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ABSTRACT:  Dynamic demand systems have been employed in a number of 

studies to account for habit formation and inventory adjustments in demand. 

Few studies have attempted to provide a theoretical foundation for the 

dynamic demand structures employed. Recently, Bushehri (2003) showed 

how a generalized dynamic Rotterdam model could be derived from the 

neoclassical intertemporal utility maximization problem; however, no 

empirical application is provided in his study. This paper provides an 

empirical application of the generalized dynamic Rotterdam model to the 

demand for processed catfish products in the U.S. The two-period dynamic 

Rotterdam model explained a significant amount of the variation in U.S. 

catfish demand and was preferred to the one-period and static models. 

Estimates suggest that buyers adjust short-run inventories such that the past 

sales negatively affect current sales. Given inventory adjustment behavior, 

demand was relatively more inelastic in the long-run.  

 

I. INTRODUCTION 

Dynamic demand systems have been employed in a number of studies to 

account for habit formation and inventory adjustments in demand (Sexauer, 

1977; Blanciforti and Green, 1983; Pollak and Wales, 1992; Arnade and Pick, 

1994; Balcombe and Davis, 1996; Karagiannis, Katranidis and Velentzas, 

2000). The conventional approach has been to include lag terms as demand 

determinants or to employ time series methods (e.g. an error correction 

model). Few studies have attempted to provide a theoretical foundation for 

the dynamic demand structures employed. An exception is Brown and Lee 

(1992); however, they employed a method (translation) that is typically used 

to incorporate any non-price/income variable (i.e. advertising) into a demand 

system. More recently, Bushehri (2003) showed how a generalized dynamic 

Rotterdam model could be derived from the neoclassical intertemporal utility 

maximization problem; however, no empirical application is provided in his 
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study. This paper provides an empirical application of the generalized 

dynamic Rotterdam model developed by Bushehri (2003) to the demand for 

processed catfish products in the U.S. 

 

II. MODEL DERIVATION 

Bushehri (2003) shows how a generalized dynamic Rotterdam model can be 

derived from the consumer’s intertemporal utility maximization problem. In 

this section we provide the mathematical derivations; however, readers are 

referred to Bushehri (2003) for the complete theory.  

 

Given the intertemporal utility maximization problem we can define the 

optimal demand for the ith good at time t as follows: 

( ) ( ( ), ( ), ( ))i iq t g x t t t= p h .    (1) 

( )iq t  is the quantity of good i; gi denotes the demand function; ( )x t  is 

consumer expenditures;  is an n-vector of prices where n denotes the total 

number of goods within the consumer’s choice set; and  is an n-vector of 

stock of habits. All are specified at time t.  

( )tp

( )th

 

The above specification requires an additional stage in the consumer 

budgeting process. The conventional utility tree approach assumes that 

consumers first allocate total expenditures across product groups and then 

allocate group expenditures on goods within groups (Theil, 1980; Deaton and 

Muellbauer, 1980). To arrive at equation (1), it must also be assumed that at 

the initial stage of the budgeting process, consumers allocate lifetime wealth 

to specific time periods and that expenditures are allocated across goods (or 

groups) without reconsidering the intertemporal optimization problem. 

Otherwise, demand at time t would be a function of lifetime wealth and the 

static conditions implied by consumer demand theory would not hold 

(Bushehri, 2003). 
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Differentiating Equation 1 with respect to time yields: 

1 1( ) ( ) ( )

n n
i i

i j
j jj j

g g gq x p i
jh

x t p t h t= =

∂ ∂ ∂
= + +
∂ ∂ ∂∑ ∑ .   (2) 

Note that for any variable y, d ( ) / dy y t t= . If we divide both sides of equation 

(2) by , and if we multiply the first, second and third terms on the right 

hand side by

( )iq t

( ) / ( )x t x t ,  and , respectively, with some 

manipulation we get the following growth equation: 

( ) / ( )p t p t ( ) / ( )h t h t

1 1( ) ( ) ( ) ( )= =

= + +∑ ∑
n n

ji
i ij ij

j ji j

jp hq x
q t x t p t h t

η η φ .   (3) 

Note that iη is the expenditure elasticity and ijη is the uncompensated price 

elasticity. ( / )( /= ∂ ∂ij i j j ig h h g )φ  is the responsiveness of the quantity 

demanded for good i to changes in the stock of habit for good j.  

 

The last step is to substitute the Slutsky equation for the uncompensated price 

elasticity and to multiply both sides of Equation 3 by the ith budget share wi = 

piqi/∑ipiqi.1 This yields the following demand equation: 

*

1 1( ) ( ) ( ) ( ) ( )= =

⎡ ⎤
= + − +⎢ ⎥

⎣ ⎦
∑ ∑ ∑

n n
j ji

i i ij i i j i ij
j ji j

h pq xw w w w w
q t h t x t p t p t

φ η η
1=

n
j

j

p
.  (4) 

Without the stock of habits term ( / ( ))∑ i ij j jj
w h h tφ  equation (4) is similar to the 

absolute price version of the Rotterdam model in Theil (1980) and Theil and 

Clements (1987) where the term in brackets is the change in real expenditures 

and the last term is the impact of prices on quantity demanded.  

 

The dynamic Rotterdam model is used in estimating the demand for U.S. 

catfish products. Theil (1980) and Theil and Clements (1987) show that the 

static Rotterdam model is a theoretically separable functional form, that is if 

product groups are separable (weak or strong), the Rotterdam model is 

sufficient for representing the demand for goods within a single product 
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group. We assume the same holds true for the dynamic Rotterdam model 

which should be the case if lifetime wealth is pre-allocated (Bushehri, 2003). 

 

To put equation (4) in empirical form, we replace continuous changes with 

discrete time changes. Theil (1987) and Bushehri (2003) suggest the one-period 

log difference which is used in most demand studies. Therefore, we 

approximate the changes in quantities and prices as follows: 

1log log / ( )t t tq q q q q−∆ = − ≈ t  and 1log log / ( )t t tp p p p p− t∆ = − ≈ . 

 

The term in brackets in equation (4) is equal to the Divisia volume index 

(Theil, 1980). We replace this term with a discrete measure of the Divisia 

volume index where tQ∆

1 1 1
/ ( ) ( / ( ))n n n

t i it t j j j ji j j
Q w q x w p x x t w p p

= = =
∆ = ∆ = ∆ − ∆ ≈ −∑ ∑ ∑ t .  (5)  

Bushehri (2003) also suggests the following habit specification for discrete 

time periods: 

       *

1 1 1( ) −
= = =

= + ∆∑ ∑∑
pn n

j
ij i ijk jt k

j k jj

h
q

h t
φ α α    (6) 

where is a distributed lag of the quantities consumed in log-

difference form.  

−∆∑ ∑ ijk jt kk j
qα

 

Given equations (5) and (6), the empirical version of the dynamic Rotterdam 

model is expressed as follows: 

    *

1 1 1
−

= = =

∆ = + ∆ + ∆ + ∆ +∑∑ ∑
p n n

it it i ijk jt k i t ij jt it
k j j

w q q Q pγ γ θ π ε   (7) 

where 10.5( )it it itw w w −= + ; /it it it it iti
w p q p q= ∑  ; * *=i it i ; wγ α =ijk it ijkwγ α ; =i itw iθ η ; 

and *=ij it ijwπ η . *
iγ , ijkγ , iθ  and ijπ  are parameters to be estimated and itε  is a 

random disturbance term. Equation (7) suggests that the effects of habit on 

consumption is captured by past consumption where consumption of a 
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particular good depends not only on present expenditures and prices but also 

on the past consumption of that good and all other related goods.  

Demand theory requires the following restrictions on parameters: , 

 for all j and k, 

* 0=∑ ii
γ

0=∑ ijki
γ 1=∑ ii

θ , 0=∑ iji
π  (adding up);  

(homogeneity); 

0=∑ ijj
π

=ij jiπ π  (symmetry); and × ⎡ ⎤= ⎣ ⎦n n ijΠ π  is negative semidefinite 

(negativity). 

 

The short-run conditional expenditure and compensated price elasticities 

(Hicksian) are defined as /i wiθ and /ij jwπ respectively. The short-run 

uncompensated price elasticity (Marshallian) is defined as / /−ij j i j iw w wπ θ  

(Seale, Sparks and Buxton, 1992). The long-run expenditure elasticity, 

compensated price elasticity, and uncompensated price elasticity are 

respectively defined as (Bushehri, 2003) 

( )
=

− ∑
L i
i

i ijkk
w

θη
γ

     (8) 

                
( )

* =
− ∑

ijL
ij

j ik
w jk

π
η

γ
     (9) 

( ) ( )
= −

− −∑ ∑
ijL i

ij j
j ijk i ijkk k

w
w w

π θη
γ γ

.             (10) 

 

III. EMPRICAL RESULTS 

Monthly disaggregated catfish quantities at the processor level measured in 

1,000 pounds and U.S. processor prices measured in dollars per pound were 

provided by the USDA, National Agricultural Statistical Service (NASS). The 

time period for the data was January 1996 to January 2007. Processed catfish 

was disaggregated into six products: fresh whole fish, fillets and other; frozen 

whole fish, fillets and other. The other category included steaks, nuggets and 
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other products not elsewhere specified. Variable statistics are presented in 

Table 1.  

 

Given that a dynamic model of lag-length k is nested within a model of 

lag-length k + 1, a likelihood ratio (LR) tests can be used to test for the 

appropriate lag (Brown and Lee, 1992). Tests results are presented in Table 2. 

LR tests indicated that the static Rotterdam model was rejected in favor of the 

one-period lag model, and that the one-period lag model was rejected in favor 

of the two-period lag model. However, there was little difference between the 

log-likelihood values for the three-period and two-period lag models. 

Therefore, we assume a maximum lag length of two months. Additionally, 

homogeneity and symmetry failed to be rejected in the 2-period lag model. 

All results that follow assume a two-month lag, homogeneity and symmetry. 

 

Estimation of the dynamic Rotterdam model was accomplished using the LSQ 

procedures in TSP (version 5.0) (Hall and Cummins, 2005). Preliminary 

results indicated that the constant term should be excluded from the model. 

Thus, equation (7) was estimated without a constant term which suggests that 

there were no trending variables (in levels) that determined catfish demand 

(Seale, Marchant and Basso, 2003). Overall, the dynamic Rotterdam model 

performed well. All expenditure effects θi (marginal shares) were positive and 

significant at the 1% level. These estimates reflect how a dollar increase in real 

expenditures is allocated across the six products. Given that fillets (fresh and 

frozen) are the more popular products, their marginal share estimates were 

relatively larger. All own-price effects πii were negative and significant at the 

1% level (except frozen whole fish). A number of cross-price effects reflected a 

competitive relationship between products, particularly between fresh fillets 

and frozen fillets (0.385). 
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The lag effects are presented in Table 4. Positive own-lag effects reflect habit 

formation and negative effects reflect short-run inventory adjustments 

(Sexauer, 1977). Note that all own-lag effects are significant and negative for 

all products suggesting inventory adjustment behavior on the part of buyers. 

Given the relative durability of frozen products, there own-lag effects were 

negative in both periods whereas the own-lag effects for the fresh products 

were mostly significant in the first period only. The signs and magnitudes of 

the cross-lag effects depend on the relationship between products (substitutes 

versus complements) and the adjustment behavior of buyers (habits versus 

inventories).  For example, if any two products are substitutes (complements) 

and unrelated to all other goods, we would expect their cross-lag effect to be 

positive (negative) if buyers adjust consumption behavior based on short-run 

inventories. 

 

Lastly, the short-run and long-run expenditure and price elasticities are 

presented in Table 5. Given inventory adjustments, demand in the short-run 

was relatively more elastic. The short-run expenditure elasticities were close 

to unity for all products. In the long-run, the effect of expenditures on 

demand was significantly smaller. The short-run own-price elasticities 

(Hicksian and Marshallian) indicated that the demand for the fresh products 

was elastic and the demand for frozen fillets was also elastic. In the log-run, 

the demand for all products except fresh fillets was inelastic. Given that fresh 

fillets are relatively more perishable the impact of short-run inventory 

adjustments was relative small resulting in similar short-run and long-run 

own-price elasticities.  

 

IV. SUMMARY & CONCLUSION 

This paper provides an empirical application of the generalized dynamic 

Rotterdam model presented by Bushehri (2003) which was used in estimating 
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disaggregated catfish demand. Test results showed significant information 

when the static model or 1-period lag model was assumed. The 2-period 

dynamic model explained a significant amount of the variation in U.S. catfish 

demand. The lag estimates suggest that buyers adjust short-run inventories 

such that sales in the previous two periods have a negative effect on current 

period sales. Given inventory adjustment behavior, the demand was 

relatively more inelastic in the long-run. 
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NOTES 
 
1 The Slutsky equation is defined as *= −ij ij i jwη η η , where *

ijη  is the 
compensated price elasticity and wj = pjqj/∑i piqi is the budget share for good j. 
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Table 1. Descriptive Statistics for U.S. Processed Catfish: January 1996 – 
January 2007  

Fresh Frozen

Whole Fillet Other Whole Fillet Other
Price ($/lb)       

Mean 1.56 2.77 1.67 1.97 2.67 1.62
Standard Deviation 0.13 0.18 0.10 0.10 0.17 0.15

Minimum 1.24 2.44 1.40 1.80 2.36 1.32
Maximum 1.81 3.28 1.90 2.27 3.09 1.96

Monthly Quantity  
(1000 lbs)     

 
 

Mean    3,297    4,836    1,300    1,138    9,705    3,917
Standard Deviation     428     789     228     158    1,163     640

Minimum    2,426    3,222     768     793    6,296    2,384
Maximum    4,467    6,815    2,156    1,500   12,362    5,364

Expenditure Share       
Mean 0.094 0.242 0.039 0.041 0.469 0.115

Standard Deviation 0.013 0.017 0.006 0.005 0.020 0.009
Minimum 0.071 0.209 0.026 0.031 0.410 0.091
Maximum 0.131 0.282 0.050 0.056 0.510 0.139

 
 
 
Table 2. Likelihood Ratio Tests Results   

Models Log-likelihood 
Value 

LR 
Statistic 

P-value 

Lag structure†    
3-period 2,610.81   
2-period 2,606.47 8.68 0.999 (30)‡

1-period 2,575.32 62.31 0.000 (30) 
Static 2,535.58 79.46 0.000 (30) 

Economic constraints 
(2-period model)    

Unrestricted 2,614.16  0.000 (18) 
Homogeneity 2,613.54 1.26 0.939 (5) 

Symmetry 2,606.47 14.12 0.168 (10) 
† All models have homogeneity and symmetry model. 
‡ The number of restrictions is in parenthesis. 
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Table 3. Conditional Demand Estimates for Processed Catfish 

Price Coefficients ijπ  

 Fresh    Frozen  Products 
Fresh Whole Fillet Other  Whole Fillet Other 

 
Marginal  
Share  iθ

Whole -0.146 
(.017)***

0.054 
(.028)*

-0.023 
(.009)***

 -0.017 
(.012) 

0.124 
(.036)***

0.009 
(.008) 

0.093 
(.004)***

Fillet  -0.475 
(.090)***

0.029 
(.019) 

 -0.009 
(.027) 

0.385 
(.095)***

0.016 
(.018) 

0.258 
(.009)***

Other   -0.056 
(.008)***

 0.011 
(.007) 

0.037 
(.023) 

0.002 
(.005) 

0.044 
(.003)***

Frozen         
Whole     -0.035 

(.018)*
0.047 
(.029)*

0.003 
(.006) 

0.041 
(.003)***

Fillet      -0.619 
(.125)***

0.025 
(.025) 

0.456 
(.012)***

Other       -0.055 
(.016)***

0.108 
(.008)***

Equation 
R2  

.84 .89 .78  .72 .93 .71  

System R2 = .965 
a Asymptotic standard errors are in parentheses. Homogeneity and symmetry are 
imposed. *** Significance level = .01; ** Significance level = .05; * Significance level = .10 
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Table 4. Dynamic Adjustment Estimates 

 Lag Coefficients  ijkγ
 Fresh    Frozen  Products Whole Fillet Other  Whole Fillet Other 

Fresh One-period Lag ( 1jtq −∆ ) Effects 
Whole -0.287 

(.074)***
0.033 
(.028) 

0.203 
(.119)*

 0.183 
(.109)*

-0.018 
(.015) 

0.082 
(.038)**

Fillet -0.373 
(.164)**

-0.116 
(.061)*

0.322 
(.264) 

 -0.103 
(.241) 

0.139 
(.034)***

-0.021 
(.084) 

Other 0.048 
(.049) 

0.048 
(.018)***

-0.334 
(.080)***

 0.021 
(.072) 

-0.008 
(.010) 

0.004 
(.025) 

Frozen        
Whole 0.174 

(.052)***
0.010 
(.019) 

-0.139 
(.084)*

 -0.404 
(.076)***

0.037 
(.011)***

-0.004 
(.027) 

Fillet 0.581 
(.216)***

0.012 
(.081) 

-0.092 
(.352) 

 -0.041 
(.321) 

-0.225 
(.045)***

0.327 
(.112)***

Other -0.143 
(.139) 

0.014 
(.052) 

0.040 
(.224) 

 0.343 
(.207)*

0.075 
(.029)***

-0.388 
(.073)***

 Two-period Lag ( 2jtq −∆ ) Effects 
Fresh Whole Fillet Other  Whole Fillet Other 

Whole -0.196 
(.073)***

-0.021 
(.028) 

0.162 
(.118) 

 0.099 
(.102) 

0.026 
(.016)*

0.111 
(.037)***

Fillet -0.209 
(.162) 

0.058 
(.062) 

0.189 
(.261) 

 -0.006 
(.226) 

0.087 
(.034)**

0.035 
(.082) 

Other 0.017 
(.048) 

-0.008 
(.018) 

-0.099 
(.078) 

 0.003 
(.067) 

0.012 
(.010) 

0.010 
(.025) 

Frozen        
Whole 0.180 

(.051)***
-0.011 
(.020) 

-0.237 
(.083)***

 -0.287 
(.072)***

-0.022 
(.011)**

0.004 
(.026) 

Fillet 0.432 
(.215)**

-0.091 
(.082) 

-0.049 
(.346) 

 0.574 
(.301)*

-0.194 
(.046)***

0.073 
(.109) 

Other -0.222 
(.139) 

0.072 
(.053) 

0.034 
(.223) 

 -0.382 
(.195)**

0.047 
(.030) 

-0.233 
(.070)***

Asymptotic standard errors are in parentheses.  
*** Significance level = .01; ** Significance level = .05; * Significance level = .10 
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Table 5. Short-run and Long-run Demand Elasticities 
 Short-run Elasticities  Long-run Elasticities 

Fresh Expenditure Hicksian 
own-price 

Marshallian 
own-price  Expenditure Hicksian 

own-price 
Marshallian 
own-price 

Whole 0.991 -1.559 -1.652  0.161 -0.254 -0.269 
Fillet 1.067 -1.960 -2.218  0.861 -1.582 -1.790 
Other 1.113 -1.421 -1.465  0.093 -0.118 -0.122 

Frozen        
Whole 1.011 -0.850a -0.891b  0.056 -0.047a -0.050a

Fillet 0.971 -1.318 -1.774  0.513 -0.696 -0.937 
Other 0.941 -0.480 -0.588  0.147 -0.075 -0.092 

a Significance level =.10; b Significance level =.05.  
All others are significant at the .01 level or lower. 
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