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Spatio-temporal Risk and Severity
Analysis of Soybean Rust
in the United States

Anton Bekkerman, Barry K. Goodwin,
and Nicholas E. Piggott

Soybean rust is a highly mobile infectious disease and can be transmitted across short
and long distances. Soybean rust is estimated to cause yield losses that can range
between 1%—25%. An analysis of spatio-temporal infection risks within the United
States is performed through the use of a unique data set. Observations from over 35,000
field-level inspections between 2005 and 2007 are used to conduct a county-level
analysis. Statistical inferences are derived by employing zero-inflated Poisson and
negative binomial models. In addition, the model is adjusted to account for potential
endogeneity between inspections and soybean rust finds. Past soybean rust finds and
inspections in the county and in the surrounding counties, weather and overwintering
conditions, and plant maturity groups and planting dates are all found to be significant
factors determining soybean rust. These results are then used to accordingly price annual
insurance contracts or indemnification programs that cover soybean rust damages.

Key words: insurance contracts, risk analysis, soybean rust, zero-inflated model

Introduction

The U.S. soybean sector has avoided an onset of soybean rust (SBR) for over a century,
while other major world producers have endured considerable yield losses, ranging
between 10% and 90%, due to this highly infectious disease (Akinsanmi and Ladipo,
2001; Caldwell and Laing, 2001; Bromfeld, Bonde, and Melching, 1976; Chen, 1989). In
the United States, Roberts et al. (2006) report that, if untreated, soybean rust can cause
up to a 25% loss of soybean yields. As a leading producer and exporter of soybeans, a
disease as potentially devastating as soybean rust can have significant impacts on
agricultural economies nationally and abroad." Livingston et al. (2004) estimated that
the expected net losses in the United States due to soybean rust can range from $630
million to $1.3 billion, and during the 2006 National Soybean Rust Symposium [American
Phytopathological Society (APS), 2006] it was suggested that a typical 800—1,000 acre
soybean farm, if infected, will experience a $20,000—$30,000 loss. Yet, under current
market conditions in which prices of soybeans have more than doubled over the past
year, the economic impacts of soybean rust can be even more dire.
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1The United States produced an average of 2.945 billion bushels and exported an average of 40% of the world’s soybeans
between 2005 and 2007.
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In 2007-08, over 63.6 million acres of soybeans were planted in the United States,
representing an 11.9 million acre decline from the previous season. This significant
decrease in soybean acreage, in combination with a slight reduction in 2007-08 yields,
has led to a 13% decline in the supply of soybeans. Despite the lower supply and substan-
tially higher prices, the demand for and total use of soybeans remained relatively
constant, resulting in an almost 70% decline in the 2007—08 ending stocks of soybeans.
Additionally, during January and February of 2008, the new crop soybean futures used
in pricing revenue products [reported by the U.S. Department of Agriculture/Risk
Management Agency (USDA/RMA)] steadily rose from $11/bushel to $14/bushel, which
implies an average value of $600/acre for 2008—09 soybeans (based on an average of 43
bushels/acre). Ultimately, the tightening of soybean stocks, higher new crop prices, and
concerns that a significant increase of soybean rust infections in 2007—-08 might affect
soybean yields in 2008—09, have led to a heated bidding war for 2008—-09 acreage
between the corn and soybean markets.

Soybean rust (Phakopsora pachyrhizi) is a fungal disease belonging to the “obligately
biotrophic” family, which can spread rapidly across long and short distances (Brown and
Hovmeller, 2002). The disease is dependent on living tissue and causes tan lesions on a
plant’s leaf (Sinclair and Hartman, 1995). The fungus causes early defoliation and reduced
leaf chlorophyll (Pretorius, 2001; Dufresne and Bean, 1987), leading to fewer soybean
plants per acre, fewer pods per plant, smaller pods, and fewer seeds per pod—all of which
imply lower yields (Dunphy, 2007). In the United States, soybean rust was first detected
in Florida in 2004, prompting an inspection and tracking program by the USDA’s Animal
and Plant Health Inspection Service (APHIS). In the following years, incidents of soy-
bean rust infections have been frequently reported further west and northwest—regions
of major U.S. soybean production. Because soybean rust has over 34 natural hosts,?
including common weeds such as kudzu (Sinclair, Hartman, and Rupe, 1999), and
because winter climatological conditions in the southeastern United States are favorable
for soybean rust survival (Livingston et al., 2004; Sinclair and Hartman, 1995), the
disease appears to be a long-term concern for U.S. farmers.

The frequency and quantity of rainfall is a primary factor affecting infection rates
(APS, 2006), since it is not only a catalyst for disease transport, but also an important
aspect of SBR germination. Fungal spores from lesions on infected plants are trans-
mitted by wind and rain to other locations, while germination of the disease is almost
entirely dependent on the wetness of the leaf and the air temperature. Infection can
occur with only three to six hours of leaf wetness (i.e., typical morning dew) (APS, 2006),
and symptoms of rust can be observed between 3—7 days after infection [USDA/Agri-
cultural Research Service (ARS), 1976]. Survival of soybean rust from one season to the
next is highly dependent on the life of the host plant.? The southeastern United States,
which often has year-round above-freezing temperatures, high moisture levels, and a
prevalence of kudzu, presents optimal conditions for soybean rust to remain an annual,
long-term concern for soybean growers.

In addition to climatological aspects, there are other important factors that affect
the probability of soybean rust infection. Yang and Batchelor (1997) found that relative
humidity and temperatures have large impacts on determining the spread of the disease.

2 Soybean rust has been found to germinate in an additional 61 experimental hosts (Sinclair, Hartman, and Rupe, 1999).

3 There is evidence that soybean rust spores can remain in a dormant state for up to six months if temperatures do not fall
below freezing (Saksirirat and Hoppe, 1991).
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Table 1. Loss Scenarios for U.S. Farmers Under Fungicide Application (2008—-09)

Fungicide (cost)* Yield Loss (Loss + Cost)® Total Loss®
Preventive ($32.44/acre) 1% $38.04/acre $30,432
Curative ($22.49/acre) 7% $64.63/acre $51,704
No Application ($0/acre) 25% $150.50/acre $120,400

2 Fungicide costs were provided by Coastal Agribusiness (2008).
b (Revenue Loss + Fungicide Cost); assumes an average of 43 bushels per acre and $14 per bushel.
¢ Assumes an average farm of 800 acres.

As noted by Roberts et al. (2006), planting dates of soybeans have a significant effect on
rust probabilities. Moreover, Tschanz and Tsai (1982) found the physiological age of a
soybean plant is important in SBR development. These factors imply that the choice of
a soybean maturity group as well as a grower’s decisions about soybean planting dates
might be crucial in accurately modeling infection risks. Treatment and prevention of
soybean rust are currently limited to the application of fungicide [see Livingston et al.
(2004) for an overview of observed yield losses in Brazil and Paraguay under various
fungicide application scenarios]. Roberts et al. (2006) considered several types of fungi-
cide applications to predict potential soybean rust effects in the United States. Table 1
reports potential losses for a U.S. farmer in 2008-09, based on the analyses discussed
by Roberts et al.

Due to the quickly spreading and highly infectious nature of this disease, there exists
a significant risk of infection and yield loss. With current market demand for corn
crowding out soybean acreage and decreasing soybean supply, accurate knowledge of the
determinants of infection risk might prevent an exacerbation of reduced soybean produc-
tion and stocks.

Using the infection tracking program enacted by the USDA, we model the underlying
risks of soybean rust infection in the United States by combining extensive farm-level
information with detailed data about climatological and biological factors. Based on more
than 82,000 inspections over the 2005—2007 period, we estimate and compare several
empirical specifications for measuring infection risks. Factors that contribute to the
spatial and temporal spread of risks are considered. The results of these models are then
used to identify factors that affect infection risks, calculate potential yield losses, and
determine actuarially-fair premium rates for single-peril insurance policies. These
specific-peril insurance plans can be used as additional or alternative methods of protec-
tion for soybean growers to indemnify soybean rust infections. The following sections
present a modeling framework, empirical specifications and results, and estimates of
premium rates for annual insurance contracts.

The Model

In developing an insurance contract for addressing a particular hazard such as a disease
and the likelihood of infection, one design strategy is to quantify the risk of the specific
peril. Current insurance programs that provide relief in case of yield loss due to soybean
rust are a part of all-risk inclusive plans, which may not reflect the actuarially-fair
premium rates for specific hazards. Existing yield, price, and revenue plans of insurance
often cannot appropriately measure all of the risks the insurance policy intends to cover.
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In some cases, there are hazards for risks which can be specifically identified and
quantified. For such a hazard, it is possible to derive actuarially-fair insurance rates
based only on the factors and risks applicable to the hazard. For example, the risks of a
flood or fire can be measured and used to calculate precise insurance rates. In addition,
measuring and quantifying these risks is often easier than designing an insurance
contract that attempts to examine the interdependence of risks from all possible hazards.
Similarly, it is appropriate to analyze the risks that are specific to soybean rust, which
could be used for a specific-peril insurance contract for soybean rust designed to mini-
mize the shortcomings associated with all-risk contracts.

A central objective of any viable insurance plan is to maintain a loss ratio that is at
or below unity. The loss ratio measures the proportion of total indemnities paid out
relative to the total premiums collected. In order to preserve a relative equality between
indemnities and premiums, it is necessary to identify the actuarially-fair insurance
premium rate—the rate at which the loss ratio would be unity. For a soybean farmer, an
actuarially-fair premium rate is the ratio of the expected yearly payment for soybean
rust insurance to the total liability the farmer could incur due to the disease under the
terms of the insurance plan. In the case of an analogous indemnification policy, an
actuarially-fair premium rate would be calculated by setting the expected payouts equal
to payments into the indemnification fund.

To be actuarially sound, an insurance plan must determine and model the risks
associated with a particular hazard in order to ensure the premium rate is neither too
high nor too low. If the premium rate is set too high, then less risky farmers will not
purchase the insurance, potentially leaving a smaller, more risky pool of insurance-
purchasing farmers. Conversely, premium rates set too low result in indemnity payouts
that are offset by the premium payments, leading the program to be insolvent. Deriving
an actuarially-fair rate involves modeling risks using a conditional probability density
function that describes the outcomes if a hazardous event occurs.

Suppose farmer i purchases an insurance policy that guarantees some proportion of
the expected yield, 0E[y], where 0 < 6 < 1.If, in year ¢, soybean rust reduces yields below
the guaranteed amount, then the farmer will receive a compensatory payment up to the
yield guarantee. Denoting the expected yield with y, the indemnity payment is computed
as:

(1) Indemnity, , = Price, ¥ max{0, 8p -y, ,},

where Price, is a predetermined amount per unit of loss that is paid in case of a loss. To
calculate the actuarially-fair premium rates, it is necessary to calculate the expected
losses a farmer in location i might incur. Normalizing the prices paid for a loss to one,
expected losses can be expressed as the product of the probability of a loss and the
expected loss, conditional on actual yields being below the expected yields. This is
expressed as:

@) E[Loss),, = Prly,, < 0ul * (O -Ely,,| y,, < 0ul).

In some insurance programs, the loss occurs as a function of some binary event with
no provisions for partial payouts. For example, a life insurance payment is made only
if there is a death, and no other provisions result in partial payouts. This structure can
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also be made applicable to the cases of soybean rust, where an infection corresponds to
a loss that is compensated at a predetermined payment level, thus simplifying the
calculation of actuarially-fair premium rates for an insurance policy. In this case, the
actuarially-fair premium, which is set equal to the expected loss, is determined directly
by the probability of a loss occurring. This is given by:

(3) Rate = E[Loss], , = Pr[Loss];, * P.

The total payment, P, is fixed in the amount that would cover the cost of a curative
fungicide treatment and a fixed percentage of yield loss. The subsidization of curative
fungicide through the indemnification policy can provide dual benefits. First, because
many of the curative fungicides can also be used for the purpose of protection against
future infection, their application can provide valuable assistance in curing the current
soybean rust outbreak, as well as preventing future spread. Second, the treatment and
prevention of additional infections will help suppress the transfer of soybean rust to
nearby farms. In this manner, the subsidization of curative fungicide might be viewed
as providing a positive externality.

In this type of insurance policy, accurately modeling the probability of a loss event is
crucial in the determination of actuarially-fair premiums. In modeling the probability
of a loss, it is important to recognize the multitude of factors that might affect this
probability. For example, crop decisions and planting dates are important determinants
of loss risk for soybean rust. Soybeans double-cropped with wheat are often more suscep-
tible to soybean rust because they are planted later in the season. Since rust is most
prevalent during the later summer months, accurate assessments of infection and loss
risks must be conditioned on planting decisions. Another factor found to be important in
influencing infection risk is the soybean maturity group. Insurance contracts that
identify deterministic factors may produce more precise and actuarially-fair premium
rates.

Another important issue for developing a specific-peril insurance product is the insur-
ance period. Typically, an insurance contract period is either specified for a calendar or
crop year, and the terms of the contract, such as the payment per unit of loss, are
determined prior to the beginning of the year. Due to this condition, probability models
must be based on information available prior to the beginning of the insurance contract
period. Any information that becomes known after the start of the contract year must be
assumed to be unknown by both the principal and agent, and so cannot be used in
devising a contract for that insurance period.

One example of information that is important to risk but which cannot be determined
prior to constructing a contract is weather. Infections of soybean rust are significantly
affected by different weather characteristics. However, accurately predicting departures
from normal weather conditions at distant periods (such as those required in an insur-
ance program) is difficult, if not impossible. For instance, knowledge of heavy rains and
high winds in a particular area during the previous year, which caused increased rust
infections, cannot be used in modeling infection risks for the current year because these
conditions might not repeat in the following year. Nevertheless, if there is knowledge
that an area was highly infected in year ¢ — 1, and that the same area experienced warm
temperatures during the winter (which increases the probability of survival of soy-
bean rust), then this information can be used for contracts in year ¢, since these facts are
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available prior to the start of the next insurance period. Additionally, long-run weather
patterns for a location can be used as measures of expected climatological conditions.

These issues, which are important in devising an insurance contract, must be taken
into consideration when modeling the risk of soybean rust infection. Factors used for
conditioning the probability of rust must be measurable prior to the beginning of the
contract period. With soybean rust, there are a variety of measurable spatio-temporal
attributes that affect the likelihood of infection. Because soybean rust spores are highly
transferable and infectious, the likelihood of finding soybean rust is significantly
influenced by the spatial and temporal juxtaposition of inspected farms. An appropriate
risk-modeling technique for successfully capturing these characteristics involves condi-
tioning soybean rust infection at a particular location on the historical infection status
in nearby locations. Such a conditional probability of infection is represented by:

4) Pr[Si,t] =f(Si,t | S; i1 Spi1s e Zi,t) +&,

where S, , corresponds to the number of soybean rust infections in location i during time
t, S, , is the number of soybean rust infections in a neighboring location j during time
t—1,and Z; , are other factors that increase the probability of soybean infection in period
t at location i. In our analysis, neighboring locations are defined as those that are con-
nected by a common border, a major road, a body of water, or if the locations meet at a
corner. The random error term is denoted by € ,.

As with many insurance policies, there are often concerns about adverse selection and
moral hazard. The former refers to the concept that asymmetries in information avail-
able to the principal and the agent can lead to a price of an insurance policy that is too
low or too high. Moral hazard occurs when an insured agent intentionally contributes to
the probability of loss. In general, the principals attempt to enact policies which minimize
both adverse selection and moral hazard. For example, to address adverse selection,
principals can: (@) require that all acreage for a particular farm is insured; (b) establish
contract dates prior, when critical information (such as weather) becomes available to
the farmer; (c) provide policies spanning several years in order to prevent the purchase
of a single-year policy that might necessitate a large payout; or (d) offer area-wide
programs. Similarly, efforts to reduce moral hazard include the enactment of “good
farming practices” or documentation of required actions, such as receipts for fungicide
purchases.

Due to the novelty of soybean rust in the United States, the RMA has only minimally
augmented its premium rates to reflect the threat of this new disease. This lag in
implementing changes might increase the possibility of both adverse selection and moral
hazard. First, the premium rates used in many of RMA’s insurance policies are adjusted
quite slowly and often depend on a long period of historical data. The programs that have
not incorporated the probabilities of infection and loss due to soybean rust may be
subject to an increased adverse selection problem. Further, the RMArequires only a brief
list of provisions a farmer must follow in order to qualify for coverage in case of damages
due to soybean rust. Insured agents must keep informed about soybean rust outbreaks
in the vicinity, know the methods for preventing and eradicating the disease, and scout
fields and document their findings. Most importantly, the current provisions do not
require a farmer to spray preventative fungicide—only curative fungicide in the event
of an outbreak—to be eligible for compensation.
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In this study, we attempt to address the issue of adverse selection in two ways. First,
we calculate the probability of infection directly and compute actuarially-fair premiums
based on this probability. This rate should minimize the potential for adverse selection
given the focus on this specific peril. Additionally, we assume the contract period begins
on the first day of each calendar year, which might preclude farmers from learning
climatological conditions during early spring. Knowledge of weather patterns in early
spring can affect the probability of a location to be infected with soybean rust. Preventing
farmers from knowing these conditions prior to purchasing an insurance policy can assist
in averting adverse selection. Monitoring costs and other types of moral hazard might
be minimal in a policy for soybean rust protection because a farmer who does not apply
fungicide will experience a much greater loss than those who follow the application
guidelines—in this manner, cheating is minimized.

Empirical Framework

Data

This study uses farm-level inspection data collected by the USDA, the National Plant
Diagnostic Network (NPDN), and the National Agricultural Pest Information System
(NAPIS). Inspection data used in our analysis were collected between January 2005 and
November 2007. Weather statistics for the same time period were obtained from the
North American Regional Reanalysis database, which is maintained by the National
Climatic Data Center (NCDC). Statistics about typical planting dates and maturity
groups were assembled from various sources, including the USDA’s National
Agricultural Statistics Service (NASS) and RMA. The data consist of 32,089 reported
inspections from 1,097 U.S. counties, located mostly in states along and east of the Great
Plains.

The unit of observation in this analysis is the county. Although the data set consists
of farm-level inspections, neither the unique identification of farms nor the exact
geographical locations were available. However, in the case of soybean rust, a county-
level analysis is appropriate in modeling infection risk and developing an insurance
contract. This is the case for several reasons. First, unlike other diseases, soybean rust
does not differentiate among different soybean cultivars, implying that, under certain
climatological conditions (mentioned previously), rust can occur on any farm in the
county. Second, because soybean rust is highly contagious and easily transmitted, there
is a significant probability for multiple farms in the same county to be infected. Finally,
determining insurance premiums at the county level allows the smoothing of premium
rates across individual farms, which may be advantageous for insurance providers.

Econometric Specification

In modeling the risk of soybean rust infection, it is necessary to apply the conditional
probability described in equation (4) to the available data. Our study considers several
approaches to modeling this risk in an effort to determine the best approach. The first
approach is a simple probit specification that models the probability of one or more
infections in a county during a calendar year. Alternatively, it is possible to use count-
data models to measure the number of soybean rust infections in a particular county.
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Figure 1. Total soybean rust infections, in percent

We examine both the Poisson and negative binomial processes to investigate the count
of rust infections. Modeling rust infections with a negative binomial specification relaxes
the Poisson assumption that the mean is equal to the variance. A likelihood-ratio test
can be performed to test the null hypothesis that the coefficient of overdispersion is zero
in the negative binomial specification.

An important aspect of the data introduces additional empirical challenges with
respect to the use of typical Poisson and negative binomial specifications. Although the
occurrence of soybean rust infections has been shown to increase significantly over the
time period of the data, there is a preponderance of observations for which no rust was
found. Ilustrated in figure 1, this characteristic of the data might imply that counties
with no rust finds come from a data-generating process which is neither Poisson nor
negative binomial. Without capturing the different data-generating processes, modeling
the entire data set by using a single specification could lead to inaccurate parameter
estimates and inappropriate inferences.

Previous research indicates regime switching-type models or mixture models can pro-
vide a more accurate representation of the zero and nonzero outcomes (e.g., see Heilbron,
1989; Lambert, 1992; and Johnson, Kotz, and Kemp, 1993). These mixture models first
capture the probability of an outcome to be nonzero, and then represent the nonzero
outcomes with a count-data model. This type of approach is often referred to as “zero-
inflated,” because the probability mass at zero is inflated relative to a standard Poisson
distribution, and probabilities of the nonzero outcomes are scaled to sum to one. In this
study, the probability of at least a single soybean rust infection is modeled using a probit
model, and the Poisson and negative binomial specifications are used to model the
generating process of the positive rust infections.

The covariates used in estimating the zero-inflated models are listed in table 2. Many
of the covariates are chosen to represent the information that has been shown to affect
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the risks of soybean rust infection. Primarily, this is related to the pathological charac-
teristics of soybean rust. In general, three important categories are addressed with the
choice of the covariates: (a) the ability for rust to be transferred from one county to
another, (b) the conditions that allow rust to reappear in the next year, and (c) the char-
acteristics of soybean planting practices. For example, the climatological interaction
variables are used to explain the patterns of spread of soybean rust, as well as the
disease’s ability to survive the winter. Attributes such as precipitation, wind speeds, and
relative humidity have been shown to significantly affect soybean rust spread. However,
additional information about the overwinter temperature, which has been shown to be
a primary reason for soybean rust survival over the winter months, can be even more
revealing. Specifically, a county that experienced high precipitation and strong winds
during the planting season (increasing the probability of soybean rust infection) and then
had no freezing temperatures in the winter (increasing the probability of soybean rust
survival) would be expected to have an increased chance of developing rust in the next
season.

To test for zero inflation, it is inappropriate to simply set the parameters of the probit
selection model to zero, because the standard models and the zero-inflated models are
nonnested. Rather, we use a nonnested test for competing models, as proposed by Vuong
(1989). The test compares the probability that the distribution of one model is closer to
the true distribution than the distribution of a competing model. Since the maximum log
likelihood of a model can be considered to be a good estimate of the distance between the
model and the true distribution, the test is based on the likelihood-ratio statistic. The
test statistic v (the ratio of likelihoods) has a limiting standard normal distribution. For
example, for a = 0.05, the test supports a particular model if v > 1.96, the alternative
model if v < =1.96, and neither model if -1.96 < v < 1.96.

One issue requiring additional attention is the possibility of dependence between the
soybean rust finds and the number of inspections. Because observing a rust infection is
wholly dependent on an inspection, it is expected that inspection efforts might be
targeted to areas with a larger probability of infection. This is the case in our data set,
where 25% of the counties had more soybean rust infections than in the previous year,
and, on average, there were more than two additional inspections in the following year
within those counties. This finding suggests the probability of infection may be endogen-
ous to the level of protection. This relationship is given by SBR, = C, + Ym, + Oz, + €,
where SBR, is the number of infections at time ¢, C, is an intercept term, m, is the
number of inspections, z, is a matrix of other explanatory variables, and cov[m,, €] # 0.

To address this potential endogeneity, we estimate the model in two stages. In the
first stage, inspections are regressed on a set of instrumental variables (IVs) such that
m,=C, +6n, | + 1, wheren,_, is a vector of explanatory variables relevant to the number
of inspections. Next, using predicted inspections, m,, we estimate the second-stage
specifications (e.g., Poisson or ZIP) using maximum likelihood. To derive a consistent
estimate of the covariance matrix for the parameters of the IV estimation, we employ a
bootstrap procedure. Specifically, we randomly sampled with replacements from our data
set, and parameters were estimated for each replication. Using 5,000 replications, con-
sistent standard errors were calculated.

* Soybean rust infections can exist, but unless an inspection occurs, the infection remains unobserved and unreported.
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In some instances, it is possible to estimate a reduced-form equation, which uses the
instruments directly to estimate a one-stage specification. Still, this would not allow for
a direct interpretation of the structural coefficient of the variable the instruments
replace. In this study, however, we are interested in measuring the effect of inspections
on the probability of a soybean rust infection. Further, predictions from structural and
reduced-form linear models are, in general, equivalent. In the case of highly nonlinear
specifications such as the zero-inflated Poisson and zero-inflated negative binomial,
predictions might be significantly different. Thus, because the main purpose of the
instrumental variables is to address the issue of endogeneity between the inspections
and soybean rust occurrences, we implement the structural model.

An additional issue considered is the potential presence of spatial autocorrelation in
the estimated residuals. Because we are employing a data set with a spatial dimension,
it may be necessary to correct for the spatial autocorrelation that could reflect the effects
of omitted, spatially correlated variables. Although there are nonstructural methods to
correct for the spatial correlation, we attempt to capture these effects directly by includ-
ing a variable that measures the number of infections in neighboring counties during the
preceding year. To test for the potential significant effects of spatial correlation, we
implement the nonoverlapping block bootstrapping procedure proposed by Carlstein
(1986). This technique involves randomly selecting an individual observation, and then
adding all other points falling within the same time period and spatial block, /. In
general, blocks must be chosen whereby the observations within each /th block retain
their spatial dependence, but each block’s residuals are not autocorrelated with the
residuals of any other block. In our model, we choose an /th block to consist of observa-
tions falling within the same agricultural statistical district (crop reporting district) of
the randomly selected observation.”

Empirical Results and Analysis

The results of each specification are used to derive measures of the conditional proba-
bility of soybean rust infection in each county. These probabilities can then be applied
to determine actuarially-fair insurance policies for losses related to the disease. Tomodel
the spatio-temporal dispersion of rust more accurately, several conditioning variables are
used within various econometric specifications. These variables are chosen in accord with
past research about the pathological attributes of soybean rust and biological character-
istics of soybeans (discussed above). Table 2 reports the summary statistics and descrip-
tions of variables used to model infection risks.

Results for Preliminary Models®

As discussed above, there is concern of endogeneity between the number of probability
of infections and the frequency of inspections. To address this issue, we use instrumental
variables to model inspections, and then use the estimates to construct an uncorrelated
predicted inspections variable within the specifications modeling rust infections.

® Agricultural statistical districts are defined by USDA/NASS.

S For brevity, the results for preliminary models are not reported in detail; however, a concise discussion of these results
motivates the explanation of the results for the preferred models. These results are available from the authors upon request.
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Ordinary least squares is employed to estimate inspections as a function of expected
farm income, the proportion of soybeans planted to grains in the previous period, and the
number of inspections in the previous year that did not find soybean rust.

Using the results from the IV model, a simple probit model was constructed to esti-
mate infection status within a discrete framework. If a county had one or more infections,
then its status variable was set to one; otherwise, it was set to zero. Within the sample
of 32,089 inspected farms in 1,097 counties, nearly 33% of the counties had at least one
soybean rust infection. The probit model estimates indicate that only the infections in
the previous year, the previous year’s proportion of soybeans harvested to soybeans
planted, and the maturity group of the planted soybeans are significant in explaining
infections in the current period. As expected, the probit model reveals that infections in
the preceding year are statistically significant in raising the probability of infections in
the current period. Also, based on the harvested-to-planted ratio coefficient, a county
having more soybean acres (and accordingly more hosts) might be more susceptible to
soybean rust infection. These findings are consistent with past epidemiological studies
(e.g., see Kim and Shanmugasundaram, 1979). Finally, even though all soybean varieties
are susceptible to rust, the maturity group coefficient shows later-maturing soybeans are
more likely to be infected. This is due to the fact that maturity groups correspond to the
location and climate in which soybeans are grown. Soybeans identified with a higher
maturity group are typically grown in the southern United States, where conditions for
soybean rust infections are more favorable.

To exploit the discrete counts of infection, the Poisson and negative binomial processes
are used as alternative models to the probit specification. As with the probit model
results, the historical infection status, ratio of harvested to planted soybean acres, and
soybean maturity group significantly increase the probability of soybean rust infections.
Additionally, results of the Poisson specification indicate that an increase in the number
of inspections and/or nearby infections will increase the probability of soybean rust
infection. These relationships are consistent with the spatial and climatological research,
which suggests soybean rust can affect locations situated near already infected areas,
historically infected areas are more susceptible to future infections, and weather patterns
are a significant factor in determining the probability of soybean rust infections.

The results of the negative binomial specification are similar to the Poisson, except for
insignificant coefficients on the inspections and nearby infections variables. Both the
Poisson and negative binomial models yield similar patterns of infection risk—mostly
concentrated in the southeastern United States and the Mississippi Delta. However, the
results also confirm a significant probability of infection in the Midwest and Great Plains
regions.

Results for Preferred Models

As noted above, the preponderance of observations that have no soybean rust infections
might adversely affect the empirical results when fitting the simple Poisson and negative
binomial processes to the data. In light of this, we use two “zero-inflation” models, which
are variations on the Poisson (ZIP) and negative binomial (ZINB) specifications. The
estimation of the zero-inflated models is performed using the maximum-likelihood
approach, and the results are shown in table 3 (ZIP) and table 4 (ZINB). These models
provide a much richer understanding of the effects of important spatial, temporal, and
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biological factors on soybean rust infection probabilities. Additionally, the results of
Vuong’s nonnested test suggest that in both the Poisson and negative binomial cases, the
zero-inflated specifications are preferred.”’

Generally, the coefficients in the two specifications 1nd1cate similar relationships
between infection probabilities and the explanatory variables. In the probit selection
models for ZIP and ZINB, the direct relationship between the lagged infections variable
and the probability of no infection seems to indicate there might be a risk mitigation or
preparation effect. A location that has been infected in the previous year may apply
preventive measures, which could lead to a decrease in infection probability in the follow-
ing year. Specifically, a 1% increase in infections during ¢ implies a 0.183% (ZIP) and
92.74% (ZINB) decrease in infection probability at ¢ + 1. Additionally, the zero-inflated
negative binomial model appropriately describes the effects of climatological factors on
SBR infection probabilities. For example, an additional percentage increase in the value
of the variable describing the interaction between the precipitation in £ — 1 and over-
wintering temperature implies a 0.664% increase in the probability of soybean rust
infection. Similarly, infection probability rises if there are higher wind speeds and temp-
erate overwintering temperatures.

The ZINB model (table 4) also shows a significant effect of soybean maturity groups
on the infection probability. Maturity groups correspond to the geographical planting
location and the time to maturity of a soybean plant. There are 10 total soybean maturity
groups [see McWilliams, Bergland, and Endres (1999) for a biological overview of soy-
bean maturity groups], which were sorted into three categorical variables according to
geographical regions. In the empirical specification, these groups were modeled as
dummy variables. Relative to soybeans found in maturity groups ranging between 00
and 2 (the base group), plants that are between maturity groups 3 and 5 are 3.5885 times
more probable to be infected, and those within maturity groups ranging between 6 and
8 are 11.6911 times as susceptible. This is consistent with the pathological behavior of
soybean rust. Soybean plants that are in a higher maturity group are planted in a more
southern region and take longer to mature, making them increasingly susceptible to SBR
infection.

When comparing the two models, it is often useful to examine the information criteria
measures such as the Akaike Information Criterion (AIC) and the Schwarz Bayesian
Criterion (SBC). These measures show that the ZINB provides a better fit than the ZIP
model. For the ZINB model, the predicted probabilities are presented in Figure 2. As do
all of the specifications, both of these models indicate high probabilities of infection in
the south and southeastern United States. These results confirm outcomes of past
studies, which conclude that optimal conditions for soybean rust exist in the south-
eastern states.

Finally, to consider whether including a variable that describes infection status in
nearby counties is sufficient to capture the spatial correlation of infections, we reestimate
the models using a nonoverlapping, block bootstrap procedure. In general, the results are
quite similar to those estimated without the block bootstrap.? One major difference,
which was typical in each block bootstrapped model, is the statistical insignificance of
the nearby infections coefficient. This finding might imply that directly controlling for

7 For ZIP vs. Poisson, V = 4.3342; for ZINB vs. negative binomial, v = 5.0301.
8 These results are omitted here, but are available from the authors on request.
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Figure 2. Infection probabilities in U.S. counties:
ZINB model predictions

the spatial autocorrelation of residuals, by including a structural component such as the
infection status of nearby locations, is appropriate for this model. When an explicit
correction for spatial correlation is performed using the nonoverlapping block bootstrap,
this particular variable becomes insignificant.’

Indemnification Premiums

The primary goal of the preceding analysis was to construct models that can measure the
risk of a soybean rust infection, and then use these probabilities to determine actuarially-
fair insurance or indemnification premiums. In our analysis, an actuarially-fair premium
is determined directly from the expected loss, which is calculated by using the condi-
tional probabilities of soybean rust infection from the above models. The expected loss
is expressed as follows:

(5) E[Loss];,=Pr [County, , = Infected | X, | * Payment,

where the infection status in county i at time ¢ is conditioned on covariates X ,. An equiv-
alent representation of equation (5) is given by:

(6) E|Loss];,=F, ,(XB) * Payment,

9 As keenly pointed out by an anonymous referee, the ability of soybean rust to spread rapidly over space might suggest that
the spatial dependence of infections may be across a larger geographic area. In an attempt to address this concern, the /th block
was expanded to include the agricultural statistical district (ASD) as well as all bordering ASDs. However, the results were
not significantly different from performing a block bootstrap using a smaller geographical area. Hence, the convergence of
parameter estimate variances was successfully achieved without the need to expand the size of the block.
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where F; ,(*) denotes measures of conditional infection risk that are determined by each
empirical specification.'’ Payment, which represents the indemnity payment per acre for
losses due to a soybean rust infection, is assumed to correspond to each of the three loss
scenarios described by Roberts et al. (2006). The authors define potential yield losses as
a function of fungicide application. If preventive fungicide is applied, then the predicted
losses due to soybean rust are estimated to be approximately 1%. Applying curative
fungicide would result in a yield loss of approximately 7%. If no fungicide is used, then
the authors predict up to a 25% loss. We assume a fixed indemnity is paid to the grower
to compensate for the cost of the curative fungicide and the 7% yield loss. In addition,
this payment would be made to all insuring growers within the county, regardless of
whether or not a grower has reported an infection (since this is a county-level insurance
policy), which can be used as a loss mitigation treatment. To determine the expected
worth of losses, we use new crop discovery prices estimated by the USDA/RMA (2008).
The new crop discovery prices are used for revenue insurance products, which depend
on November new crop soybean futures. Thus, for our analysis, Payment for county i is
expressed as:

(7 Payment = (InsuredAcres), , * {(Yield;, * PercentageLoss)
* SX, + FungicideCost},

where InsuredAcres; , corresponds to the insured soybean acres in location i at time ¢,
Yield, ,is the bushels of soybeans per acre, SX, is the USDA/RMA discovery price for time
t, and FungicideCost refers to the $22.49 per acre price of curative fungicide. The esti-
mated actuarially-fair premium rates are presented in table 5. These rates are signifi-
cantly different between the northern and southern U.S. regions, due to the significant
differences in the probabilities of soybean rust infection.

In the preferred ZINB model, the average premium rate for the most northern U.S.
region (maturity groups 00—2) was less than 1%. In between the northern and southern
United States (maturity groups 3—5), the average premium was 7.995%, but some were
as low 1.24% and as high as 49.69%. Finally, in the most southern U.S. region (maturity
groups 6—8), the average premium rate was 38.34%, ranging between 17.7% and 60.25%.
These significant differences within and across regions reveal a substantial degree of
spatial heterogeneity in the risks of soybean rust infection. Additionally, the uncertainty
range for predicted probabilities is shown in figure 3. There is an exponential increase
in infection probabilities across soybean maturity groups which, in general, represent the
geographic locations of planted soybeans. The smallest uncertainty is in northern loca-
tions (maturity groups 00—2), which have an overall low probability of infection, and the
most southern location (maturity group 8), because the favorable climatological factors
for soybean rust survival reduce the uncertainty of infection. The greatest uncertainty
exists in locations in which soybean rust infections are affected most by climatological
patterns.

Moreover, as additional data about rust infection patterns become available, the calcu-
lated premium rates would require updating and are likely subject to change. The
changes in the calculated probabilities can be greatly influenced by the potential for

1 Under the construction of the insurance model discussed above, the estimated probability of infection is equal to the
premium rate.
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Table 5. Summary Statistics of Estimated Premium Rates for Soybean Rust
Infections (7% loss coverage)

Model Mean Median Std. Dev. Minimum Maximum

Maturity Groups 00—2:

Probit 0.0154573 0.0150272 0.0028438 0.0017594 0.0215860
Poisson 0.0148683 0.0143680 0.0032405 0.0085818 0.0298839
Negative Binomial 0.0145988 0.0144856 0.0021095 0.0064503 0.0216479
ZIP 0.0000837 6.0252E-05 8.8292E-05 6.9949E-06 0.0008212
ZINB 7.5003E-05 6.5668E-05 4.2011E-05 1.9692E-06 0.0002984
Maturity Groups 3-5:
Probit 0.1180732 0.1187277 0.0163185 0.0273520 0.1815636
Poisson 0.1615536 0.1533914 0.0456871 0.0920677 0.5307677
Negative Binomial 0.1346554 0.1313644 0.0259878 0.0652906 0.3664203
Z1P 0.0751452 0.0654753 0.0440742 0.0223005 0.4629237
ZINB 0.0799501 0.0728483 0.0419032 0.0123704 0.4969438
Maturity Groups 6—8:
Probit 0.3587347 0.3483287 0.0589317 0.2124356 0.6087299
Poisson 0.4852171 0.4839556 0.0480797 0.3630430 0.5944294
Negative Binomial 0.3034229 0.2984571 0.0407754 0.1982414 0.5237806
ZIP 0.4154530 0.4116525 0.0532950 0.2790147 0.5892851
ZINB 0.3834445 0.3770635 0.0655046 0.1770288 0.6024985
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Figure 3. Estimated SBR infection probabilities by maturity group
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continuing northward movement of soybean rust in the United States. Due to the ability
of soybean rust to overwinter only in the southern and southeastern regions of the
United States, the disease is reintroduced to the northern regions each planting season.
The degree to which soybean rust moves north is determined by the amount of inoculum
that accumulates during early spring in the southern United States. A spring season
characterized by warm temperatures and significant precipitation could imply a faster
and more intense accumulation of inoculum, thereby leading to a much higher proba-
bility for the spread of soybean rust into the North. This would increase the infection
probabilities in the northern U.S. regions, and consequently raise premiums.

Conclusions and Policy Implications

In this analysis, we develop and evaluate several methods for modeling infection risk of
soybean rust in the United States. The disease is highly infectious and can cause signifi-
cant losses of soybean yields. Additionally, due to turbulent grain markets which have
led to a significant rise in soybean prices, the potential for large economic losses due to
SBR is accentuated. A brief overview of the disease as well as its pathological character-
istics is provided, and climatological conditions are shown to be the primary factors in
recognizing the ways that soybean rust spreads, germinates, and damages soybean
plants. We also discuss the methodology by which we design an insurance policy that
could be used to offer protection for U.S. soybean growers.

To ensure the insurance premium rates accurately reflect the risks associated with
soybean rust infection, our analysis defines a single-peril insurance program that offers
indemnity payments for damages related to soybean rust. A single-peril insurance policy
overcomes a major disadvantage of a multiple-peril plan, which covers all losses that
might be caused by a variety of hazards. Due to the extreme complexity of quantifying
all possible risks associated with multiple-peril insurance coverage, premium rates based
on aggregate risk measures are typically inaccurate. These rates often provide cheaper
coverage for high-risk areas and more expensive coverage for low-risk locations. This
skews insurance protection benefits, and consequently participation, in favor of high-risk
growers. The empirical models used in this analysis provide explicit measures of soybean
rust infection risks and the associated expected losses at the county level. These
measures are then used to determine actuarially-fair premium rates that are appropriate
for losses from soybean rust infection. The results reveal there might be significant
differences in infection probabilities and associated premium rates among different
locations.

Estimation of the infection risks and the associated premium rates was performed by
using empirical models incorporating important spatio-temporal attributes of soybean
rust. The likelihood of disease infection was shown to be significantly dependent on the
infection status of neighboring locations and the infections in the previous period. To
estimate the infection probabilities, we consider several econometric specifications that
model the binary infection status and/or the count-data attributes of soybean rust infec-
tions. Further, due to the preponderance of observations where no infections were found,
we consider “zero-inflated” alternatives of the typical count-data models. Lambert’s
(1992) zero-inflated Poisson (ZIP) and the zero-inflated negative binomial (ZINB) are two
specifications used in this analysis. Additionally, we adjust for potential endogeneity
between the number of inspections and the number of infections by introducing
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instrumental variables. This endogeneity might be caused by an increase in inspections
by policy makers in areas having a large probability of infection.

The estimated actuarially-fair premium rates can be employed by U.S. policy makers
to formulate an effective risk management program for U.S. soybean producers. Models
used in this analysis differentiate infection risks according to regional climatological
conditions, farming decisions, and production characteristics of specific counties. Know-
ledge of these factors can allow policy makers to assess and quantify the effects of each
measure, and then develop specific mitigation efforts.

Based on the preferred ZINB model, average premium rates were 1.59% in northern
U.S. regions, and 27.66% in the southern United States. Because soybean rust is a rela-
tively new plant disease in the United States, current multiple-peril policies might not
have adjusted their premium rates to reflect the risks associated with SBR. Accordingly,
it is quite realistic to develop a single-peril insurance plan that would offer these
actuarially-fair and cost-effective premiums for indemnities paid due to soybean rust
infection. However, as additional data about the overwinterization and spread patterns
of soybean rust in the United States become available, premiums should be updated
to reflect accurate infection probabilities. Knowledge about the behavior of inoculum
accumulation in the southern U.S. region during early spring can lead to more precise
measurements of infection susceptibility and premiums in northern U.S. regions.

Future work on this topic might include a comparison of additional models that can
be used for analysis of panel data. For example, it can be useful to consider other specifi-
cations such as a random-effects model."* A straightforward application of this model is
beyond the scope of our analysis for several important reasons. First, the data suggest
that we not only use a limited dependent variable model, but require a regime switching
structure to account for the preponderance-of-zeros problem previously discussed. Next,
due to the randomness of infection behavior by invasive species, in general, it is almost
never possible to attain a balanced panel data set. The use of an unbalanced data set
creates additional specification issues. Finally, using a standard random-effects model
restricts the out-of-sample predictions to only counties that are included in the sample.
Although appropriately addressing these concerns is outside the realm of this study,
such extensions form an important basis for future work.

[Received March 2008; final revision received October 2008.]
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