The variable CHCROWD shows

how well the statement "We usually go out of our way to avoid sites crowded with other

�shermen" �ts with an individual. Two indicators are indirectly related to crowding since

they describe attributes that we expect to be present together with lower levels of crowding.

These variables are BEAUTY and WILD; describing a site with exceptional beauty and a

wilderness area, respectively. Finally, there are two indicators which are related to the size

of the �sh caught, Trophy describes the answer to the statement "a good chance to catch

trophy-sized �sh" and Limit describes the statement "a good chance to catch your limit."

These indicators are incorporated in the equations Is = �s�
�
cr + �s = �s (b+ �) + �s in

the particular case presented in table 1. For identi�cation purposes the standard deviation

of one of these equations has been �xed to one. The main qualitative result in this model
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formulation is 99.9% of the population dislikes crowding.

Figure 2, also includes the plot of the distribution of the integrated model. These new

estimates correctly indicate people do not like crowded places. Additionally, actual crowding

does not have a large negative impact, compared to what respondents stated in the psycho-

metric questions. Furthermore the variance is smaller than in theML estimations suggesting

not a lot of variation in the way people feel about crowding.

We also estimate the same models using a broader de�nition of the parameter for crowd-

ing, ��cr = f(Dh;!) + �; where we add several individuals�characteristics as explanatory

variables: size of the household, age, gender, education, number of years people have been

�shing in Alaska, a dummy variable taking value 1 if people know many �shing places, num-

ber of years as a resident in Alaska and income. The utility function has the same variables

de�ned before. Results are presented in table 3. The mean value of the crowding coe¢ cient

depends on the demographic information when we use interactions between demographic

variables and crowding levels in the estimation. We estimate this mean as E(~�
�
cr) = !̂0 �X

and its standard deviation by SD(~�
�
cr) =

p
var (�) = �̂�. Using this procedure we �nd

a mean value of �0:017 in the �xed coe¢ cient estimation, of 0:338 for the ML model and

�0:35 for the integrated model, all of them are very close to the value in the models without

interactions. The standard errors for these coe¢ cients are estimated using a delta method

and are 0:0444, 0:1013 and 0:029, respectively. In this estimation, all of the coe¢ cients of the

choice model and the indicator equations are signi�cant, while only the size of the household,

age, age squared, and the number of years �shing in Alaska are signi�cant in the equation

for ��cr.

The estimated models have signi�cant implications for the distribution of preferences for

crowding and for the estimation of welfare measures. In the �xed parameter case without

demographics, the coe¢ cient is the same for all the individuals in the sample. When demo-

graphics are considered, each individual has his own crowding coe¢ cient but it re�ects only
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observed heterogeneity. For the random parameters cases, we calculate the mean value of

the distribution for each individual using Revelt and Train�s approach. In other words we

calculate the mean �� of the distribution h(� ji; x; � ): Figure 3 presents three histograms of

the predicted individuals�coe¢ cients calculated using the regressions with demographic in-

formation. The �xed parameter model and theMLmodel predict some portion of the sample

with a positive coe¢ cient for congestion. The �xed parameter model predicts around 53%

of the population will have a positive value for this coe¢ cient while the ML model predicts

about 64% of the population with a positive value. In contrast, the integrated model predicts

only a negative coe¢ cient.

For any given individual there are two possible types of outcomes. First, it could be the

case the three models predict the same sign for the mean of the coe¢ cient (which must be

negative since the integrated model only predicts a negative sign) but they di¤er only in

the magnitude of the coe¢ cients. Second, the models predict di¤erent signs for the mean of

the coe¢ cient. However, a comparison of values could be misleading because the coe¢ cients

in di¤erent conditional logit models could have di¤erent scale parameters.8 Additionally it

could also be argued that the relevant comparison is whether or not a speci�c individual has

the same predicted position in the distribution.

In order to perform a meaningful comparison, we identify the number of individuals that

have the same position in the distribution. A simple approach is to identify whether or not

the individual has exactly the same position in the distribution. With this very strict criterion

we found only 1 person lies in the same position in the distributions of the �xed model and

the integrated model, none of them lies in the same position between the integrated model

and the ML model, and only two people lie in the same position between the �xed model

and the ML model. Using a less strict criterion we check for the number of people lying in

the same quintile. In this case 22% of the population belongs to the same quintile between
8We discuss this speci�c topic in detail in the next section using a generalization of the ML model.
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the �xed and the integrated model, 24% between the ML and the integrated model and 35%

between the ML and the �xed model.

The e¤ect of these di¤erences in welfare measures depends on the possible sorting e¤ect

after a change in the number of sites or the quality of them. There is a direct e¤ect and

an indirect e¤ect of closing a site. First, closing a site that is highly crowded will generate

a higher economic loss for models that assume congestion is a desirable attribute of the

site. Second, in the presence of sorting e¤ects the closure of a site will increase the level of

congestion in other sites and this will decrease the total loss if congestion is desirable.

To address this issue we perform the following exercise. First we estimate a welfare

measure associated with closing a site that is generally highly crowded, namely the lower

Kenai River from Cook Inlet to Soldotna Bridge (a prime �shing site for king salmon), and

we assume there is no e¤ect on crowding at any other sites. Second we assume people move to

the next closest site, which is the rest of Kenai River, and this raises the level of congestion

at that site by 1 unit for each person who had visited the lower Kenai River. Third, we

assume the sorting a¤ects all sites, increasing the crowding level in one unit for those sites

that are not already at the highest level of congestion.9

Table 4 shows the welfare measures for each of these scenarios and for the three estima-

tions that include demographic variables. In scenario 1, Both ML and the �xed coe¢ cient

estimation overstate the welfare measure in comparison with the integrated model. Basi-

cally, these two models imply the site is more desirable from an individual�s perspective

because it is crowded. Closing it implies a higher loss than if the site were not crowded. The

second scenario includes a sorting e¤ect but only to the closest site, and it also allows the

crowding level to go beyond its original scale. Now the ML and �xed coe¢ cient estimation

underestimate the welfare loss since an increase in the crowding level of the other place is

a bene�t for some individuals, which goes in the opposite direction of the initial e¤ect. In
9For example, if a site has a level 2 for congestion then it will remain at the same level, but if the site is at level

0 then it will increase to 1.
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our third scenario, we take into account that the original crowding level cannot be higher

than 2, therefore we increase the crowding level only when it is less than 2, but in this

case we assume all the sites are a¤ected by the sorting e¤ect. Since all sites are a¤ected by

the policy, the integrated model provides the highest cost of the event, since the direct and

indirect e¤ect go in the same direction. The di¤erence between the �xed coe¢ cient model

and the ML model are explained by the relative number of people being a¤ected either in a

positive or negative way by the change. The �xed model predicts a lower number of people

with a positive coe¢ cient; therefore the indirect e¤ect can also be detrimental to people�s

welfare.

4.1 Robustness Analysis

In this section we consider some additional factors that bear on the robustness of the results

presented above. We show the following results. First, the traditional approach which incor-

porates the taste indicators as explanatory variables in the de�nition of beta together with

the demographic variables does not change the qualitative results of the �xed parameter

or ML model. Second, we provide estimations with other distributions for the coe¢ cients

including lognormal and multivariate normal distributions, where we capture dependency

patterns in the ML model. We discuss the e¤ect of these changes on the estimated distri-

bution of the coe¢ cient associated with crowding. Third, we continue our analysis with

a discussion of the possible e¤ect of scale heterogeneity on the estimation of the ML and

integrated model. In this subsection we address the possibility our results were driven by

heterogeneity in the variance of the error terms of the choice model. Finally, we test endo-

geneity of our measure of crowding, discuss the inclusion of a full set of site speci�c constants

to account for unobservable attributes of the alternatives and compare our results to current

solution suggested in the literature for this problem.
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4.1.1 Taste indicators in the de�nition of beta

A simple way to use the information in the taste indicators would be to incorporate them

as explanatory variables in the de�nition of beta together with the demographic variables,

i.e. de�ning beta as �n = b + 
Dn + �Hn + �n: This is similar to the approach followed

by Harris and Keane (1999). They have attitudinal data for both unobserved and observed

variables and they use the indicators in the de�nition of the coe¢ cients for the observed

attributes of the good and the latent variables as well. In our setting we are dealing only

with observed attributes, therefore, we include the indicators only in the de�nition of the

beta associated with the observed measure of congestion. These results are presented in

table 5. The inclusion of the taste indicators in the de�nition of beta does not change the

sign of the crowding coe¢ cient. The mean values, evaluated at the mean of the explanatory

variables, are 0.16 and 0.77 for the �xed and ML model, respectively.

4.1.2 Lognormal and dependent distributions

Following the prior beliefs about congestion, prices and quality, we could specify the model

with distributions that allow only positive or negative values for the coe¢ cients. Lognormal

distributions are the way to do this. Additionally we could use a simulation process that

takes into account the possible correlation among the distributions of the parameters. We

performed these estimations using the following alternatives: independent normal distrib-

utions for price and quality and lognormal for crowding, multivariate normal distributions

for the random coe¢ cients, independent log normal distributions for the three random pa-

rameters, dependent normal distributions for price and quality and lognormal distribution

for crowding, among other combinations.

The estimates using a lognormal distribution only for the crowding coe¢ cient and inde-

pendent normal distribution for price and quality is presented in table 6. We also compare

the predicted lognormal distribution of the crowding coe¢ cient and the distribution derived
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from the integrated model in �gure 4. The lognormal distribution is almost a spike at zero

showing the use of this distribution does not provide any useful information about taste

heterogeneity for congestion. The mean of the distribution is �0:398; which is very close

to the mean in the integrated model and its variance is 322:05; with a standard deviation

of 17:946 which is signi�cantly larger than the variance of all other models. The mode is

�4: 340 � 10�6; virtually zero and the median is �8:826 5 � 10�3: Therefore, most of the

people in the sample do not care about crowding conditions. Estimation of a model with a

lognormal distribution for all the random parameters did not converge, which is common in

applications of ML models.

On the other hand, the inclusion of dependency among distributions of the random

parameters does not solve the sign problem in the crowding coe¢ cient nor does it change the

results in the integrated model. We estimate aML (see table 7) with dependent distributions

and the results are similar to those found with the independent distributions. The coe¢ cients

s12, s13 and s23 are the corresponding covariance between the distributions. We tried several

other combinations of normal and lognormal distributions with dependent error structures

but none of them changed the sign of the crowding coe¢ cient.

4.1.3 Generalized Mixed Logit Model

Heterogeneity can also be associated with the scale component of the distribution function.

As Ben-Akiva and Lerman (1985) and Louviere (2001) show, when the "ijt�s are indepen-

dently and identically extreme value type I random variables then the variance of the random

component is inversely related with the scale parameter. This scale parameter is �xed to

1 in traditional logit models since it cannot be identi�ed separately from the parameters of

the vector �: The cumulative distribution of "ijt is F ("ijt) = exp [� exp (��"ijt)] for � > 0;

with � the scale parameter of the distribution, and V ar("ijt) = �2" = �
6=6�2 (see Louviere

et al., 2000, page 142). Making the scale parameter explicit in the model, the probability of
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individual n choosing alternative j in period t is

Lnjt =
e��

0
nxnjtP

i e
��0nxnit

:

One way to identify the scale parameter is to de�ne � as a function of observable character-

istics of the alternatives, the context of the choice experiment or individuals�characteristics

(Dellaert et al., 1999). Another way is to combine di¤erent sources of information such as

di¤erent data sets or stated and revealed preferences.

As part of the speci�cation of the model, the scale parameter could also capture part of

the heterogeneity, i.e. it could be an individual speci�c parameter, that is � = �n (Swait

and Louviere, 1993; Louviere, 2001; Louviere et al., 2002). Recently, Fiebig et al. (2007)

have suggested a generalized mixed logit (GML) model which captures both sources of

heterogeneity and includes several possible combinations of scale and mean heterogeneity.

In this case �n is de�ned as

�n = �n� + 
�n + (1� 
)�n�n; 
 2 (0; 1) :

The new de�nition of the parameter beta encompasses several particular cases of hetero-

geneity. If �n = 1 for all n then we have the traditional ML model with �n = � + �n: For

all other values of �n; if 
 = 0 then �n = �n (� + �n), in this case both the mean e¤ect and

the individual�s deviation with respect to the mean are a¤ected by the scale heterogeneity.

If 
 = 1;then �n = �n� + �n; and only the mean e¤ect is a¤ected by the scale. Finally if


 2 (0; 1) ; the portion (1� 
) of the deviation with respect to the mean is a¤ected by the

scale heterogeneity, while the portion 
 is not. With this de�nition of beta the probability

of individual n choosing alternative j in period t is

Lnjt =
e[�n�+
�n+(1�
)�n�n]

0xnjtP
i e
[�n�+
�n+(1�
)�n�n]0xnit

:

Estimation of this model requires the de�nition of a distribution for �n; in this case a
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lognormal distribution seems appropriate since the scale parameter is positive. Additionally

it requires imposing some restrictions on the distribution for identi�cation purposes. We

follow Fiebig et al. and de�ne �n = exp(��+ ���); with �� � N(0; 1) and �� = �� 2=2 in order

to impose that E(�n) = 1:

The inclusion of �n in the model only allows one to decompose heterogeneity between

mean and scale heterogeneity but it does not help one to identify the correct sign for the

coe¢ cients since �n can only be positive. In other words, the inclusion of �n a¤ects the

absolute values of the betas but not their sign. In the integrated model we use the following

de�nition

��n = h(Dn; $) + � = �n� + 
�n + (1� 
)�n�n + !Dn: (9)

Table 8 shows the results of this generalized model. Below the names of the models we

include the coe¢ cient � to show we are estimating the GML and the integrated GML; which

contains the psychometric information. Estimation of the last model requires an additional

identi�cation restriction that consists in �xing the gamma coe¢ cient; this value was �xed

to the value obtained in the simple GML. In the GML model we impose the condition that


 2 (0; 1) using 
 = exp(
�)=(1 + exp(
�)); and the variance of 
 is calculated using the

delta method, i.e., var(
) = [
 (1� 
)]2 var(
�): The GMLmodel contributes to enhance our

understanding of heterogeneity since both � and 
 are signi�cant, suggesting there is scale

heterogeneity as well as a mean heterogeneity and that the scale coe¢ cient a¤ects both the

beta coe¢ cient and the random component of �n. Notice that even though the coe¢ cients

of the GML models are signi�cant they do not signi�cantly change neither the crowding

coe¢ cient nor its standard deviation.

4.1.4 Endogeneity of Crowding Variables

Perhaps the main problem we have to address is the possible endogeneity of our crowding

index. While there are several sources of endogeneity in a discrete choice model (Louviere
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et al., 2005), in this section we focus on the case of endogenous explanatory variables, i.e.

situations in which the explanatory variable is correlated with the unobserved component of

the utility function. A plausible explanation of the positive sign of congestion in previous

papers is the endogeneity of this variable, which could be correlated with omitted relevant

characteristics of the sites. According to Jakus and Shaw (1997) the degree of endogeneity is

related to how congestion is measured in empirical work. Jakus and Shaw classi�ed measures

of congestion in four categories; actual, expected, anticipated and perceived congestion. For

them, actual measures of congestion, measured independently of the consumer by an outside

member of the sample, could be considered exogenous. Our measure of congestion falls

in this category, therefore it could be considered exogenous. Nevertheless, any measure of

congestion will at least partially re�ect people�s decisions about which site to visit. In other

words, even if a measure of congestion is obtained from outside the sample and is independent

of consumer choices in the sample, it could still be correlated with some components of the

unobserved variables of the location that make it endogenous. In our previous analysis we

assume congestion is exogenous, in this section we test this hypothesis in order to give some

additional support to our prior belief.

There are two ways to deal with endogeneity in discrete choice model. First, the Berry,

Levinsohn and Pakes (1995) approach that uses aggregate market information and a lin-

earization of the discrete choice model suitable for traditional instrumental variable tech-

niques. This approach is used by Timmins and Murdock (2007). The second approach

was proposed by Villas-Boas and Winer (1999). They estimate a regression equation of the

endogenous variable against some instruments together with the choice probability equation.

Timmins andMurdock use the expected share of anglers who choose each site as a measure

of congestion in the recreational sites of the sample. The distinctive characteristic of this

application is the large number of sites from which people can choose. The endogeneity of the

congestion variable together with the high correlation of congestion with other explanatory
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variables makes it quite challenging to correctly identify the sign of congestion. They use a

two step estimation procedure following a similar method used in the industrial organization

literature (Nevo, 2000). In the �rst step one estimate mean utilities together with interactions

between site characteristics and individual attributes; in the second step, the mean utilities

are used to estimate a linear instrumental variable (IV) regression. However, the large

proportion of site shares that are zero requires the use of a quantile IV regression. A negative

sign for the congestion parameter is obtained only with the use of this quantile estimation.

The fact that the second stage is a linear IV regression model whose properties depend on

the size of the choice set and the large proportion of zero market shares makes this procedure

unsuitable for discrete choices where there is a limited number of choice alternatives (See

O�Hara 2006 for an example of this problem). If there is only a small number of alternatives

in the choice set, the second stage estimation may not be an appropriate solution.

Therefore, we test endogeneity following Villas-Boas and Winer�s (1999) suggestion for

models with micro data, which uses instrumental variables to test the endogeneity of the

variable. We use two instruments in our estimation, one of them is motivated by Villas-Boas

and Winer and the other follows Timmins and Murdock. These instruments are the lag of

the crowding levels and a function of the exogenous attributes of other alternatives, in this

case we use the sum of the quality levels excluding the own level of quality.

Villas-Boas andWiner do not assume a random parameter model, instead they assume the

utility model has an additional error component capturing unobserved sites characteristics.

In this sense their model is similar to the models suggested by Murdock and Timmins (2007)

and Murdock (2006).

Extending these models to a random parameter approach only implies an additional layer

of integration, the utility function is

Uijt = X
0
ijt�n + �jt + "ijt;
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where there is an additional component, �jt; which they assume is distributed normal with

mean zero and variance �2� . This is exactly the same error structure used by Timmins and

Murdock which is employed in a second step linear IV regression to estimate the coe¢ cient

of variables varying only across alternatives. In contrast Villas-Boas and Winer use a more

structural approach de�ning a second equation for the potentially endogenous variable, in

this case crowding rate

CRjt = CR(Wij;�) + �jt;

with �jt � N (0; �2�) ; and Wij are instrumental variables. The correlation between this

error term and the error term �jt captures the possible endogeneity of the variable, that

is E
�
�jt�jt

�
= �����, additionally it is assumed that E (�j0t0�jt) = 0 and E

�
�j0t0�jt

�
= 0.

Under these assumptions the conditional probability of choosing a sequence of alternatives

is given by

P
�
ynj
���jt; �jt; �n � = TY

t

JY
j

0@ e�(X
0
ijitt

�n+�jt)P
j e
�(X0

ijt�n+�jt)

1Aynjt

We still have a random parameter in the de�nition �n = b+ �n; the joint distribution of ynj

and CRjt would be

P (ynj; CRjt) =

Z
�jt

Z
�

TY
t

JY
j

0@ e�(X
0
ijitt

�n+�jt)P
j e
�(X0

ijt�n+�jt)

1Aynjt

f (�jt) f
�
�jt j�jt

�
g(� j� )d�d�jtd�jt

This integral is calculated by simulation bearing in mind the error components �jt and

f (�jt) are the same for each individual but vary over periods of time. The joint distribution

31



of f
�
�jt; �jt

�
is

f
�
�jt; �jt

�
=

 
1

��jt
p
2�
exp

(
�1
2

�
�jt � ��
��jt

�2)!

�
 

1

��jt
p
(1� �2)

p
2�
exp

(
� 1

2�2�jt (1� �
2)

�
�jt � �� � �

��jt
��jt

(�jt � ��)
�2)!

and since �� = 0

f (�jt) =

 
1

��jt
p
2�
exp

(
�1
2

�
�jt
��jt

�2)!
=

1

��jt
�

�
CRjt � �0j � �1jWjt

��jt

�

and given �� = 0 we can deduce that

�
�jt j�jt

�
� N

�
�
��jt
��jt

�jt; �
2
�jt

�
1� �2

��
Table 9 presents the results of this model where the instruments are denoted by lagcrowd-

ing and quality(-1) which represent the lag of crowding and the sum of the quality index

excluding the own quality. The variable sigma 1 and sigma 2 represent the variance ��jt and

��jt ; respectively. From the fact that the rho coe¢ cient is not signi�cant we can reject the

hypothesis of endogeneity of the crowding variable.

Another way to capture unobserved attributes of the site is to estimate a full set of

site speci�c constants. We estimate the ML and the integrated model with this set of site

speci�c constant, i.e., with a set of dummy variables for each alternative as in Nevo (2000)

and Murdock (2006). Since in the data all the variables except the previous harvest (HAR)

vary at least according to two out of the three elements �time, people and sites �we are

able to identify these dummy variables only excluding the harvest variable. The coe¢ cient

for this variable can be recovered afterwards by regressing the speci�c constant against the

log of harvest, as was suggested by Murdock. Including the site speci�c constant controls

for any unobserved site e¤ect and reduces the probability of having correlation between the
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observed variable and unobserved attributes. Estimation with dummy variables for each site

did not a¤ect the conclusions of the model.

5 Conclusions

We show a simple way to use taste indicators in the traditionalML model, which contributes

to describe heterogeneity of preferences over attributes of the goods. This methodology is

especially useful for those attributes that could a¤ect individuals�utility in a positive and

negative direction. In the particular case of congestion, the traditional ML model reports

results inconsistent with the way people feel about this site�s attribute. The methodology

presented in this paper brings together two di¤erent pieces of information; on one hand the

observed behavior and, on the other, the expressed attitude toward the attributes of interest.

Our results suggest researchers could obtain a better representation of preferences if they

combine these two sources of information.
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Table 1. Discrete Choice Models

(1)
Fixed

(2)
Mixed Logit

(3)
Integrated ML

b b, b, ,

explanatory variable coeffic. coeffic. s.d. coeffic. s.d.

Log(TC) -0.91 -1.13 0.87 -1.18 0.76
t-value -27.86 -16.29 12.06 -20.51 14.50
Quality 0.24 0.26 0.19 0.31 0.25
t-value 12.76 10.27 4.51 11.50 7.79
Crowding -0.03 0.36 1.31 -0.35 0.12
t-value -0.70 3.64 11.58 -12.22 10.12
Cabin 2.13 2.61 - 2.41 -
t-value 15.58 14.25 - 22.89 -
Log(harvest) 0.38 0.43 - 0.39 -
t-value 12.61 11.76 - 24.82 -

Indicators
Nocrowd - - - 1.00 1.03
t-value - - - - 18.88
Chose No crowded - - - 3.88 0.60
t-value - - - 11.36 27.78
Wild - - - 2.65 0.78
t-value - - - 10.39 26.28
Beauty - - - 3.02 10.90
t-value - - - 0.69 26.38
Trophy - - - 2.10 0.88
t-value - - - 9.79 26.22
Limit - - - 3.40 0.75
t-value - - - 11.18 33.16

Bold numbers are significant at a 5 % level.
Simulation assuming Independent multivariate normal distributions

Value frequency %
very desirable -2 215 49.2
desirable -1 180 41.19
no opinion 0 34 7.78
undesirable 1 6 1.37
very undesirable 2 2 0.46

mean -1.373 variance 0.526871

Table 2. A site with few other fishermen around
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Table 3. Discrete Choice Models: Demographics
(1)

Fixed
(2)

Mixed Logit
(3)

ML Integrated
b, Dh b, Dh, b, Dh, , I

explanatory variable coeffic. coeffic. s.d. coeffic. s.d.
Log(TC) -0.92 -1.12 0.87 -1.18 0.77
t-value -27.95 -16.88 13.23 -20.23 14.15
Quality 0.24 0.26 0.19 0.31 0.26
t-value 12.68 10.71 5.16 11.33 7.68
Crowding -1.33 0.10 1.32 -0.69 0.11
t-value -2.26 0.08 12.22 -5.82 9.84
Cabin 2.15 2.62 - 2.42 -
t-value 15.60 20.02 - 22.68 -
Log(harvest) 0.39 0.44 - 0.39 -
t-value 12.86 20.28 - 22.92 -

Parameters in definition of beta
Size of household 0.39 0.56 - 0.09 -
t-value 1.17 0.74 - 1.70 -
Age 43.52 14.02 - 9.95 -
t-value 1.64 0.22 - 1.99 -
Age*age -0.65 -0.46 - -0.09 -
t-value -2.16 -0.63 - -1.64 -
Gender 0.11 -0.15 - 0.03 -
t-value 0.90 -0.53 - 1.24 -
Education 0.15 0.33 - 0.00 -
t-value 1.71 1.33 - -0.26 -
Years fishing in Alaska 0.59 0.14 - 0.18 -
t-value 1.49 0.17 - 2.58 -
Know many fishing sites 0.44 0.20 - -0.01 -
t-value 1.27 0.25 - -0.12 -
Years as a resident -0.08 -0.18 - 0.01 -
t-value -1.22 -0.88 - 0.77 -
Income -0.01 0.25 - 0.01 -
t-value -0.06 0.91 - 0.22 -

Indicators
Nocrowd - - - 1.00 1.03
t-value - - - - 18.63
Chose No crowded - - - 3.84 0.59
t-value - - - 11.35 27.98
Wild - - - 2.63 0.77
t-value - - - 10.41 25.73
Beauty - - - 2.98 0.69
t-value - - - 10.94 26.27
Trophy - - - 2.07 0.88
t-value - - - 9.81 26.05
Limit - - - 3.35 0.76
t-value - - - 11.20 32.68

Bold numbers are significant at a 5 % level.
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Scenario 1 Scenario 2 Scenario 3
Fixed -64810.75 -86744.04 -91758.92
ML -62592.22 -67228.04 -63267.80
Integrated -59918.88 -90087.15 -112015.77
Scenario 1 :
Scenario 2:
Scenario 3: People move to all other places

Table 4 .  Welfare Losses after Closing Kenai River

no sorting effects

People move to the closest place
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Table 5. Discrete Choice Models: demographics and indicators

(1)
Fixed

(2)
Mixed Logit

b, Dh, Hh b, Dh, Hh, 

explanatory variable coeffic. coeffic. s.d.

Log(TC) -0.91 -1.13 0.86
t-value -54.03 -16.77 12.98
Quality 0.24 0.26 0.20
t-value 13.32 10.40 5.51
Crowding -0.43 0.39 1.29
t-value -0.99 0.27 11.65
Cabin 2.15 2.61 -
t-value 23.05 19.99 -
Log(harvest) 0.40 0.44 -
t-value 23.27 20.08 -

Parameters in definition of beta
Size of household 0.20 0.30 -
t-value 0.70 0.38 -
Age 13.99 13.99 -
t-value 0.74 0.22 -
Age*age -0.39 -0.55 -
t-value -1.84 -0.75 -
Gender 0.04 -0.22 -
t-value 0.41 -0.75 -
Education 0.19 0.38 -
t-value 2.37 1.49 -
Years fishing in Alaska 0.68 0.17 -
t-value 2.27 0.20 -
Know many fishing sites 0.59 0.25 -
t-value 2.24 0.31 -
Years as a resident -0.07 -0.15 -
t-value -1.04 -0.75 -
Income 0.00 0.25 -
t-value 0.05 0.87 -
Nocrowd 0.25 0.30 -
t-value 6.54 2.52 -
Chose No crowded 0.01 0.04 -
t-value 0.12 0.26 -
Wild 0.07 0.08 -
t-value 1.55 0.56 -
Beauty -0.03 -0.14 -
t-value -0.72 -1.06 -
Trophy -0.02 -0.11 -
t-value -0.68 -0.97 -
Limit 0.02 0.03 -
t-value 0.55 0.26 -

Bold numbers are significant at a 5 % level.
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Table 6. ML LogNormal
(1)

Mixed Logit
explanatory variable coeffic. s.d.
Log(TC) -1.14 0.80
t-value -19.77 13.07
Quality 0.28 0.20
t-value 11.61 5.57
Crowding -4.73 2.76
t-value -6.14 7.32
Cabin 2.43 -
t-value 15.00 -
Log(harvest) 0.40 -
t-value 11.73 -
Bold numbers are significant at a 5 % level.

Table 7. ML with Dependent normals
(1)

Mixed Logit
explanatory variable coeffic. s.d.
Log(TC) -1.08 0.92
t-value -12.93 12.31
Quality 0.26 0.20
t-value 10.19 4.41
Crowding 0.35 1.17
t-value 3.53 7.44
Cabin 2.59 -
t-value 14.06 -
Log(harvest) 0.44 -
t-value 11.68 -
s12 0.01 -
t-value 0.44 -
s13 0.46 -
t-value 3.50 -
s23 0.25 -
t-value 0.89 -
Bold numbers are significant at a 5 % level.
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Table 8. Discrete Choice Models: GML

(1)
GML

(2)
Integrated GML

, b, , b, ,

explanatory variable coeffic. s.d. coeffic. s.d.

Log(TC) -1.33 0.94 -1.20 0.75
t-value -11.45 10.76 -21.61 14.25
Quality 0.29 0.25 0.31 0.26
t-value 9.11 4.69 11.17 8.02
Crowding 0.40 1.46 -0.36 0.11
t-value 4.14 10.48 -12.13 9.41
Cabin 3.75 - 2.45 -
t-value 9.71 - 20.29 -
Log(harvest) 0.67 - 0.41 -
t-value 10.66 - 23.61 -
Tau ( ) 0.82 - -0.14 -
t-value 8.93 - -3.65 -
Gamma ( ) 0.48 - 0.48 -
t-value 7.36 - - -

Indicators
Nocrowd - - 1.00 1.03
t-value - - - 18.79
Chose No crowded - - 3.81 0.60
t-value - - 11.35 28.21
Wild - - 2.61 0.77
t-value - - 10.40 26.34
Beauty - - 2.98 0.68
t-value - - 10.95 26.32
Trophy - - 2.07 0.88
t-value - - 9.78 26.19
Limit - - 3.35 0.75
t-value - - 11.22 32.82

Bold numbers are significant at a 5 % level.
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Table 9. Discrete Choice Models: Testing Endogeneity

explanatory variable coeffic. s.d.

Log(TC) -1.17 0.94
t-value -16.93 12.46
Quality 0.26 0.24
t-value 9.32 6.21
Crowding 0.51 1.46
t-value 4.34 11.53
Cabin 2.76
t-value 16.79
Log(harvest) 0.53
t-value 15.02
alfa0 0.21
t-value 18.87
Lag of  Crowding 8.25
t-value 77.10
Quality (-1) -0.11
t-value -3.28
Sigma 1 0.50
t-value 5.34
Sigma 2 0.50
t-value 137.18
rho -0.10
t-value -0.97

Bold numbers are significant at a 5 % level.

45



Av
er

ag
e 

Cr
ow

di
ng

, T
ra

ve
l C

os
t a

nd
 Q

ua
lit

y

-1
.5-1

-0
.50

0.
51

1.
52

2.
53

3.
5

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
2

21

Si
te

s

Diferences wrt to mean

Q
UA

LI
TY

CR
O

W
D

TR
AV

CO
ST

F
ig
ur
e
1

46



-4
-3

-2
-1

0
1

2
3

4
0

0.
51

1.
52

2.
53

V
al

ue
s f

or
 ta

st
e 

in
di

ca
to

rs
 a

nd
 cr

ow
di

ng
 c

oe
ffi

ci
en

t

D
is

tr
ib

ut
io

n 
of

 c
ro

w
di

ng
 c

oe
ffi

ci
en

t

In
te

gr
at

ed
 M

od
el

D
ist

rib
ut

io
n

M
L

D
ist

rib
ut

io
n

Ps
yc

ho
m

et
ric

in
fo

rm
at

io
n

F
ig
ur
e
2

47



-1
-0

.5
0

0.
5

1
02040608010
0

Fi
xe

d
-5

-3
-1

0
1

3
5

02040608090

M
L

-0
.6

-0
.4

-0
.2

020406080

In
te

gr
at

ed

H
is

to
gr

am
 o

f p
re

di
ct

ed
 in

di
vi

du
al

 c
ro

w
di

ng
 c

oe
ffi

ci
en

t

F
ig
ur
e
3

48



-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0.
2

0.
4

01234567

V
al

ue
s 

fo
r 

C
ro

w
di

ng
 C

oe
ffi

ci
en

t

D
is

tr
ib

ut
io

n 
of

 C
ro

w
di

ng
 C

oe
ffi

ci
en

ts

In
te

gr
at

ed
m

od
el

M
L

Lo
g 

no
rm

al

F
ig
ur
e
4

49


