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Forecasting Demand for Rural Electric Cooperative Call Center 

 

Abstact 

This research forecasts peak call volume to allow a centralized call center to minimize staffing 

costs. A Gaussian copula is used to capture the dependence among nonnormal distributions. Peak 

call volume can be easily and more accurately predicted using the marginal probability 

distribution with the copula function than without using a copula. The modeling approach allows 

simulating adding another cooperative. Ignoring the dependence that the copula includes, causes 

peak values to be underestimated.  

 

 

Introduction 

KAMO, an Oklahoma based rural electric cooperative (REC) established an after hour call center 

operation for 7 member cooperatives in 2006.  The center provided significant cost advantage 

with some member cooperatives saving over $150,000 annually.  By 2008 the center had 

expanded to 18 RECs and KAMO was considering expansion into other states.  KAMO 

contacted Oklahoma State University for assistance in investigating the feasibility of the call 

center expansion. 

The call centers’ goal is to answer almost all calls and so it has staff to handle peak calls. Also, 

call volume is affected by number of customers, season, geographic location and individual REC 

characteristics such as line maintenance.  One of the major challenges is to accurately forecast 

peak and average call volume which determine staffing and equipment needs for the design of 

the fee structure.  In forecasting peak call volume, which is mainly related to the events of ice 

storms and other disasters, extreme value theory can be applied (Haan and Ferreira, 2006). 

Modeling total call volume of 18 RECs also raises issues of correlation and dependency. Copula 

functions, which represent a multivariate joint distribution in the form of dependency structure, 

should be considered (Cherubini, Luciano, and Vecchiato, 2004). Another challenge presented in 
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the REC call center is the need to forecast the extreme call volume. Peak call volume dictates 

personnel needs and is a key issue in business expansion. A cooperative call center would be 

expected to generate efficiencies in managing peak call volume because severe weather events 

which generate the majority of power outage calls do not occur simultaneously across a wide 

geographic region. Adding additional RECs into KAMO’s call center could conceivably reduce 

peak call volume per member. 

The objective of this research is to model call volume for a centralized REC call center and 

forecast the impact of adding the additional RECs. One contribution of this research over 

previous research is the use of copula functions in modeling call center volume. These methods 

were not used in previous research on various industries such as telephone (Avramidis, 

Deslauriers and L’Ecuyer, 2004), banking (Taylor, 2008), postal service (Xu, 2000) and other 

marketing company (Andrews and Cunningham, 1995). The study also varies from past efforts 

by using several continuous distributions rather than discrete distributions. Previous call center 

data research has modeled call volume with Poission distribution or modifications of the Poisson 

such as negative binomial, Hurdle Poisson and zero-inflated Poisson (Liu and Cela, 2008). 

Finally, the study illustrates the use of empirical distribution for predicting extreme values. This 

technique, which also comes from  extreme value theory is appropriate for modeling hourly call 

volume because the hourly call data has a high degree of skewness.  

 

Theory 

The objective for operating call center is to minimize its costs which are subject to satisfactory 

customer service. Staffing which typically depends on the number of calls received from 

customers is a main part of total costs for call center so that forecasting peak and average call 

volume accurately is essential in order to minimize total costs.  Besides staffing strategies 

suggested by Atlason, Epelman, and Henderson (2008), the focus in this paper is on precise 

forecasting which depends on multivariate joint distributions considering random variables’ 

correlation. Within agricultural economics, there were several research on multivariate 
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nonnormal probability distributions. Taylor (1990) provided two procedures for empirically 

estimating correlated nonnormal joint probability density function (p.d.f.), and Richardson, 

Klose, and Gray (2000) also showed how to simulate a multivariate empirical distribution using 

correlated error terms.  These past efforts are heuristic to approach copula functions.  

A copula function which allows specific dependency structure between multivariate joint 

distibutions is used in our model because it represents the complex relationship of calls from 

individual REC customers entering a centralized call center. In addition, graphical explanation is 

made at the end of copula concept. Extreme value theory is also incorporated because it helps 

forecast extreme values created by short term peaks in call volume.  

A two-dimensional copula ),( vuC  is defined as 

(1)    1,01,0:
2
C .  

As shown in equation (1), a two-dimensional copula has a two-dimensional domain ranged from 

0 and 1 and a one-dimensional codomain ranged from 0 and 1.  

A copula has the following properties: 

(2) 
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Equation one implies that if one of the random variables is 0 then the copula is 0. The second 

equation implies that if one of random variables is 1 then the copula has the same value as the 

other variable. The last equation indicates that copula is a non-decreasing function.  

According to the Sklar’s Theorem, any joint distribution ),( yxH  with cumulative density 

functions (c.d.f.) of )(xF  and )( yG  can be expressed as 

 (3)  ,)(),(),( yGxFCyxH   
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where ),( C  is a uniquely determined copula function.  

Equation (3) implies that the copula function represents a bivariate joint distribution.  If the 

distribution functions ( )(xF , )( yG ) and the copula ( ),( C ) are continuous, then equation (3) can 

be restated in terms of the p.d.f. as  

(4)   ,)()()(),(),( ygxfyGxFcyxh   

where yxyxHyxh  ),(),(
2 , xxFxf  )()( , yyGxg  )()( , and  

    )()()(),()(),(
2

yGxFyGxFCyGxFc   is the copula’s density.  

Equation (4) shows that a marginal distribution ( ),( yxh ) consists of a second-differentiated 

copula ( ),( c ) which has parameters to indicate the dependency structure between two variables 

(x, y) and two probability density functions.  Then, canonical representation (Cherubini, Luciano, 

and Vecchiato, 2004, p.154) for the n dimensions can be expressed as  

(5)   ,)()(,...),(),(),...,,(
1

221121 



n

i

iinnn xfxFxFxFcxxxh  

where     )(...)()()(,...),(),()(,...),(),(
221122112211 nnnn

n

nn
xFxFxFxFxFxFCxFxFxFc  . 

 Let  T

tnttt xxx
121 ,...,,


X  be the sample data matrix, and then the log-likelihood function can 

be expressed as  

(6)   
 


T

t

n

i

iti

T

t

ntntt xfxFxFxFcl
1 11

2211 )(ln)(,...),(),(ln)(θ , 

where θ  is the set of all parameters of both the marginals and the copula.  

Thus, maximum likelihood estimation (MLE) is possible using equation (6). Let correlation 

matrix, R , be a symmetric and positive definite matrix with )1,...,1,1()(diag R  then 

Gaussian copula can be defined as  
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(7)   
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where )( ntnn xFu  , R  is n×n correlation matrix,  
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is the standard normal c.d.f. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical depiction of the transformation of gamma random variables into  standard 

normal random variables 

 

Figure 1 illustrates the transformation of gamma random variables into standard normal random 

variables. Let’s assume that random variables x1 and x2 follow a Gamma distibution. Then, u1 and 

u2 are values for the gamma c.d.f. of x1 and x2 , respectively, and both range from 0 to 1.  Also,        

u1 

c.d.f 

1 

x1 

 

Φ
-1

(u1) 

Gamma c.d.f 
standard normal c.d.f 

0 

u2 

c.d.f 

1 

x2 

 

Φ
-1

(u2) 

Gamma c.d.f 
standard normal c.d.f 

0 
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Φ
-1

(u1) and Φ
-1

(u2) are inverse of standard normal c.d.f. of u1 and u2 , respectively, and both are 

the transformed data of gamma random variables (x1 and x2 ) into a standard normal random 

variables (Φ
-1

(u1) and Φ
-1

(u2))  using Gaussian copula. The correlation between Φ
-1

(u1) and Φ
-

1
(u2) is a copula parameter.    

Regarding MLE in equation (6), it could be computationally difficult to estimate jointly the 

parameters of the marginal distributions and the parameters of the copula in the case of a high 

dimension so that Joe and Xu (1996) proposed two steps to estimate θ , which provides a good 

starting point for obtaining an MLE estimator and is called the inference for margins (IFM).  As 

a first step, the margins’ parameters 
1θ are estimated by usual MLE such as: 

(8) 
 


T

t

n

i

iti xf
1 1

11 );(lnArgMaxˆ
1

θθ
θ

. 

As a second step, the copula parameters 
2θ are estimated given 

1θ̂ : 

(9)  



T

t

ntntt xFxFxFc
1

1222112
ˆ,);(,...),(),(lnArgMaxˆ

2
θθθ

θ
. 

In terms of efficiency for the IFM estimator, Joe (2005) points out that the IFM has efficiency 

loss with strong dependence, and suggests to estimate equations with a combination of univariate 

and bivariate log-likelihoods or with low-dimensional margins.    

In terms of fitting marginal distributions, extreme value theory can be applied if modeling the 

extreme values is the chief concern. Typically, the generalized Pareto distribution (GPD) resulted 

from the Fisher-Tippett theorem in the generalized extreme value distribution (GEV) is 

considered (McNeil, 1997) but the empirical distribution is also another possibility (Ghoudi and 

Rives, 1995). This empirical distribution is used here because of high skewness in call volume 

per hour.  More specifically, the empirical distribution is estimated as the marginal distributions 

and then copula parameters are estimated by MLE like this:  

(10)  



T

t

ntntt xFxFxFc
1

222112 );(ˆ,...),(ˆ),(ˆlnArgMaxˆ
2

θθ
θ

, 



7 

 

where )(ˆ
iti xF  is the cumulative distribution calculated from the estimated empirical distribution. 

This is called the canonical maximum likelihood (CML) (Cherubini, Luciano, and Vecchiato, 

2004, p.160).  

Simulation can be used to look at the effects from adding an additional REC as well as to predict 

peak call volume more precisely. Here are procedures using Gaussian copula (Cherubini, 

Luciano, and Vecchiato, 2004, p.181): 

 Find the Cholesky decomposition A  of R  

 Simulate n independent random variates ),...,,( 21
 nzzzz from )1,0(N  

 Set Azx   

 Set )( ii xu  with i = 1, 2, …, n , where   denotes the univariate standard normal c.d.f. 

   )(,...),(),...,(
111 nnn yFyFuu , where )(

i
F  is the i

th
 margin   

 iii yuF 


)(
1

, where  
i

y  is i
th

 simulated data from Gaussian copula and its margin 

 

Data and Procedures 

Monthly data from January 2006 to June 2008 and hourly data from Apr. 18, 2008 to Jun. 30, 

2008 were obtained from KAMO’s call center.  Call volume data from 14 RECs which had data 

for the entire study period were used.  In order to capture regional effects which are a main 

concern for KAMO, call volume data was aggregated over similar regions such as eastern 

Oklahoma with 7 RECs (Eastern), western Oklahoma with 4 RECs (Western), and south western 

Missouri with 3 RECs (Missouri). This grouping simplified the use of copula functions because 

it reduces joint variables into 3 from 14. Because each REC has a different member of members 

(meters) call volume per member rather than total call volume was used.  This removed the 

differences in call volume only to the REC size.  
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 Table 1 and table 2 shows summary statistics of data. There is no truncation below zero in case 

of call volume per month because each month has at least 360 calls from Western, 766 calls from 

Missouri, and 2,757 calls from Eastern while there is a truncation below zero in case of call 

volume per hour.  

The @Risk add in program in Microsoft Excel was used to select the best fitting distibution for 

the marginal distributions of monthly call volume data. The Gamma distibution was shown to 

have the best fit among several continuous distibutions. Therefore, Gamma distributions and 

Gaussian copula with IFM method are used.   

In terms of marginal distributions for hourly call volume, several distributions like Parato 

distribution, Gamma distibution, and etc. are tested  and they were rejected.  Thus, empirical 

distributions and Gaussian copula with CML method are selected.   

Consider the following Gamma p.d.f. with explanatory variables: 

 (11) 



















elsewhere,,0

0),exp(
)(

1
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1

t

t

i

t
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x   

where  δx t
t

 , 
 


0

1
)exp()( tttt dyyy t , t

y  is call volume per month for the t
th

 

observation, t
  is the shape parameter which is determined by δx t , t

x  is a vector of 

explanatory variables, here dummy variables for season, δ  is a vector of unknown parameters to 

be estimated, and   is the scale parameter to be estimated.   

Gaussian copula with 3 random variables can be defined as  

(12)   
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where R  is 3×3 correlation matrix,  


)(),(),( 3

1

2

1

1

1
uuuς , and   is the standard 

normal c.d.f. 

Since there are 3 series of sample data, the log-likelihood function can be expressed as  

(13)   
 


T

t i

iti

T

t

ttt xfuuucl
1

3

11

321 )(ln),,ln)(θ .  

Thus, equation (13) enables to use MLE but it is computationally difficult to estimate jointly the 

parameters of the marginal distributions and the parameters of the copula so that IFM method is 

used here, i.e., the parameters for gamma distribution such as  ,   , and δ  are estimated via 

MLE using the log-likelihood function from equation (11) and then copula parameters in the R  

matrix given ̂ , ̂  , and δ̂ are estimated with MLE using the log-likelihood function from 

equation (12). 

Consider the following empirical distribution.  

(14) 













,elsewhere,0

,...,1,
1

)(

Tt
T

yf t   

where  T  is the number of observations. 

In regard to the CML method for houly call volume data, the empirical distribution is easily 

calculated assuming equal probability within observations in equation (14) and then copula 

parameters are estimated via MLE from equation (15).  

(15)  



T

t

ttt uuuc
1

23212 ;ˆ,ˆ,ˆlnArgMaxˆ
2

θθ
θ

. 

In terms of simulation for call volume, procedures from Cherubini, Luciano, and Vecchiato 

(2004, p 181) are used to simulate the 99
th

 percentile and effects from adding an additional RECs 

on total number of call volume to the call center. For instance, let’s assume that an additional 
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REC with 100,000 members in the Western area is added. Then, the Gamma distribution for the 

added REC is assumed to have the same parameters as the Gamma distribution for existing 

RECs in the Western region. Copula parameters for added REC are assumed to be as same as the 

existing Western and the correlation between added REC and existing Western is assumed to be 

1.  

 

Results 

As mentioned in data and procedure, all call volume data are transformed as per meter basis.  

Total meters are 262,552. The Eastern region had the most meters and the Missouri had the 

fewest meters. Descriptive statistics for monthly and hourly call volume are shown in Tables 1 

and 2 respectively. The houly call volume had the highest degree of positive skewness reflecting 

the fact that the peak hourly call volume was far above the mean value.  

Figure 2 shows the average monthly call volume from Jan. 2006 to Jun. 2008 for the three 

regions. Overall, June is the highest month and October is the lowest. Figure 3 also indicates that 

summer is the highest season and fall is the lowest.  

Table 3 and table 4 provide copula parameters and average call volume per month with IFM 

method from equations (11) and (12). The dependence between the Eastern and Western region 

is the highest while the dependence between the Missouri and Western region is the lowest. 

However the difference in dependence is not large. In terms of average monthly calls per meter, 

summer is higher than the other seasons in all three regions and the Eastern region is higher than 

other regions.  

Table 5 and figure 4 indicate the simulation results for the 99
th

 percentile of total monthly call 

volume before and after adding an additional REC with 100,000 meters. Table 5 and figure 4 use 

the results of parameters for the Gamma distribution and Gaussian copula in table 3 and 4. 

Overall, the summer season has the highest 99
th

 percentile while fall has the lowest. The total 

numbers of calls from adding an additional REC are shown in parentheses in table 5. Not 
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surprisingly, total calls increase with the increase in total meters for all seasons. But on a call 

volume per meter basis, adding an additional REC from the Western or Missouri region results in 

a decline in the 99
th

 percentile while adding an additional REC from the Eastern region results in 

a slight increase in the 99
th

 percentile.  If the call center expands their business by adding RECs  

in the Western and Missouri region, the 99
th

 percentile per member call volume for each existing 

REC member would be expected to decline. This would imply a decrease in staffing costs per 

member since the call center staffing is designed to meet the 99
th

 percentile call volume. If the 

call center expands their business by adding RECs in the Eastern region, the 99
th

 percentile 

would be expected to increase so that its staffing costs per member would increase. Thus, the 

advantage of business expansion depends on the regions where call center are expanded.   

It is interesting to look at the differences between the simulated 99
th

 percentile of monthly total 

call volume calculated with copula and without the copula. This comparison is shown in table 6 

and figure 5. The simulated 99
th

 percentile with the copula is larger than the 99
th

 percentile 

simulated without using the copula approach because all copula correlations are positive. Both 

simulated 99
th

 percentiles are not perfectly consistent with the 99
th

 percentile observed in the  

data because the copula correlations were estimated using yearly call volume per meter data 

rather than separated data according to the season.   

Table 7 and table 8 provide copula parameters and average call volume per hour using the CML 

method from equation (14) and equation (15), respectively. Data for each seasonal time period 

were separated and then estimated for the parameters of the empirical distribution and Gaussian 

copula. Overall, copula correlations for the day time period from 9:00 to 16:00 (military time 

format) are consistently higher than other time periods.  The highest hourly average call volume 

occurred during the 7:00-9:00 and 17:00-19:00 time periods. These results are also shown in 

figure 6. 

Figure 7 shows that the simulated 99
th

 percentile of average call volume per hour from the 

empirical distribution and Gaussian copula is similar to the maximum value while far above the 

average. This reflects high degree of positive skewness in the hourly call volume data.  
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Table 9 and figure 8 indicate the simulation results for the 99
th

 percentile of total houly call 

volume before and after adding an additional REC with 100,000 meters. The simulation results 

use the parameters for the empirical distribution and Gaussian copula reflected in tables 7 and 8. 

Overall, adding an additional REC from Western or Missouri region causes the 99
th

 percentile to 

decrease. There are some exceptions in the Missouri region. Adding an additional REC from 

Eastern results in an increase in the 99
th

 percentile. These results are similar to the results for the 

monthly call volume. 

Table 10 and figure 9 show that the simulated 99
th

 percentile of total houly call volume created 

with the copula is slightly higher than the 99
th

 percentile without copula. Again, these results are 

similar to results for the monthly call volume. However, the simulated 99
th

 percentile calculated 

with the copula is closer to the 99
th

 percentile of the observed data. This result is different from 

the results for monthly data. The improved correspondence with the observed data was observed  

because the copula correlations were estimated separately for each time period.   

 

Conclusions 

This research focused on forecasting peak call volume to allow a centralized call center to 

minimize staffing costs. A copula was estimated to capture the correlation among nonnormal 

distributions. The Gamma distribution was found to provide the best for monthly data. The 

empirical distribution rather than generalized Pareto distibution was selected to present the houly 

data based on the ability to represent the 99
th

 percentile in the observed data which had a high 

degree of positive skewness.  

Estimating average and peak call volume, simulating data to forecast the 99
th

 percentile, and 

examining the effects of adding additional cooperative are all important questions for call center 

managers. These estimates can be easily and more accurately performed using the marginal 

probability distribution with the copula function. The impact of adding an additional cooperative 

on the peak (99
th

 percentile) per meter call volume affects the cost structure of call center. The 
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results indicated that the impact of an additional call center customer depended on the regional 

location of the cooperative. Another important result demonstrated by the call center example is 

that when positive dependence among data series exists, ignoring their dependence can cause 

their peak values to be underestimated. 
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Table 1. Summary Statistics of Mothly Call Volume per Meter from January 2006 to 

June 2008  

Statistics Total Missouri Eastern Western 

Meters 262,552 35,552 158,747 68,253 

Mean 0.04064 0.04040 0.04756 0.02452 

 

(10,670) (1,436) (7,549) (1,674) 

Min 0.01503 0.02154 0.01737 0.00527 

 

(3,945) (766) (2,757) (360) 

Max 0.09468 0.09280 0.09888 0.08585 

 

(24,858) (3,299) (15,697) (5,859) 

S D 0.01626 0.01540 0.01832 0.01637 

Skewness 1.44382 1.50094 0.87316 2.29085 

Note: The number of calls is reported in parentheses. 
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Table 2. Summary Statistics of Hourly Call Volume per Meter from April 18 to June 30, 

2008 

Statistics Total Missouri Eastern Western 

Meters 262,552 35,552 158,747 68,253 

Mean 0.000104 0.000095 0.000113 0.000089 

 (27) (3) (18) (6) 

Min 0 0 0 0 

 (0) (0) (0) (0) 

Max 0.002331 0.006385 0.003691 0.002842 

 (612) (227) (586) (194) 

S D 0.00022 0.00034 0.00029 0.00024 

Skewness 4.77100 9.99587 6.02059 5.78903 

Note: The number of calls is reported in parentheses. 
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Table 3. Copula Correlation Matrix with Call Volume per Month 

Areas Missouri Eastern Western 

Missouri 1 0.6903 0.5646 

Eastern 0.6903 1 0.7310 

Western 0.5646 0.7310 1 
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Table 4. Monthly Average Call Volume for Each Season with Gamma Distribution 

Season Missouri Eastern Western 

Spring 0.0416 0.0485 0.0278 

Summer 0.0526 0.0627 0.0279 

Fall 0.0326 0.0368 0.0195 

Winter 0.0342 0.0413 0.0217 
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Table 5. The Simulated 99
th

 Percentile of Total Call Volume per Month Before and After 

Adding Additional REC of Each Region with 100,000 meters 

Season 
Before Adding 

additional Cooperative  

After Adding additional Cooperative from Each Region 

Missouri Eastern Western 

Spring 0.0791 

(20,759) 

0.0755 

(27,360) 

0.0814 

(29,504) 

0.0738 

(26,760) 

Summer 0.0925 

(24,284) 

0.0890 

(32,284) 

0.0965 

(34,978) 

0.0831 

(30,112) 

Fall 0.0645 

(16,923) 

0.0618 

(22,388) 

0.0664 

(24,081) 

0.0597 

(30,112) 

Winter 0.0694 

(18,225) 

0.0659 

(23,882) 

0.0717 

(26,012) 

0.0642 

(21,659) 

Note: Total calls are reported in parentheses. 
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Table 6. The Simulated 99
th

 Percentile of Total Call Volume per Month w/ and w/o copula 

Season 99
th

 Percentile from Data w/ Copula w/o Copula 

Spring 0.0720 0.0791 0.0675 

Summer 0.0947 0.0925 0.0801 

Fall 0.0373 0.0645 0.0540 

Winter 0.0603 0.0694 0.0586 
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Table 7. Copula Correlations with Hourly Data  

Time Interval Missouri-Eastern Missouri-Western Eastern-Western 

0:00-1:00 0.13178 0.26914 0.49720 

1:00-2:00 0.37434 0.34901 0.42042 

2:00-3:00 0.49103 0.18939 0.36169 

3:00-4:00 0.34563 0.17957 0.35679 

4:00-5:00 0.15410 0.11435 0.41036 

5:00-6:00 0.18165 0.25380 0.35449 

6:00-7:00 0.39200 0.22285 0.20904 

7:00-8:00 0.45009 0.05212 0.36747 

8:00-9:00 0.17990 0.01533 0.66560 

9:00-10:00 0.79666 0.61793 0.58243 

10:00-11:00 0.67941 0.35134 0.64749 

11:00-12:00 0.69031 0.67080 0.64922 

12:00-13:00 
0.84017 0.75538 0.64731 

13:00-14:00 0.50869 0.30617 0.47935 

14:00-15:00 0.39858 0.28631 0.41241 

15:00-16:00 0.43136 0.47946 0.53843 

16:00-17:00 0.10890 -0.31448 0.14443 

17:00-18:00 
0.42807 0.40596 0.40917 

18:00-19:00 0.26342 0.22551 0.23891 

19:00-20:00 0.14820 0.05896 0.12693 

20:00-21:00 0.18341 0.21110 0.36966 

21:00-22:00 0.21152 0.31290 0.26793 

22:00-23:00 
0.34803 0.41538 0.28892 

23:00-24:00 0.42241 0.12696 0.25707 

Note: Copula parameters of diagonal are 1’s and copula parameters of off-diagonal are symmetric. The 

format containing copula parameters is actually as same as Table 3 for a certain time interval. 
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Table 8. Average Call Volume per Hour from Empirical Distribution and Gaussian Copula 

Hour Missouri Eastern Western 

0:00-1:00 0.000136 0.000084 0.000083 

1:00-2:00 0.000109 0.000073 0.000070 

2:00-3:00 0.000063 0.000082 0.000091 

3:00-4:00 0.000067 0.000079 0.000070 

4:00-5:00 0.000060 0.000053 0.000035 

5:00-6:00 0.000075 0.000090 0.000041 

6:00-7:00 0.000192 0.000158 0.000097 

7:00-8:00 0.000207 0.000179 0.000137 

8:00-9:00 0.000054 0.000070 0.000049 

9:00-10:00 0.000035 0.000098 0.000076 

10:00-11:00 0.000034 0.000043 0.000071 

11:00-12:00 0.000032 0.000103 0.000076 

12:00-13:00 0.000060 0.000095 0.000047 

13:00-14:00 0.000058 0.000072 0.000033 

14:00-15:00 0.000128 0.000062 0.000031 

15:00-16:00 0.000094 0.000074 0.000050 

16:00-17:00 0.000219 0.000163 0.000072 

17:00-18:00 0.000136 0.000258 0.000205 

18:00-19:00 0.000082 0.000212 0.000150 

19:00-20:00 0.000077 0.000158 0.000131 

20:00-21:00 0.000100 0.000145 0.000111 

21:00-22:00 0.000078 0.000102 0.000124 

22:00-23:00 0.000056 0.000093 0.000130 

23:00-24:00 0.000137 0.000082 0.000148 
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Table 9. The Simulated 99
th

 Percentile of Total Call Volume per Month Before and After 

Adding Additional REC of Each Region with 100,000 meters 

Hour 
Before Adding 

additional Cooperative  

After Adding additional Cooperative from Each Region 

 Missouri Eastern Western 

0:00-1:00 0.001034 0.002390 0.001161 0.000881 

1:00-2:00 0.000773 0.001654 0.000746 0.000642 

2:00-3:00 0.001099 0.000950 0.001187 0.000868 

3:00-4:00 0.001108 0.000869 0.001295 0.000869 

4:00-5:00 0.000647 0.000717 0.000762 0.000481 

5:00-6:00 0.000994 0.000772 0.001167 0.000727 

6:00-7:00 0.001007 0.001452 0.001088 0.000826 

7:00-8:00 0.000950 0.000934 0.001042 0.000821 

8:00-9:00 0.000625 0.000499 0.000728 0.000499 

9:00-10:00 0.002049 0.001549 0.002355 0.001493 

10:00-11:00 0.002314 0.001715 0.002665 0.001704 

11:00-12:00 0.001569 0.001164 0.001802 0.001189 

12:00-13:00 0.001847 0.001456 0.002129 0.001348 

13:00-14:00 0.001495 0.001105 0.001744 0.001083 

14:00-15:00 0.000941 0.001951 0.001082 0.000692 

15:00-16:00 0.001125 0.000899 0.001284 0.001034 

16:00-17:00 0.001139 0.000877 0.001328 0.000842 

17:00-18:00 0.001002 0.000806 0.001114 0.000886 

18:00-19:00 0.002112 0.001549 0.002470 0.001557 

19:00-20:00 0.001497 0.001098 0.001757 0.001336 

20:00-21:00 0.001430 0.001065 0.001677 0.001090 

21:00-22:00 0.000787 0.000680 0.000856 0.000937 

22:00-23:00 0.000748 0.000619 0.000637 0.001264 

23:00-24:00 0.000846 0.001520 0.000815 0.001050 

Average 0.001214 0.001179 0.001370 0.001005 
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Table 10. The Simulated 99
th

 Percentile of Total Call Volume per Hour w/ and w/o copula 

Time Interval 99
th

 Percentile from Data w/ copula w/o copula 

0:00-1:00 0.00132545 0.001034080 0.000978854 

1:00-2:00 0.00075795 0.000773180 0.000618925 

2:00-3:00 0.00100552 0.001098830 0.000978854 

3:00-4:00 0.00120738 0.001108350 0.001096930 

4:00-5:00 0.00090649 0.000647491 0.000643682 

5:00-6:00 0.00129117 0.000994089 0.000986471 

6:00-7:00 0.00113501 0.001007420 0.000891252 

7:00-8:00 0.00100171 0.000950288 0.000864591 

8:00-9:00 0.00075033 0.000624638 0.000609403 

9:00-10:00 0.00223575 0.002049120 0.001969130 

10:00-11:00 0.00233097 0.002313830 0.002231940 

11:00-12:00 0.00176727 0.001569210 0.001504460 

12:00-13:00 0.00206816 0.001847250 0.001782500 

13:00-14:00 0.00150446 0.001494940 0.001477800 

14:00-15:00 0.00100171 0.000940766 0.000914105 

15:00-16:00 0.00114263 0.001125491 0.001081690 

16:00-17:00 0.00112359 0.001138820 0.001129300 

17:00-18:00 0.00107788 0.001001710 0.000927435 

18:00-19:00 0.00227003 0.002111960 0.002094820 

19:00-20:00 0.00187772 0.001496850 0.001491130 

20:00-21:00 0.00156921 0.001430190 0.001416860 

21:00-22:00 0.00071986 0.000786511 0.000723666 

22:00-23:00 0.00076937 0.000748423 0.000708431 

23:00-24:00 0.00131022 0.000845547 0.000697005 
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Figure 2. Average call volume per month 
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Figure 3. Average call volume per month for each season  
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Figure 4. The 99
th

 percentile of total call volume per month before and after adding additional 

cooperative from each region with 100,000 meters
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Figure 5. The 99
th

 percentile from data, and the simulated 99
th

 percentile with copula  and 

without copula for call volume per month  
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 Figure 6. Average call volume per hour 
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 Figure 7. Average, maximum, and the simulated 99
th

 percentile from empirical distribution with 

gaussian copula for total call volume per hour  
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Figure 8. The 99
th

 percentile of total call volume per hour before and after adding additional 

cooperative from each region with 100,000 meters
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 Figure 9. The 99
th

 percentile from data, and the simulated 99
th

 percentile with copula and 

without copula for total call volume per hour  
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Appendix 

1. IFM method with Gamma distribution and Gaussian copula 
 

/*First step for IFM method with three variables*/ 

 

/*Missouri - gamma distribution, shape=r, scale=lambda*/ 

proc nlmixed data=month1 hess; 

parms r=.1 lambda=.1 a1=.1 a2=.1 a3=.1; 

r1=r+a1*d1+a2*d2+a3*d3; 

model mi~gamma(r1,lambda/1000); 

run; 

 

/*Eastern - gamma distribution, shape=r, scale=lambda*/ 

proc nlmixed data=month1 hess; 

parms r=.1 lambda=.1 a1=.1 a2=.1 a3=.1; 

r1=r+a1*d1+a2*d2+a3*d3; 

model ea~gamma(r1,lambda/1000); 

run; 

 

/*Western - gamma distribution, shape=r, scale=lambda*/ 

proc nlmixed data=month1 hess; 

parms r=.1 lambda=.1 a1=.1 a2=.1 a3=.1; 

r1=r+a1*d1+a2*d2+a3*d3; 

model we~gamma(r1,lambda/1000); 

run; 

 

/*Second step for IFM method */ 

Data test;set month1; 

r1=10.1038;a11=2.1768;a21=5.4154;a31=-0.4710;r11=r1+a11*d1+a21*d2+a31*d3;lambda1=.0033875; 

r2=8.8642;a12=1.5386;a22=4.6013;a32=-0.9597;r22=r2+a12*d1+a22*d2+a32*d3;lambda2=.0046589; 

r3=3.1391;a13=0.8853;a23=0.8987;a33=-0.3123;r33=r3+a13*d1+a23*d2+a33*d3;lambda3=.0069037; 

lpdf1=logpdf('gamma',mi,r11,lambda1); 

lpdf2=logpdf('gamma',ea,r22,lambda2); 

lpdf3=logpdf('gamma',we,r33,lambda3); 

u=cdf('gamma',mi,r11,lambda1); 

v=cdf('gamma',ea,r22,lambda2); 

w=cdf('gamma',we,r33,lambda3); 

x=probit(u);y=probit(v);z=probit(w); 

proc univariate data=test normal; 

var x y z; 

run; 

proc corr data=test; 

var x y z; 

run; 
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/*Alternative second step for IFM method */ 

proc nlmixed tech=trureg itdetails hess data=month1; 

parms r12=0.8 r23=0.75 r13=0.66; 

r1=10.1038;a11=2.1768;a21=5.4154;a31=-0.4710;r11=r1+a11*d1+a21*d2+a31*d3;lambda1=.0033875; 

r2=8.8642;a12=1.5386;a22=4.6013;a32=-0.9597;r22=r2+a12*d1+a22*d2+a32*d3;lambda2=.0046589; 

r3=3.1391;a13=0.8853;a23=0.8987;a33=-0.3123;r33=r3+a13*d1+a23*d2+a33*d3;lambda3=.0069037; 

lpdf1=logpdf('gamma',mi,r11,lambda1); 

lpdf2=logpdf('gamma',ea,r22,lambda2); 

lpdf3=logpdf('gamma',we,r33,lambda3); 

u=cdf('gamma',mi,r11,lambda1); 

v=cdf('gamma',ea,r22,lambda2); 

w=cdf('gamma',we,r33,lambda3); 

x=probit(u);y=probit(v);z=probit(w); 

lnc=-(1/2)*log(2*r12*r23*r13-r13**2-r12**2+1-r23**2)-(1/2)*x*(-x*(-

2*r12*r23*r13+r13**2+r12**2)/(-1+r23**2-2*r12*r23*r13+r12**2+r13**2) 

+y*(r12-r13*r23)/(-1+r23**2-2*r12*r23*r13+r12**2+r13**2)-z*(r12*r23-r13)/(-1+r23**2 

-2*r12*r23*r13+r12**2+r13**2))-(1/2)*y*(x*(r12-r13*r23)/(-1+r23**2-

2*r12*r23*r13+r12**2+r13**2) 

-y*(-2*r12*r23*r13+r12**2+r23**2)/(-1+r23**2-2*r12*r23*r13+r12**2+r13**2)-z*(-r23+r12*r13)/(-1 

+r23**2-2*r12*r23*r13+r12**2+r13**2))-(1/2)*z*(-x*(r12*r23-r13)/(-1+r23**2-

2*r12*r23*r13+r12**2 

+r13**2)-y*(-r23+r12*r13)/(-1+r23**2-2*r12*r23*r13+r12**2+r13**2)+z*(2*r12*r23*r13-r13**2 

-r23**2)/(-1+r23**2-2*r12*r23*r13+r12**2+r13**2)); 

model mi~general(lnc+lpdf1+lpdf2+lpdf3); 

RUN; 
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2. MLE with Gamma distibution and Gaussian copula 

proc nlmixed tech=trureg itdetails qp=100 hess data=month1; 

parms r12=0.9263 r23=0.7200 r13=0.5432  

      r1=10.1038 a11=2.1768 a21=5.4154 a31=-0.4710 lambda1=0.0033875 

      r2=8.8642  a12=1.5386 a22=4.6013 a32=-0.9597 lambda2=0.0046589 

      r3=3.1391  a13=0.8853 a23=0.8987 a33=-0.3123 lambda3=0.0069037; 

r11=r1+a11*d1+a21*d2+a31*d3; 

r22=r2+a12*d1+a22*d2+a32*d3; 

r33=r3+a13*d1+a23*d2+a33*d3; 

lpdf1=logpdf('gamma',mi,r11,lambda1/1000); 

lpdf2=logpdf('gamma',ea,r22,lambda2/1000); 

lpdf3=logpdf('gamma',we,r33,lambda3/1000); 

u=cdf('gamma',mi,r11,lambda1/1000); 

v=cdf('gamma',ea,r22,lambda2/1000); 

w=cdf('gamma',we,r33,lambda3/1000); 

x=probit(u);y=probit(v);z=probit(w); 

lnc=-(1/2)*log(2*r12*r23*r13-r13**2-r12**2+1-r23**2) 

-(1/2)*x*(-x*(-2*r12*r23*r13+r13**2+r12**2)/(-1+r23**2-2*r12*r23*r13+r12**2+r13**2) 

+y*(r12-r13*r23)/(-1+r23**2-2*r12*r23*r13+r12**2+r13**2)-z*(r12*r23-r13)/(-1+r23**2 

-2*r12*r23*r13+r12**2+r13**2))-(1/2)*y*(x*(r12-r13*r23)/(-1+r23**2-

2*r12*r23*r13+r12**2+r13**2) 

-y*(-2*r12*r23*r13+r12**2+r23**2)/(-1+r23**2-2*r12*r23*r13+r12**2+r13**2)-z*(-r23+r12*r13)/(-1 

+r23**2-2*r12*r23*r13+r12**2+r13**2))-(1/2)*z*(-x*(r12*r23-r13)/(-1+r23**2-

2*r12*r23*r13+r12**2 

+r13**2)-y*(-r23+r12*r13)/(-1+r23**2-2*r12*r23*r13+r12**2+r13**2)+z*(2*r12*r23*r13-r13**2 

-r23**2)/(-1+r23**2-2*r12*r23*r13+r12**2+r13**2)); 

model ea~general(lnc+lpdf1+lpdf2+lpdf3); 

RUN;QUIT; 
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3. CML method with empirical distribution and Gaussian copula 

proc rank data=hour1 out=epdf fraction; 

ranks u v w; 

var mi ea we; 

data epdf1;set epdf; 

x=probit(u);y=probit(v);z=probit(w); 

proc corr data=epdf1; 

var x y z; 

run; 
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4. Simulation with Gamma distibution and Gaussian copula 

data one; 

d1=0;d2=0;d3=0;/*winter*/ 

r12=0.6903;r13=0.5646;r23=0.7310; 

p21=r12;p22=sqrt(1-r12**2); 

p31=r13;p32=-(-r23+r12*r13)/sqrt(1-r12**2); 

p33=sqrt((r23**2-1+r12**2+r13**2-2*r12*r13*r23)/(-1+r12**2)); 

r1=10.1038;a11=2.1768;a21=5.4154;a31=-0.4710;r11=r1+a11*d1+a21*d2+a31*d3;lambda1=.0033875; 

r2=8.8642;a12=1.5386;a22=4.6013;a32=-0.9597;r22=r2+a12*d1+a22*d2+a32*d3;lambda2=.0046589; 

r3=3.1391;a13=0.8853;a23=0.8987;a33=-0.3123;r33=r3+a13*d1+a23*d2+a33*d3;lambda3=.0069037; 

do ii=1 to 10000; 

z1=rannor(12345); 

z2=rannor(23565); 

z3=rannor(87975); 

x1=z1; 

x2=p21*z1+p22*z2; 

x3=p31*z1+p32*z2+p33*z3; 

u1=probnorm(x1); 

u2=probnorm(x2); 

u3=probnorm(x3); 

asim=gaminv(u1,r11)*lambda1; 

bsim=gaminv(u2,r22)*lambda2; 

csim=gaminv(u3,r33)*lambda3; 

output; 

end; 

run; 

data two;set one; 

asim1=asim*35552; 

bsim1=bsim*158747; 

csim1=csim*68253; 

total=(asim1+bsim1+csim1)/(35552+158747+68253); 

proc means data=two; 

var asim bsim csim total; 

run; 

proc univariate data=two; 

var asim bsim csim total; 

run; 
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5. Simulation with empirical distribution and Gaussian copula 

data hour11;set hour1; 

array aa{74} a1-a74; 

array bb{74} b1-b74; 

array cc{74} c1-c74; 

 

r12=0.37434;r13=0.34901;r23=0.42042; 

p21=r12;p22=sqrt(1-r12**2); 

p31=r13;p32=-(-r23+r12*r13)/sqrt(1-r12**2); 

p33=sqrt((r23**2-1+r12**2+r13**2-2*r12*r13*r23)/(-1+r12**2)); 

 

do ii=1 to 10000; 

z1=rannor(12345); 

z2=rannor(23565); 

z3=rannor(87975); 

x1=z1; 

x2=p21*z1+p22*z2; 

x3=p31*z1+p32*z2+p33*z3; 

u1=probnorm(x1); 

u2=probnorm(x2); 

u3=probnorm(x3); 

I1=int(u1*74+1); 

I2=int(u2*74+1); 

I3=int(u3*74+1); 

asim=aa(I1); 

bsim=bb(I2); 

csim=cc(I3); 

output; 

end; 

run; 

 

data hour12;set hour11; 

asim1=asim*35552; 

bsim1=bsim*158747; 

csim1=csim*68253; 

total=(asim1+bsim1+csim1)/(35552+158747+68253); 

proc means data=hour12; 

var asim bsim csim total; 

run; 

proc univariate data=hour12; 

var asim bsim csim total; 

run; 

 


