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Abstract

In 1881, Newcomb conjectured that the first significant digits (FSDs) of
numbers in statistical tables would follow a logarithmic distribution with the
digit “1” occurring most often. However, because Newcomb’s proposal was not
presented with a theoretical basis, it was not given much attention. Fifty-seven
years later, Benford argued for the same principle and showed it was relevant
to a large range of data sets, and the logarithmic FSD distribution became
known as “Benford’s Law.” In the mid-1940s, Stigler claimed Benford’s Law
contained a theoretical inconsistency and supplied an alternative derivation for
the distribution of FSDs. In this paper, we examine the theoretical basis of the
Stigler distribution and extend his reasoning by incorporating FSD first moment
information and information-theoretic methods.
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1 INTRODUCTION 1

1 Introduction

In 1881, astronomer and mathematician Simon Newcomb noticed that the first several pages of logarithm

tables were more worn than subsequent pages. This observation led him to the counter-intuitive conjecture

that, in a “natural” data set, “1” would occur most frequently and “9” would occur least frequently. (New-

comb, 1881). Newcomb stated,“the law of probability of the occurrence of numbers is such that all man-

tissæ of their logarithms are equally probable,” and suggested the following expression for the empirical

distribution of first significant digits (FSD):

P (d) = log10

(
1 + d

d

)
for d = 1, . . . , 9, (1)

where P (d) is the frequency of the digit d as a first significant digit. The resulting monotonically decreasing

frequency values for d = 1, 2, . . . , 9 are (0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046). Perhaps

because Newcomb did not proffer a theoretical explanation or an empirical verification of the phenomenon,

his conjecture did not garner much immediate attention.

1.1 Benford’s Law

Fifty-seven years later, Frank Benford began to test Newcomb’s hypothesis empirically by demonstrating

that 20,229 observations compiled from seemingly unrelated sets of numbers provided a good fit to the

distribution first laid out by Newcomb (Benford, 1938). This FSD phenomenon was then named “Ben-

ford’s Law” after its popularizer rather than its discoverer (Raimi, 1976). Benford’s Law has been shown

to approximately apply to a surprisingly large number of data sets, including populations of cities, street

addresses of the first 348 persons named in American Men of Science (1934), electricity usage, word fre-

quency, ebaY bids, census statistics, campaign donations, and the daily returns to the Dow Jones Industrial

Average (Benford, 1938; Raimi, 1976; Zipf, 1949; Hill, 1995; Giles, 2006; Ley, 1996; Cho and Gaines, 2007).

It was another 57 years before Hill (1995), using a base-invariance argument, became the first to rig-

orously prove Benford’s Law. Prior to Hill, others had only suggested possible explanations for the phe-

nomenon. For instance, Benford suggested that the law held when data came from a mixture of uniform

distributions that were more likely to have relatively small upper bounds. However, as Raimi (1976) noted,

Benford’s mixture scheme would be arbitrary and approximate. If Benford’s argument were true, a vari-

ety of other “laws” could also be created by mixing different distributions, causing one to wonder why

mixtures of uniform distributions would be especially related to describing distributions of first significant

digits. Minimally, George Stigler, a future Nobel Laureate in Economics, claimed that the specific mixture

of uniform distributions with non-uniformly distributed maximum values is an inconsistency. This obser-
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vation led Stigler (1945) to propose an alternative FSD distribution that was less skewed toward the lower

digits and was derived without the use of such assumptions.

More recently, power-law and information-theoretic methods have been proposed as being more in-

tuitively appealing and generalizable ways of determining similar FSD distributions (Grendar, Judge and

Schechter, 2006). Pietronero et al. (2001) suggest that Benford’s Law is a special case of Zipf’s Law, which

claims that all rankings of natural processes by size follow power laws. For example, word frequencies

have such a distribution—the most frequent word occurs approximately twice as often as the second most

frequent word, which occurs twice as often as the fourth most frequent word (Zipf, 1949). In this fashion,

probability of occurrence is inversely proportional to its rank. The argument that Zipf’s Law is a general-

ization of Benford’s Law is based on the scale-invariant nature of both laws’ respective applications, but

since Zipf’s Law is simply an empirical observation of a family of distributions, the claim that Zipf’s Law

justifies Benford’s Law is intriguing but hardly rigorous.

The purpose of this paper is to review the basis of Stigler’s FSD solution and to present a data-based,

information-theoretic approach to recovering Stigler-like FSD distributions. The structure of the paper is

as follows. Section 2 describes Stigler’s proposed alternative approach and compares it to that of Benford.

Section 3 introduces the power law concept and uses it to exhibit the fact that the frequency of a first

significant digit decays as a power law of its rank in terms of appearance. Section 4 demonstrates how

Cressie-Read minimum divergence-distance measures create Benford-like distributions based on the first

moment of given data. Finally, Section 5 discusses implications for the use of these scale-invariant methods.

2 Stigler’s FSD Concept

Stigler (1945) reviewed the Newcomb-Benford FSD phenomenon and proposed that the average frequency

of d as a leading significant digit is

Fd =
d ln(d)− (d+ 1) ln(d+ 1) + 3.55843

9
. (2)

He arrived at this conclusion by first assuming that the largest entry in the given statistical table is equally

likely to begin with d = 1, 2, . . . , 9, and that all other entries in the table are randomly selected from the

uniform distribution of numbers smaller than the largest entry. Defining the rth cycle of numbers as being

the interval [10r, 10r+1] for some real number r, Stigler finds the distribution of FSDs for the highest entry

in a cycle of numbers from the table and then averages the probabilities over all highest entries. Since

table entries are from a uniform distribution, any digit d should have, at the end of the (r − 1)st cycle,

occurred (10r − 1)/9 times as an FSD out of 10r − 1 numbers, approximately 10r/9 and 10r, respectively.

For example, at the end of the first cycle, i.e., [10,100), the digit “2” has occurred as an FSD (102− 1)/9 = 11
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times out of 102 − 1 = 99 numbers, including those from all previous cycles. After the (r − 1)st cycle, d

does not appear as an FSD for the next (d− 1)10r numbers, e.g., “2” does not arise as an FSD in the interval

[102, 102 + (2− 1)(102)) = [100, 200). Hence, the lower limit of the proportion of FSDs that are d is

10r/9
10r + (d− 1)10r

. (3)

The expectation P1 of the proportion of FSDs that are d in the interval [10r, d10r) is

P1 =
1

(d− 1)10r

∫ (d−1)10r

0

10r/9
10r + n

dn =
1

9(d− 1)
ln d. (4)

FSDs in the next 10r numbers are all d, so the proportion of d becomes

10r/9 + 10r

10r + (d− 1)10r + 10r
. (5)

The expectation P2 of the proportion of FSDs that are d in the interval [d10r, (d+ 1)10r) is then

P2 =
1

10r

∫ 10r

0

10r/9 + n

10r + (d− 1)10r + n
dn = 1−

(
d− 1

9

)
ln
d+ 1
d

. (6)

Finally, during the last (9 − d)10r numbers of the rth cycle, there are no numbers with FSDs that are d, so

the proportion of FSDs that are d will decrease to approximately 1
9 . Hence, the average proportion in the

interval [(d+ 1)10r, 10r+1) will be

P3 =
1

(9− d)10r

∫ (9−d)10r

0

10r/9 + 10r

(d+ 1)10r + n
dn =

10
9(9− d)

ln
(

10
d+ 1

)
. (7)

Thus, by Stigler’s proposed alternative to Benford’s Law, the average proportion of d over the rth cycle is

(d− 1)P1 + P2 + (9− d)P3

9
=

1
9

[d ln(d)− (d+ 1) ln(d+ 1) + 3.55843] , (8)

where the constant 3.55843 is the mean, m =
∑9
i=1 dipi, of the Stigler FSD distribution. Consequently,

pi =
di ln di − (di + 1) ln (di + 1) +m

9
. (9)

Solving for m gives us

m =
∑9
i=1 i

2 ln (di)− di(di + 1) ln (di + 1)

9−
∑9
i=1 di

. (10)

The resulting frequencies from Benford’s Law and Stigler’s alternative are presented in Table 1.
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Table 1: Comparison of Benford and Stigler Distributions

FSD Benford’s Law Stigler’s Law

1 0.301 0.242
2 0.176 0.183
3 0.125 0.146
4 0.097 0.118
5 0.079 0.095
6 0.067 0.077
7 0.058 0.061
8 0.051 0.047
9 0.046 0.034

Stigler claims that the difference between his alternative and Benford’s Law arises because of the hid-

den assumptions made by Benford about the frequencies of the largest numbers in given statistical tables.

Benford assumed that smaller numbers with corresponding smaller FSDs occurred more often as bounds

for statistical tables. In contrast, Stigler’s assumption is that the largest entries in statistical tables were

equally likely to begin with d = 1, 2, . . . , 9. In particular, given a mixture of uniform distributions U [0, b),

the density of the upper bound b is assumed to be proportional to 1
b (Stigler, 1945; Raimi, 1976; Rodriguez,

2004).1 Stigler argued that this assumption was unnecessary in deriving a logarithmic rule, since it neither

expanded the scope of the law nor contributed to the theoretical basis for modeling a distribution of first

significant digits (Stigler, 1945). Because no logarithmic FSD distribution holds generally for all natural data

sets, Stigler’s Law and Benford’s Law can be viewed as members of a family of monotonically decreasing

distributions of FSDs.

3 Connections to the Power Law and Zipf’s Law

In Section 1, we noted the suggested role of scale invariance that underlies the uneven distributions in data

outcomes in economics, linguistics, and many other natural phenomena. Scale invariance occurs if, when

either the underlying data distribution, P (D), or its FSD counterpart, P (d), is multiplied by a constant s,

an identical outcome results (Mandelbrot, 1982). Pietronero et al. (2001) note that scale invariance leads to

the functional relation

P (sD) = P (D∗) = K(p)P (D), (11)

1An alternative method of deriving Stigler’s FSD rule based on the idea of mixing uniform distributions is given in (Rodriguez,
2004) and is provided in the appendix for interested readers.
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and that the general solution to (11) has the power law nature

P (D∗) = P (D∗−α) = s−αD−α. (12)

For these types of distributions, we can, in Stigler-like fashion, compute the probability of the first digit by

noting that we have the same (uniform) relative probability for the integers d = 1, 2, . . . , 9, for each cycle.

Following Pietronero et al. (2001), we can write for P (d) that, for α 6= 1,

P (D∗) =
∫ α+1

α

D−α dD =
1

1− α
[(d+ 1)1−α − d1−α]. (13)

For d = 1,

P (D∗) =
∫ d+1

d

DdD =
∫ d+1

d

d (logD) = log
(
d+ 1
d

)
. (14)

This expresses Benford’s law as determined from the underlying data distribution. Consequently, in a

power law context when α = 1, we have a uniform FSD in logarithmic space. For values of α > 1, the FSD

distribution is more tilted than Benford. For values of α < 1, the FSD distribution is tilted toward a uniform

FSD distribution. Pietronero et al. (2001) call this family of power laws a generalized Benford law.

Zipf’s Law is an instance of a rank order statistic, is scale invariant, and is applicable to a large range of

phenomena, including income distributions, city sizes, and word frequency (Pietronero et al., 2001; Raimi,

1976; Zipf, 1949). We are particularly interested in the connection between Benford’s Law and Zipf’s Law.

Following Pietronero et al. (2001) in analyzing the rank-order properties of a set of numbers extracted from

a general distribution, P (N) ∼ Nα, if a maximum number, Nmax, corresponds to the rank k = 1 and the

rank Nk is given by all the numbers between Nk and Nmax, then

k =
∫ Nmax

N(k)

P (N) dN ∼ N(k)1−α. (15)

Inverting (15) gives us

N(k) ∼ k
1

1−α , (16)

which highlights a link between the Benford (α = 1) and Zipf’s Laws. 1
1−α . Benford’s and Zipf’s Laws are

examples of scale-invariant distributions, but not of the same type.

4 Problem Reformulation and Solution

In the previous section, we discussed the Benford, Stigler, and power law approaches to determining the

distribution of FSDs and investigated the connection of these approaches to one another. We now discuss

how information theoretic methods also produce similar distributions. One feature of information theoretic
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methods that is absent in these other approaches is the ability to easily adapt the specific distribution to

moment information from any particular data set. Since phenomena often have unique traits, a distribution

that is adaptable to data peculiarities might be helpful.

In the context of recovering the FSD distribution from a sequence of positive real numbers, assume for

the discrete random variable di for i = 1, 2, . . . , 9, that at each trial, one of nine digits is observed with

probability pi. Suppose after n trials, we are given first-moment information in the form of the average

value of the FSD:
9∑
j=1

djpj = d̄. (17)

Assuming that the only information that exists is this first-moment information, we are faced with the

inverse problem of identifying an FSD distribution that reflects the best predictions of the unknown prob-

abilities, p1, p2, . . . , p9. It is readily apparent that there is one data point and nine unknowns. From an

information recovery standpoint, the resulting inverse problem is ill-posed. Consequently, there exist an

infinite number of possible discrete probability distributions with d̄ ∈ [1, 9].

Based only on the information
∑9
j=1 djpj = d̄,

∑9
j=1 pj = 1, and 0 ≤ pj ≤ 1, the problem does not have

a unique solution. A function must be inferred from insufficient information when only a feasible set of

solutions is specified. In such a situation it is useful to have an approach that allows the investigator to

use sample based information recovery methods without having to choose a parametric family of proba-

bility densities, on which to base the FSD function. In other words, we seek a way to reduce the infinite

dimensional nonparametric problem to a finite dimensional one.

4.1 An Information Theoretic Approach

One way to solve this ill-posed inverse problem for the unknown pj without making a large number of

assumptions or introducing additional information is to formulate it as an extremum problem. This type

of extremum problem is in many ways analogous to allocating probabilities in a contingency table where

pj and qj are, respectively, the observed and expected probabilities of a given event. A solution is achieved

by minimizing the divergence between the two sets of probabilities. That is, we are optimizing a goodness-

of-fit (pseudo-distance measure) criterion subject to data-moment constraint(s). One attractive set of di-

vergence measures is the Cressie-Read (CR) power divergence family of statistics (Cressie and Read, 1984;

Read and Cressie, 1988; Baggerly, 1998):

I(p,q, γ) =
1

γ(1 + γ)

9∑
j=1

(
pj

[(
pj
qj

)γ
− 1
])

, (18)

where γ is an arbitrary and unspecified parameter.
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In the context of recovering the unknown FSD distribution, use of the CR criterion (18) suggests we

seek, given q, a solution to the following extremum problem:

p̂ = arg min
p

I(p,q, γ)
∣∣∣∣ 9∑
j=1

pjdj = d̄,

9∑
j=1

pj = 1, pj ≥ 0

 . (19)

In the limit, as γ ranges from -1 to 1, two main variants of I(p,q, γ) have received explicit attention in the

literature (see Mittelhammer, Judge and Miller (2000)). Assuming for expository purposes that the refer-

ence distribution is discrete uniform, i.e. qj = 1/9 ∀ j, then I(p,q, γ) converges to an estimation criterion

equivalent to the Owen (2001) empirical likelihood (EL) criterion
∑9
j=1 ln(pj), when γ → −1. The EL cri-

terion assigns discrete mass across the nine possible FSD outcomes, and in the sense of objective function

analogies, it is closest to the classical maximum-likelihood approach. In fact, it results in a maximum non-

parametric likelihood alternative. The second prominent case for the CR statistic corresponds to letting

γ → 0 and leads to the criterion −
∑9
j=1 pj ln(pj), which is the maximum entropy (ME) or the Shannon

(1948) and Jaynes (1957a,b) entropy function.

The ME criterion distance measure is equivalent to the Kullback-Leibler (KL) information criterion

(Kullback, 1959), and finds the feasible p̂ that define the minimum value of all possible expected log-

likelihood ratios consistent with, in our case, the FSD mean. Solutions for these distance measures cannot be

written in closed form. Instead, the solution must be numerically determined via a computer optimization

algorithm.

4.2 ME formulation

If we use the CR (γ = 0) criterion for the first digit case, we would select the ME probabilities that maximize

H(p) = −
9∑
j=1

pj ln(pj), (20)

subject to the mean d̄, where

d̄ =
9∑
j=1

pjdj , (21)

and the condition that the probabilities must sum to one

9∑
j=1

pj = 1. (22)
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Table 2: Estimated Maximum Entropy (ME) Distributions (with a uniform reference distribution) for the
Digit Problem and their Correlation with Stigler’s Distribution

FSD Mean p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9 H(p̂) Corr

2.0 0.496 0.251 0.126 0.064 0.032 0.016 0.008 0.004 0.002 1.38 0.943
3.0 0.306 0.217 0.153 0.108 0.077 0.054 0.038 0.027 0.019 1.88 0.994
3.44 0.250 0.194 0.150 0.117 0.090 0.070 0.054 0.042 0.033 2.01 0.999
3.55 0.238 0.188 0.149 0.118 0.093 0.074 0.058 0.046 0.036 2.03 0.999
4.0 0.191 0.163 0.140 0.120 0.103 0.088 0.075 0.065 0.055 2.12 0.995
4.5 0.148 0.137 0.127 0.118 0.109 0.101 0.094 0.087 0.081 2.18 0.985
5.0 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 2.20 0.000
5.5 0.081 0.087 0.094 0.101 0.109 0.118 0.127 0.137 0.148 2.18 -0.941

The Lagrangian for the extremum problem is

L = −
9∑
j=1

pj ln(pj) + λ

d̄− 9∑
j=1

pjdj

+ η

1−
9∑
j=1

pj

 . (23)

Since H is strictly concave, there is a unique interior solution. Solving the first-order conditions yields

the ME exponential result

p̂i =
exp(−diλ̂)

9
∑9
j=1 exp(−dj λ̂)

, (24)

for the jth outcome. In this context, the p̂i are exponentially FSD and the chosen FSD distribution is the

one that happens in the most likely way (multiplicity). We note again that p(λ) is a member of a canonical

exponential family with mean

d̄ =
9∑
j=1

pj(λ)dj , (25)

and Fisher’s information measure for λ (see Golan, Judge and Miller, 1996, p. 26)

I(λ) =
9∑
j=1

pj(λ)d2
j −

 9∑
j=1

pj(λ)dj

2

= Var(d). (26)

4.3 Some Mean-Related ME Distributions

Using the ME uniform reference distribution formulation and solution, the resulting distributions for a

range of FSD means (including the Stigler mean of 3.55 and Benford mean of 3.44) are presented in Table 2.

Table 3 shows similar results when the reference distribution is the Stigler distribution. From the table 2, we

can see that when the FSD mean is 5, the ME solution is a uniform distribution and results in the maximum

entropy value for H(p̂). The Benford FSD mean, 3.44, yields a monotonically decreasing ME distribution
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Table 3: The Estimated Maximum Entropy (ME) Distributions (with a Stigler FSD reference distribution)
for the Digit Problem and their Correlation with Stigler’s Distribution

FSD Mean p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9 Corr

2.0 0.503 0.243 0.124 0.064 0.033 0.017 0.009 0.004 0.002 0.939
3.0 0.312 0.211 0.150 0.108 0.078 0.056 0.040 0.027 0.018 0.994
3.44 0.255 0.188 0.147 0.116 0.092 0.073 0.056 0.043 0.030 0.999
3.55 0.243 0.183 0.146 0.118 0.094 0.076 0.060 0.046 0.033 0.999
4.0 0.194 0.159 0.137 0.120 0.104 0.091 0.078 0.065 0.051 0.996
4.5 0.150 0.133 0.124 0.117 0.111 0.105 0.098 0.088 0.075 0.973
5.0 0.112 0.107 0.108 0.111 0.113 0.116 0.116 0.113 0.103 -0.059
5.5 0.081 0.084 0.091 0.101 0.111 0.123 0.133 0.140 0.138 -0.948

similar to the Benford logarithmic distribution. Its correlation with the Stigler distribution is 0.96. Under

ME, the exponential null hypotheses that result have two especially appealing properties. First, the result

is achieved while adhering to the principles of Occam’s razor (minimizing underlying assumptions). The

second appealing aspect of this criterion choice is maximum multiplicity. In the absence of assumptions,

which distribution among the possible distributions is the best choice? The answer must be the one that

occurs most frequently, i.e. the choice with maximum multiplicity, which is the result of this information

theoretic method.

5 Discussion

Benford’s Law has been shown to be applicable to a large set of seemingly unrelated phenomenas from the

area of rivers to stock market prices to census statistics. Indeed, the boundaries of this set are far-ranging. At

the same time, not all data sets follow Benford’s Law (Durtschi, Hillison and Pacini, 2004). Some appear to

be related to Stigler’s Law. Others follow the outlines of the Power Law and Zipf’s Law. Each law appears

to fit certain contexts well, but may not apply to other data contexts. As we have shown, these various laws

are related and can be viewed as members of a family of monotonically decreasing distributions.

In this paper, we have provided a basis for describing, connecting, and unifying this family of distribu-

tions. We have also highlighted how first significant digits can be examined in a data-adaptive context. As

a data set’s FSD mean changes, our information theoretic methods suggest alternative null hypotheses for

the digit proportions. These methods also supply a basis is provided for realizing an exponential family of

FSD distributions and relating it to a particular underlying data set distribution. In so doing, our results

extend the range of Benford’s Law to data contexts that initially seem to violate Benford’s Law.
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A Mixing Uniform Distributions

From Section 2, we know that the probability of an FSD being d depends on which of three distinct ranges

within the rth cycle we are examining. Noting Stigler’s assumption of uniformly distributed upper bounds

in a given data set, we obtain the density function of the upper bound b,

f(b) =
1

9 · 10r
(A-1)

and integrate over the three regions to find Stigler’s Law for k ∈ 1, 2, ..., 9,

P (FSD = k) =
∫ k10r

10r

10r

9b
dF (b) +

∫ (k+1)10r

k10r

(
10r

9b
+
b− k10r

b

)
dF (b) +

∫ 10r+1

(k+1)10r

10r+1

9b
dF (b)

=
1

9 · 10r

(
10r

9

∫ (d+1)10r

10r

db

b
+
∫ (d+1)10r

d10r
db− d10r

∫ (d+1)10r

d10r

db

b
+

10r+1

9

∫ 10r+1

(k+1)10r

db

b

)

=
1

9 · 10r

[
10r

9
ln(k + 1) + 10r − k10r ln

(
k + 1
k

)
+

10r+1

9
ln
(

10
k + 1

)]
=

1
9

(
1 +

10
9

ln(10) + k ln(k)− (k + 1) ln(k + 1)
)

(A-2)


