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Abstract 
 

This research note documents estimation procedures and results for an empirical investigation of 
the performance of the recently developed spatial, heteroskedasticity and autocorrelation 
consistent (HAC) covariance estimator calibrated with different kernel bandwidths. The 
empirical example is concerned with a hedonic price model for residential property values. The 
first bandwidth approach varies an a priori determined plug-in bandwidth criterion. The second 
method is a data driven cross-validation approach to determine the optimal neighborhood. The 
third approach uses a robust semivariogram to determine the range over which residuals are 
spatially correlated. Inference becomes more conservative as the plug-in bandwidth is increased. 
The data-driven approaches prove valuable because they are capable of identifying the optimal 
spatial range, which can subsequently be used to inform the choice of an appropriate bandwidth 
value. In our empirical example, pertaining to a standard spatial model and ditto dataset, the 
results of the data driven procedures can only be reconciled with relatively high plug-in values 
(n0.65 or n0.75). The results for the semivariogram and the cross-validation approaches are very 
similar which, given its computational simplicity, gives the semivariogram approach an edge 
over the more flexible cross-validation approach. 
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1 Introduction 

Recent attention in the spatial econometric literature has focused on the development of spatial 

heteroskedasticity and autocorrelation consistent (HAC) covariance estimators. Conley (1999) 

and Kelejian and Prucha (2007a), KP for short from here on, both suggest a nonparametric 

procedure to attend to non-zero covariances between cross-sectional units and unequal variances. 

While both approaches are mechanically similar, the underlying assumptions regarding the data 

generating process between spatial units is more general in the KP approach. Their approach 

covers the widely popular Cliff and Ord (1973, 1981) non-stationary spatial processes, as well as 

the stationary spatial processes represented by Conley’s approach.  

 The extent to which cross-sectional units are allowed to be correlated in the spatial HAC 

estimator is determined by a kernel density function. Different specifications of the kernel 

density tend to produce similar results asymptotically, as is well-known from the nonparametric 

literature (Mittelhammer, Judge and Miller 2000), although it can be demonstrated that the 

Epanechnikov kernel has a slight advantage over other candidate functions in terms of yielding 

the lowest mean integrated squared error (Cameron and Trivedi 2005). More crucial in terms of 

the performance of the estimator is the kernel bandwidth selection. Not unlike many other 

nonparametric approaches, the spatial HAC estimator essentially estimates residual cross-

dependence as a locally weighted average. There is an obvious trade-off between setting the 

bandwidth sufficiently small to reduce the inefficiency caused by spatial error dependence, and 

choosing a bandwidth large enough to ensure a smooth distance decay process. At the same time, 

the bandwidth should not be too large to avoid over-smoothing (Cameron and Trivedi 2005).  

 There are two generally accepted methods for selecting appropriate bandwidths. The first 

approach suggests a plug-in estimator, which is typically determined as a function of sample 
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size. Newey and West’s (1987) approach is an example from the time series literature, where the 

plug-in estimator determining the optimal number of temporal lags is trunc(4[T–1100]2/9), where 

T is the number of time periods. In non-spatial local regressions, Silverman’s (1986) plug-in 

estimator is frequently applied. It is defined as b = 1.3643δN–0.2min{s, iqr/1.349}, where N is 

sample size, s the sample standard deviation, iqr the interquartile range, and δ a constant 

associated with a kernel estimator (Cameron and Trivedi 2005). The second approach is 

empirical and is based on minimization of some objective criterion such as the squared residuals 

using a cross-validation procedure (Härdle and Marron 1985), or the bias-corrected Aikaike 

information criterion (Hurvich, Simonoff and Tsai 1998).  

 Data driven optimal bandwidth selection procedures are well-developed in the non-

spatial, nonparametric local regression literature, but good guesses (Conley 1999; Lambert et al. 

2007; Anselin and Lozano-Gracia, 2008), and plug-in estimators (Lambert et al. 2007) have 

generally been applied in the empirical literature utilizing spatial HAC estimators. In this 

research note, we suggest two data driven approaches for determining an optimal bandwidth 

criterion for KP’s spatial HAC estimator. The first approach is based on the estimation of a 

robust semivariogram, using geostatistical procedures to determine an optimal range for which 

residual spatial covariance is significantly different from zero (Cressie 1993). The second 

approach applies a cross-validation procedure used to calibrate local spatial regressions. The 

geostatistical approach has two immediate advantages. First, the extent to which disturbances 

across spatial units are correlated is oftentimes clear from visual inspection of the robust 

semivariogram. Second, fitting the empirical semivariogram with a distance decay function 

allows for hypothesis testing with respect to the statistical significance of the range over which 

spatial units are correlated.  
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 The remainder of this research note proceeds as follows. In the next section, the basic 

assumptions behind KP’s spatial HAC estimator are reviewed, along with the data driven 

procedure to estimate the kernel bandwidth. The third section outlines the premise behind 

nonparametric estimation of the semivariogram and discusses the nonlinear regression 

procedures commonly used to fit the semivariogram. In section 4, various common empirical 

models and estimators are discussed, followed by a description of the data in section 5. Results 

are discussed in the sixth section, and the final section concludes.  

 

2 Spatial HAC and data driven bandwidth selection 

Kelejian and Prucha (2007a) suggest a general cross-sectional disturbance process allowing for 

unknown forms of spatial autocorrelation and heteroskedasticity across spatial units. An n by 1 

vector of disturbances is generated as μ = Rε, where ε is a vector of independently and identically 

distributed disturbances with mean zero and covariance σ2Φ, R is an n by n non-stochastic matrix 

with unknown elements whose row and column sums are uniformly bounded in absolute value 

(i.e., the correlation between cross-sectional units is restricted), and Φ is a diagonal matrix with 

non-negative, uniformly bounded elements. The asymptotic distribution of the n by p non-

stochastic set of exogenous instruments H is Ψ = n–1H′ Σ H, where Σ is the covariance matrix of 

μ.  

 The problem remains to find an asymptotically consistent estimator for Ψ. Given 

consistent estimates of any linear or nonlinear regression, the residual vector μ̂  is used in 

conjunction with a kernel density function, K(dij/dmax), that generates weighted averages of the 

residual cross-products over a certain distance (dmax) at a decaying rate. The (r, s) estimated 

elements of Ψ are: 
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where dij is the distance between observations i and j, and for all dij > d, K(dij/dmax) = 0. In 

general, the function must be a real, continuous, bounded, and symmetric function that integrates 

to unity. There are several functional forms for K(.) that meet these criteria, for example, Bartlett, 

bi-square, tri-cube, Epanechnikov, or Parzen kernels (Cameron and Trivedi 2005). In this 

analysis we follow Kelejian and Prucha, and use the Parzen kernel. The kernel function is 

effectively “adaptive” in the sense that at every location the smoothing parameter takes on 

different values. That is, for every observation, the distances between a spatial unit and its 

neighbors are sorted from low to high. The first b neighbors are then identified in the sorted 

vector, and subsequently used to build the spatial HAC spectral density matrix assuming an 

admissible kernel function. 

 Kelejian and Prucha (2007a) suggest a plug-in estimator b* to identify dmax for each 

observation, with b* = n2τ, with τ < ⅓.1 In their Monte Carlo study of the spatial HAC estimator, 

they used τ < ⅛. In this study, we assume a variety of values for τ, ranging from 0.125 to 0.375 

with 0.05 increments.  

 We compare the performance of the spatial HAC estimator based on Kelejian and 

Prucha’s plug-in estimator to a spatial HAC estimator whose kernel bandwidth is selected using 

a data-driven procedure. In the spirit of Andrews (1990), who estimates bandwidths for HAC 

estimators in the time series literature, we suggest a cross-validation procedure typically used to 

estimate kernel bandwidths in the Geographically Weighted Regression (GWR) literature 

                                                 
1 A similar plug-in bandwidth value was deduced by Conley (1999). 
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(McMillen 1996; Fotheringham, Brunsdon and Charlton 2002), or generally in the nonparametric 

local spatial regression literature (Cleveland and Devlin 1988; McMillen 2004). The cross-

validation function CV, used to select b for the spatial HAC kernel, is given by: 

 

(2) ( )∑
=

−−=
n

i
ii
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where iy−ˆ  is the fitted value of yi with location i omitted during the fitting process. The predicted 

values iy−ˆ  are estimated with the local regression estimator: 

 

(3) yAXXAXβ iii ′′= −1)(ˆ ,   

 

where );( max bddKa ijij = . One should note that the matrix A changes at each location i, and iβ̂  

is a parameter vector estimated at target location i, given a neighborhood defined by b. The 

optimal number of neighbors b (the bandwidth) minimizes the cross-validation function. Thus, in 

the locally weighted regression model, only observations up to the nearest q neighbors are 

assigned non-zero weights with respect to location i. To re-iterate, for every observation i, the 

vector of distances between i and all other observations are sorted in ascending order, and the b 

nearest neighbors are selected from this vector to form the relational matrix. This value is used as 

a cutoff point in the sorted distance vector to select dmax for the target location, which 

corresponds to the last distance entry in the truncated vector corresponding to spatial unit i. The 

mechanism permits K(dij/dmax) to expand or contract across cross-sectional units, conditional on 
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the number of neighbors surrounding a given observation, and thereby re-weighting residual 

cross-products according to a localized neighborhood structure.  

 The CV function may be evaluated g (= 1, …, n–k) times, starting at b1 = k and continuing 

to bn–k = n – k, where k is the number of variables in the regression model and n the number of 

observations in the data set. The parameter iβ  is estimated for every location along the n – k 

sequence and subsequently stored. As a result, n – k evaluations of the model, that is estimates of 

iβ  and their corresponding predicted values iy−ˆ , are generated in the search for the value of bg 

that minimizes equation (2). The CV score from each iteration, which is the sum of the squared 

residuals, is saved for every n – k evaluations. Once the sequence is exhausted, the smallest CV 

score in the stored vector is identified along with the value of b producing that score. Note that as 

b approaches the n – k limit, the parameter estimates of the local regressions approach the same 

results that would be obtained with a global regression. The value of b minimizing the CV 

objective identifies the “optimal” number of neighbors that minimizes the residual sum of 

squares of the local regressions. Given the bandwidth b minimizing the CV objective, the spatial 

HAC spectral density matrix Ψ is estimated for the kernel function selected during the cross-

validation procedure.  

 

3 Semivariogram and empirical fitting 

As an alternative to the data driven cross-validation approach one could also utilize 

semivariogram analysis to determine an optimal bandwidth. Details of this geostatistical method 

can be found in Schabenberger and Pierce (2002). In the first step, the semivariogram γ of the 
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model residuals is estimated using Cressie and Hawkin’s (1980) robust estimator.2 In the second 

step, the range α, nugget c0, and sill ξ of the semivariogram are estimated with nonlinear 

regression. The range is the distance after which residual correlation between locations is 

effectively zero (white noise). The sill is the upper covariance limit between locations. The 

nugget is the model variance in the absence of residual covariance, or the constant variance 

component identical for all observations. There are a variety of functional forms suitable for 

estimating these parameters. In this application, we used the exponential function to obtain 

estimates for the range parameter α: 

  

(4) ( )( )αξγ /3
00 1)( deccd −−−+= , 

 

where ||d|| is the Euclidean distance between two locations. Weighted nonlinear least squares is 

used to fit the exponential function to the sample data—in our case are the residuals of the 

regression model of interest. Rejection of the null hypothesis α = 0 suggests significant residual 

correlation between locations. 

 The distance corresponding to the range parameter α is subsequently used as dmax in the 

spatial HAC kernel. One should note that the kernel function of this estimator is not adaptive 

because the cutoff point is defined as a distance common to all locations (i.e., there may be more 

or fewer observations determining the covariance within the radius), whereas the adaptive 

bandwidth determined using the cross-validation approach is based on a distance metric defined 

by a set of nearest b neighbors where the furthest neighbor may vary for each location. 

                                                 
2 Cressie and Hawkin’s (1980) robust semivariogram estimator is particularly useful in the case of large datasets 
potentially containing bothersome outliers (see Cressie 1993 for details).  
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4 Empirical models and estimators  

The semivariogram technique has been incorporated in spatial regression models in, for instance, 

Dubin (1992) and more recently with a focus on directionality (anisotropy) in Bannerjee, 

Gelfand and Sirmans (2003). These so-called direct representation models are, however, not the 

focus of this research note. Instead, we investigate the impact of alternative bandwidth selectors 

on the magnitude of the estimated Student t-values in various spatial econometric specifications, 

using a dataset on residential property values described in more detail below. 

Most hedonic pricing studies use a spatial process model going back to Whittle, in which 

an endogenous variable is specified to depend on spatial interactions between cross-sectional 

units plus a disturbance term. The spatial interactions are typically modeled as a weighted 

average of nearby cross-sectional units, and the endogenous variable comprising the interactions 

is usually referred to as a spatially lagged variable. The weights are grouped in a matrix 

identifying neighborhood connections, which forms the distinctive core of spatial process 

models. The model containing a spatially lagged dependent variable is termed a spatial 

autoregressive lag model in the terminology of Anselin and Florax (1995). Whittle’s spatial 

autoregressive lag model (SAR) was popularized and extended by Cliff and Ord (1973, 1981), 

who also distinguished non-stationary models in which the disturbances follow a spatial 

autoregressive process, the so-called spatial autoregressive error model (SEM). The general 

model, which contains a spatially lagged endogenous variable as well as spatially autoregressive 

disturbances in addition to exogenous variables, is called a spatial autoregressive model with 

autoregressive disturbances (SARAR). This SARAR model reads as y = ρWy + Xβ + ε, ε = λMε + 

μ, where μ ~ iid(0, Ω), and W and M are (possibly identical) matrices defining connectedness 

between spatial units (Anselin 1988).  
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 Two different approaches to dealing with model uncertainty can be distinguished. The 

first approach rests on the premise that the researcher can make credible assumptions about the 

underlying spatial process and that the spatial process is not merely a “nuisance”. As a result, the 

researcher specifies a SAR or SARAR model based on an a priori defined, non-stochastic 

weights matrix. It is usually much more difficult to make an informed choice about the nature of 

the heteroskedasticity of the process, so it is typical in recent applied research to “correct for” 

heteroskedasticity by using a Huber-Eicker-White transformation or to allow for a very general 

form of heteroskedasticity (Kelejian and Prucha 2007b, Lambert and Florax 2008).3 It is also 

possible that the spatial process is actually a nuisance, and that the researcher specifies a spatial 

error model (SEM). As with the SAR model, one can allow for heteroskedasticity through a 

“robustification” approach á la Huber-Eicker-White (Lambert and Florax 2008) or use the 

heteroskedastic version of the methods of moments estimator suggested by Kelejian and Prucha 

(1999, 2007b). 

The second approach is based on substantially less information, because the researcher 

may not have a well-founded idea about the nature of the heteroskedastic process, but neither 

about the specification of the spatial process. In that case a very general spatial correlation 

process in the error terms, μ = Rε, can be allowed for that concurrently incorporates 

heteroskedasticity. This is the approach suggested with KP’s spatial HAC estimator. Strictly 

speaking, there is no need for a spatial weights matrix as the extent of spatial correlation is 

inferred from an a priori specified kernel estimator.  

                                                 
3 The crucial distinction between these two procedures is that the Huber-Eicker-White correction is based on an 
estimator that assumes homoskedasticity (e.g., ordinary least squares) and only uses an ex post adjustment of the 
error variance-covariance matrix to correct for heteroskedasticity. See Lambert and Florax (2008) for details on how 
this can be implemented with SAR and SEM models. The GMM/IV estimator for the SARAR model derived in 
Kelejian and Prucha (2007b) is explicitly designed to accommodate a general form of heteroskedasticity. See Arraiz, 
Kelejian and Prucha (2007) for a lucid explanation. 
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As reference cases, we can distinguish the situation in which both heteroskedasticity and 

spatial correlation are ignored and straightforward OLS is used, and the situation in which only 

heteroskedasticity is allowed for using a Huber-Eicker-White estimator for the variances. Table 1 

provides an overview of the different models, the processes accounted for, and the respective 

estimators. 

 

Table 1. Type of processes included in spatial process models and different estimators 
Model includes Processes Estimatora 

 Spatial autocorrelation Heteroskedasticity  
X — — OLS 
 — × Robust OLS 
 × × Spatial HAC 
    

Wε × — GM 
 × × GM, robust or heteroskedastic 
    

Wy × — IV 
 × × IV, robust or heteroskedastic 
    

Wy and Wε × — GS2SLS 
 × × GS2SLS, heteroskedastic 

a “Robust” refers to Huber-Eicker-White adjustments, and “heteroskedastic” signals that the estimator allows for a 
general form of heteroskedasticity (see Kelejian and Prucha 2007b). As an alternative to GM, IV and GS2SLS 
estimation, corresponding maximum likelihood estimators are available as well. Most of these are outlined in 
Anselin (2006), but they are not yet used very often in practice. 
 

Below, we provide an empirical comparison in terms of t-values for the spatial HAC 

estimator with several different bandwidth selection procedures to a non-spatial model estimated 

with either OLS or robust OLS, and the error model estimated with GM or robust GM. A 

comparison for the type of models included in the bottom half of the table would be much more 

involved because of the spatial multiplier process implied in these specifications (see Anselin 

2006).4 

                                                 
4 The latter is deferred to a more extensive Monte Carlo comparison. One should note that interesting hybrid 
versions of the approaches outlined in Table 1 are possible as well. For instance, Anselin and Lozano-Gracia (2008) 
employ the spatial HAC estimator in combination with a spatial lag model. 
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In the empirical comparison, we supply results for two heteroskedasticity-robust 

approaches. The first approach (HC1) is the traditional bias-corrected Huber-White robust 

covariance estimator, and the second (HC2) the MacKinnon and Davidson (1993) “jackknife” 

covariance estimator weighted by leverage values (see Lambert and Florax 2008, for more 

details). The variants of the spatial HAC estimator are for the Parzen kernel with plug-in 

bandwidths ranging from n0.25 to n0.75 (τ = 0.125 to 0.375) with 0.10 increments for the exponent, 

and the cross-validation procedure and the semivariogram approach as described above.  

 

5 Data  

Data used in the hedonic housing price example are for single-family house sales during 2001 in 

Knox County, Tennessee. There were 2,889 observations, after eliminating observations with 

missing information. Four primary GIS data sets include individual parcel data, census-block 

group data, boundary data, and environmental feature data. Individual parcel data (sales price, lot 

size, and structural information) and boundary data (high school district and jurisdiction 

boundaries) are from county offices. The individual parcel data are from the Knoxville, Knox 

County, Knoxville Utilities Board Geographic Information System (KGIS 2007) and the Knox 

County Tax Assessor’s Office. The boundary data are from the Knoxville-Knox County 

Metropolitan Planning Commission (MPC 2006). Environmental feature data, including water 

bodies and golf courses, are from the Environmental Systems Research Institute Data and Maps 

2004 (ESRI 2004). Information from census-block groups were assigned to houses located 

within the boundaries of the block groups. 

In the empirical illustration we use a row-standardized weights matrix based on Delauney 
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triangulation, which on average assigns 6 neighbors to every residential property. The minimum 

number of neighbors is 3 and the maximum 13. 

 

6 Results  

Table 2 provides an overview of the estimation results for a standard hedonic pricing model with 

the logarithm of transaction prices on the left hand side, and structural characteristics, distance to 

or size of amenities, high school district, dummy variables for the city of Knoxville and flooding, 

and a season indicator on the right hand side.5 The table allows for a comparison of t-values of a 

non-spatial model and an error model, assuming either homoskedasticity or with 

heteroskedasticity robust standard errors, and the spatial HAC estimator for the recommended 

bandwidth n0.35 (Kelejian and Prucha 2007a). As expected, the estimated coefficients of the non-

spatial and the error model are nearly identical. Not accounting for heteroskedasticity and spatial 

autocorrelation generally leads to inflated t-values. The results for the spatial HAC estimator are 

by and large closer to the heteroskedasticity robust OLS results than to the more conservative 

heteroskedasticity robust results for the spatial error model. This inference is obviously 

dependent on the bandwidth selection criterion, and will be investigated in more detail below. 

Misspecification tests based on the OLS residuals suggest that there is clear evidence for 

heteroskedasticity. The Breusch-Pagan test with random coefficients as the alternative 

hypothesis is 1,914 (df = 38, p < 0.01). Spatial Lagrange Multiplier tests on the OLS residuals 

suggest that the spatial lag or the SARAR model are attractive alternative models.6 However, our 

aim in this paper is not to select the “best” specification, but rather to illustrate the impact of 

                                                 
5 For a discussion of substantive issues see Cho, Poudyal and Lambert (2008).  
6 See Anselin et al. (1996) for the standard interpretation of spatial misspecification test results based on the 
Lagrange Multiplier principle. The χ2-values for the different tests are: LMERR 113.22 (p = 0.00), LMLAG 218.82 
(p = 0.00), LMERR-robust 0.37 (p = 0.54), LMLAG-robust 105.97 (p = 0.00), and LMARAR 219.19 (p = 0.00).  
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Table 2. Estimation results for a hedonic model of Knox County housing sales transactions in 2001 

Variable/estimator OLS GM OLS 
 Estimate t-value HC2b Estimate t-value HC2b SHACb 

Constant 5.932 13.040 12.082 6.079 11.741 10.709 10.769 
Structural variables        
Lot sizea 0.061 7.136 5.500 0.063 7.198 5.309 5.605 
Age –0.004 –11.036 –8.576 –0.004 –10.449 –7.939 –8.257 
Brick 0.056 4.174 3.615 0.049 3.642 3.078 3.413 
Pool 0.048 2.048 1.418 0.045 1.967 1.362 1.451 
Garage      0.096 7.535 7.937 0.090 7.162 7.488 7.859 
Bedroom 0.016 1.548 1.451 0.016 1.562 1.432 1.441 
Stories 0.099 6.662 6.330 0.094 6.307 5.949 5.938 
Fireplaces 0.043 3.875 3.290 0.040 3.607 2.999 3.313 
Construction quality 0.181 12.841 14.339 0.177 12.301 13.760 12.911 
Condition of structure 0.095 6.406 6.931 0.098 6.634 7.148 6.730 
Finished areaa 0.523 23.972 17.600 0.505 23.257 16.536 18.268 
Census block-group         
Vacancy rate 0.272 1.246 1.072 0.271 1.123 0.953 0.971 
Unemployment rate –0.015 –0.072 –0.071 0.005 0.024 0.023 –0.072 
Travel time to work 0.006 2.946 2.542 0.006 2.365 2.016 2.484 
Household incomea 0.167 6.189 5.361 0.165 5.500 4.670 4.836 
Housing density –0.009 –0.881 –0.906 –0.013 –1.241 –1.244 –0.816 
Distance to, or size        
CBDa –0.046 –1.438 –1.225 –0.037 –1.005 –0.842 –1.145 
Greenwaya –0.029 –3.736 –3.134 –0.027 –2.875 –2.349 –3.070 
Railroada 0.009 1.336 1.240 0.013 1.609 1.470 1.073 
Sidewalka –0.011 –2.001 –1.692 –0.014 –2.160 –1.807 –1.596 
Parka –0.011 –1.428 –1.440 –0.013 –1.391 –1.350 –1.374 
Size parka 0.018 2.426 1.893 0.015 1.759 1.337 1.840 
Golf coursesa –0.031 –2.353 –2.104 –0.032 –2.051 –1.802 –1.884 
Water bodya –0.018 –2.298 –1.615 –0.023 –2.465 –1.645 –1.480 
Size of water bodya 0.006 2.611 2.473 0.006 2.172 2.029 2.294 
High school district        
Doyle  –0.142 –4.060 –3.463 –0.148 –3.618 –2.955 –3.119 
Bearden –0.105 –3.601 –3.054 –0.103 –2.992 –2.530 –2.532 
Carter –0.173 –3.846 –3.301 –0.196 –3.708 –3.106 –3.170 
Central –0.088 –3.089 –2.927 –0.087 –2.611 –2.458 –2.627 
Fulton –0.134 –3.672 –3.871 –0.137 –3.190 –3.340 –3.455 
Gibbs –0.115 –2.979 –2.948 –0.122 –2.715 –2.658 –2.646 
Halls –0.089 –2.367 –2.468 –0.091 –2.052 –2.130 –2.186 
Karns –0.076 –2.480 –2.318 –0.083 –2.297 –2.122 –2.042 
Powell –0.073 –2.126 –2.275 –0.082 –2.009 –2.111 –1.937 
Farragut –0.167 –4.529 –3.980 –0.165 –3.774 –3.295 –3.339 
Austin –0.218 –3.372 –3.244 –0.214 –2.880 –2.677 –3.162 
Other spatial dummies        
Knoxville –0.018 –0.856 –0.738 –0.021 –0.849 –0.722 –0.632 
Flood –0.010 –0.208 –0.266 –0.006 –0.121 –0.153 –0.244 
Real estate market        
Season 0.016 1.549 1.497 0.016 1.578 1.526 1.536 
λ    0.215 11.539   
a Logarithmic transformation. 
b Except for the columns with coefficient estimates, the reported values are t- or z-values. The SHAC estimator is 
implemented with the plug-in bandwidth n0.35, which is very close to the n0.33 recommended in Kelejian and Prucha 
(2007a) and Conley (1999). 
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data driven bandwidth selection procedures in the context of an autoregressive heteroskedastic 

error model. We therefore proceed by estimating the spatial autoregressive error model. 

Visual inspection of the residual semivariogram, which is not based on an a priori 

specified weights matrix, suggests significant spatial autocorrelation in the residuals across the 

Knox County housing market (Figure 1). The correlation between predicted and actual values 

shows that the exponential function explained about 47% of the variation in the semivariogram. 

The range, sill, and nugget parameters are strongly significant.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Semivariogram fit of OLS residuals of the hedonic price model for Knox County housing sales 
transactions in 2001. 
 
 

 The range estimated by the semivariogram was 11,988 feet (about 3.65 km), which 

implies an average number of neighbors of 179 (≈ n0.65), about 6% of the observations. This 

distance was used as the neighborhood window in the spatial HAC estimator. The optimal 

bandwidth produced by the calibration procedure was 1,528 neighbors, or about 54% of the 
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number of housing transactions used in the regression.7 For the series of plug-in estimators, the 

number of neighbors included in determination of the spatial HAC covariance estimator ranged 

between n0.25 (τ = 0.125, about 0.2% of the observations) and n0.75 (τ = 0.375, about 14% of the 

observations). Hence, we see that in this empirical example the plug-in values suggested in the 

literature implicitly use a substantially smaller spatial range than the data driven cross-validation 

and semivariogram approaches. 

 This obviously has implications for statistical inference. In Figure 2 we show the t-values 

for OLS on the diagonal (i.e., a one-to-one correspondence), and compare with the t-values for 

alternative estimators. The graph on the left hand side compares OLS and the error model 

estimated by GM, both with and without the jack-knife heteroskedasticity correction. It shows 

that on average the GM error result with heteroskedasticity robust standard errors leads to the 

most conservative inference. The graph in the middle provides a comparison with OLS for the 

spatial HAC estimator using different plug-in bandwidth values. By and large one can observe 

that a higher plug-in bandwidth value causes the absolute value of the t-statistics to be lower. 

The graph on the right hand side shows a comparison of the most conservative plug-in value for 

the HAC estimator with the two data driven approaches. It is obvious that in our empirical 

example the higher spatial ranges utilized in the data driven approaches cause the absolute t-

values to be more conservative. It is not entirely clear how the cross-validation procedure 

compares to the semivariogram approach, but it seems like the cross-validation approach leads to 

slightly lower absolute t-values in the higher ranges, |t| > 5, whereas in the lower ranges the 

semivariogram approach has an edge. 

                                                 
7 One should note that the value for b (= 1,528), which is the number of neighbors included around each observation, 
is constant across the entire dataset. Because the point pattern around each observation varies, the dmax differs by 
observation. 
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 A more systematic comparison can be based on a simple ANOVA regression in which the 

absolute t-value is regressed on dummy variables for the various estimators, with OLS as the 

reference case. The results, which amount to a simple multivariate comparison of means, are 

summarized in Table 3, and provide additional support for the conclusions derived from the 

graphs in Figure 2. 

 

Table 3. Estimation results for a comparison of absolute t-values for the different estimators 
Diagnostics    
Multiple R 0.10 F-statistic 0.422 
R2  0.01 p-value 0.96 
Standard error 3.696 Number of observations 560 
    
ANOVA Degrees of freedom Sum of squares Mean sum of squares 
Regression 13 74.883 5.760 
Residual 546 7456.579 13.657 
Total 559 7531.462  
    
Regression results Coefficient t-value p-value 
Constant 4.249 7.272 0.00 
OLS, HC1 –0.393 –0.476 0.63 
OLS, HC2 –0.445 –0.538 0.59 
GM –0.300 –0.363 0.72 
GM, HC1 –0.722 –0.874 0.38 
GM, HC2 –0.773 –0.936 0.35 
HAC, 0.25 –0.494 –0.598 0.55 
HAC, 0.35 –0.661 –0.800 0.42 
HAC, 0.45 –0.827 –1.001 0.32 
HAC, 0.55 –1.010 –1.223 0.22 
HAC, 0.65 –1.137 –1.376 0.17 
HAC, 0.75 –1.246 –1.508 0.13 
HAC, CV –1.182 –1.431 0.15 
HAC, SVAR –1.147 –1.388 0.17 
 

Table 3 shows that compared to OLS all estimators have on average lower absolute t-

values, although the differences are so small that in conjunction with the relatively small sample 

size none of these differences is significantly different from zero. A small bandwidth plug-in 

value provides results very similar to the robust jackknifed OLS estimator, but is less 

conservative than the jackknifed GM estimator for the spatial error model. Obviously, the size of 

the absolute t-values for the spatial HAC estimator is negatively correlated with the magnitude of 
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the plug-in bandwidth criterion. In our empirical example, the spatial HAC estimator with plug-

in value n0.75 is the most conservative, and it provides results that are very similar to the results 

for the data driven cross-validation and semivariogram approaches. The difference between the 

latter two approaches is actually very small, even although the cross-validation approach is much 

more flexible in that it allows the bandwidth criterion to vary by location.    

 

7 Conclusions 

In this paper, we compared three methods for calibrating the recently developed spatial HAC 

estimator using results from a hedonic price regression for residential properties. The hedonic 

regression was estimated with OLS for a non-spatial model and with GM for an autoregressive 

error specification. We investigated the performance of two heteroskedasticity robust variance 

estimators, and three versions of a heteroskedasticity and autocorrelation robust covariance 

estimator developed by Kelejian and Prucha (2007a). The three versions of the spatial HAC 

estimator differed in the way the kernel bandwidth is determined. The first kernel calibration 

method varied a plug-in neighborhood bandwidth over a number of preset values suggested in 

the literature. The second approach used a data driven cross-validation procedure to determine an 

optimal window for the spatial HAC kernel function. The third method used the estimated 

distance range from an empirical semivariogram based on the OLS residuals.  

 Our empirical findings suggest that some of the plug-in bandwidths (specifically, the 

n0.25) suggested in the literature are actually relatively small, even for moderately spatial 

correlated samples. In that case, the results for the spatial HAC estimator seem on average very 

close to the traditional jackknife estimator that corrects for heteroskedasticity. Slightly higher 

bandwidth values (e.g., n0.35) produce results in terms of t-values that are closer to the results of a 
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GM estimated spatial autoregressive error model with heteroskedasticity correction. However, 

the data driven approaches we investigated in this paper, based on either cross-validation or a 

semivariogram, suggest that higher plug-in values are preferable (e.g., n0.65 or n0.75). This 

conclusion obviously depends on the spatial range implied in real-world spatial processes, but it 

does show that it is advisable to use an empirical, data driven approach to underpin the a priori 

selection of the bandwidth for the spatial HAC estimator. 

 The advantage of the data driven and semivariogram approaches is that they rely on the 

data to determine optimal neighborhood criteria for the spatial HAC. In addition, hypotheses can 

be tested with respect to error autocorrelation in the case of the semivariogram approach without 

reliance on assumptions regarding neighborhood structure, whereas conventional test statistics 

would require a prior designation of spatial neighborhoods through the weights matrix. Our 

results suggest that the cross-validation and the semivariogram approach are very similar in their 

outcome, with the cross-validation approach being slightly more conservative than the 

semivariogram approach. The advantage of the cross-validation approach is that it allows the 

bandwidth criterion to vary across space, but this obviously comes at the cost of the procedure 

being much more computationally intensive than the straightforward semivariogram approach. In 

general, it seems that there is only limited pay-off in terms of inference scrutiny to using the 

more flexible cross-validation approach.  

Obviously, our results refer to a situation where n = 1 since we merely use an empirical 

example. However, the results with respect to data driven bandwidth selection are interesting and 

warrant further investigation in a Monte Carlo setting. Extending the experiments to a setting in 

which SAR, SARAR and hybrid models are also considered may be particularly rewarding.  
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