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Alternative Crop Insurance Indexes

Xiaohui Deng, Barry J. Barnett, Gerrit Hoogenboom, Yingzhuo Yu,

and Axel Garcia y Garcia

Three index-based crop insurance contracts are evaluated for representative south Georgia

corn farms. The insurance contracts considered are based on indexes of historical county

yields, yields predicted from a cooling degree-day production model, and yields predicted

from a crop-simulation model. For some of the representative farms, the predicted yield

index contracts provide yield risk protection comparable to the contract based on historical

county yields, especially at lower levels of risk aversion. The impact of constraints on index

insurance choice variables is considered and important interactions among constrained,

conditionally optimized, choice variables are analyzed.

Key Words: area yield insurance, cooling degree days, DSSAT, group risk plan

JEL Classifications: G13, G22, Q12

In 2006, the U.S. Federal Crop Insurance

Program (FCIP) had an insurance liability of

just under $50 billion on 242 million acres of

cropland. Approximately 75% of that liability

was for farm-level yield and revenue insurance

contracts that establish guarantees based on

the insured unit’s actual production history

(APH) yield (e.g., APH Yield Insurance, Crop

Revenue Coverage, Revenue Assurance).

In recent years, alternative insurance con-

tracts known as the Group Risk Plan (GRP)

and Group Risk Income Protection (GRIP)

have become more popular with farmers. In

2006, these contracts accounted for almost

14% of FCIP liability, up from only 3% in

2002.1 GRP establishes guarantees and makes

payments based on county-level yields rather

than farm-level yields (Skees, Black, and

Barnett). GRIP is a revenue insurance version

of GRP, with guarantees and payments based

on the product of county-level yields and

futures market prices. Recently, these con-

tracts have received significantly more atten-

tion as some have suggested replacing existing

federal agricultural income support programs

(e.g., the marketing loan program and the

countercyclical payment program) with a

federally provided GRIP policy (Babcock

and Hart).

GRP and GRIP are specific examples of a

general class of insurance contracts known as

‘‘index insurance.’’ For these contracts, guar-

antees and indemnities are based not on farm-

level yields or revenues but rather on an index

that is considered to be highly correlated with

farm-level outcomes (Skees and Barnett). For
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GRP and GRIP, the underlying index is

county-level yield and revenue, respectively.

Access to GRP and GRIP policies is, there-

fore, limited by the availability of National

Agricultural Statistical Service (NASS) data

on county-level yields. Thus, for some margin-

al production areas, it would not be possible

to replace existing federal agricultural income

support programs with a federally provided

GRIP policy because NASS county-level yield

data are not available. But other index

insurance contracts may be possible.

This article compares index insurance

contracts based on 1) historical area (county)

yields (like the GRP contract), 2) predicted

yields from a county-level cooling degree-day

production model, and 3) predicted yields

from a crop growth-simulation model. The

analysis is conducted for representative corn

farms in four southern Georgia counties.

From a national perspective, corn production

in these counties is quite marginal. However,

unlike some marginal production areas,

NASS county yield data are available for

these counties. This allows us to compare

area yield insurance with alternative index

insurance designs, such as might be required

in marginal production areas where NASS

yield data are not available. If the alternative

index contracts perform well relative to an

area yield insurance contract, this suggests

that it may be possible to use alternative

index insurance contracts in areas where

NASS county-level yield data are not avail-

able. This has implications both for expand-

ing the availability of FCIP index insurance

contracts and for the recent proposal to

replace existing federal income support pro-

grams with a federally provided GRIP

policy.

A second contribution of the work pre-

sented here relates to the coverage and scale

choice variables used in the current GRP area

yield index insurance contract (Skees, Black,

and Barnett). Previous conceptual analyses

have shown how binding constraints on

coverage should affect the optimal value of

scale or, alternatively, how binding constraints

on scale should affect the optimal value of

coverage (Mahul; Miranda; Vercammen). We

generalize these conceptual findings to other

index insurance contracts and also demon-

strate empirically the interdependent adjust-

ments required when binding constraints are

imposed on coverage and scale. This contri-

bution has important policy implications

because some crop insurance industry organi-

zations have recently proposed more binding

constraints on these GRP and GRIP choice

variables (Parkerson).

The next section provides background on

index insurance. This is followed by a

description of the data and methods used to

compare the various index insurance con-

tracts. Later sections discuss empirical results

and present concluding comments.

Index Insurance

Index insurance contracts pay indemnities

based not on the actual yield (or revenue)

losses experienced by the insurance purchaser

but rather based on realized values of an index

that is correlated with farm-level losses. For

the GRP insurance contract, the underlying

index is the county average yield. Index

insurance contracts based on various weather

measures have also been proposed (Deng et

al.; Martin, Barnett, and Coble; Richards,

Manfredo, and Sanders; Turvey; Vedenov and

Barnett). The GRP indemnity function can be

generalized such that for an index x that is

denominated in units of production per acre,

indemnity per acre ñx is calculated as

ð1Þ

~nx ~yxjcoverage,scaleð Þ~ max
(yx { ~yx)

yx
, 0

� �

| fcastx

| scale,

where fcastx is the expectation of the under-

lying stochastic index (county yield in the case

of GRP), ỹx is the realization of the index, and

yx 5 fcastx 3 coverage.2 Coverage and scale

are choice variables selected by the policy-

holder. For GRP, these variables are bounded

2 For simplicity, indemnities are denominated in

units of production rather than currency units.
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so that 70% # coverage # 90%, and 90% #

scale # 150%.

Note that the actual yield experienced on

the policyholder’s farm is not an argument in

the calculation of ñx. Instead, if ỹx , yx, the

index insurance policyholder will receive an

indemnity, irrespective of the actual yield

experienced on the policyholder’s farm. Thus,

the risk protection provided by the index

insurance contract is directly related to the

correlation between the underlying index and

actual farm-level losses.

A primary advantage of index insurance is

that it is less susceptible to the asymmetric

information problems that plague convention-

al APH-based insurance (Chambers; Coble et

al.; Just, Calvin, and Quiggin; Quiggin,

Karagiannis, and Stanton; Smith and Good-

win). There is little potential for adverse

selection because there is no need for farm-

level risk classification. Because the policy-

holder can not significantly affect the realized

value of the index, moral hazard is not a

problem. Index insurance contracts also have

lower transaction costs because there is no

need to establish and verify expected farm-

level yields for each insured unit nor is there

any need to conduct on-farm loss adjustment.

The primary disadvantage of index insurance

is that the policyholder is exposed to basis

risk—meaning that it is possible for the

policyholder to experience a loss and yet

receive no indemnity.

Optimal Coverage and Scale

Miranda formalized a theoretical framework

for evaluating the effectiveness of area yield

crop insurance that can be generalized for any

index insurance contract. If farm-level yields ỹi

are projected orthogonally onto an index ỹx,

then

ð2Þ ~yi { mi ~ bi
~yx { mxð Þz ~ei,

where mi 5 E(ỹi), m
x 5 E(ỹx), bi is a coefficient

that measures the sensitivity of farm-level yield

deviations from the expected value to devia-

tions of the index from its expected value, and

Ei reflects idiosyncratic deviations in farm-level

yields that are not associated with deviations

in the index. This implies

ð3Þ bi ~
cov ~yi,

~yxð Þ
var ~yxð Þ ,

which is similar to the notion of b in the

capital asset pricing model (CAPM).

Miranda noted that a risk-averse policy-

holder’s optimal choice of scale would ap-

proach bi. Mahul and Wang et al. formalized

this by showing that if no constraints were

imposed on coverage and scale and the

premium rate was actuarially fair, the optimal

scale would be equal to bi and the optimal

coverage would be that which sets the critical

yield yx equal to the maximum possible

realization of the stochastic index, i.e., cover-

age 5 ymax/mx. Mahul also showed that if scale

is constrained to be greater than bi, the

optimal coverage would set yx less than the

maximum possible realization of the index,

i.e., coverage , ymax/mx, even if the insurance

premium is actuarially fair. In other words,

when policyholders are constrained to accept a

higher-than-optimal scale, they should com-

pensate by choosing a level of coverage that is

less than the unconstrained optimum.

Similarly, Barnett et al. and Deng, Barnett

and Vedenov suggest that if coverage is

constrained by an upper bound, policyholders

compensate by choosing a level of scale that is

higher than the unconstrained optimum. The

intuition behind this is that because of the

binding constraint on coverage, the index

insurance contract will not trigger an indem-

nity as frequently as policyholders would wish.

By increasing scale, policyholders increase the

amount of indemnity that is paid whenever the

constrained index insurance contract does

trigger a payment.

Alternative Indexes

In addition to index insurance based on area

yields, a number of previous studies have

examined the potential for creating index

insurance based on a particular weather

variable measured over a specified period of

time (Deng et al.; Martin, Barnett, and Coble;

Deng et al: Crop Insurance Indexes 225



Richards, Manfredo, and Sanders; Turvey;

Vedenov and Barnett). In principal, it should

also be possible to create more sophisticated

indexes that are functions of multiple weather

variables, weather variables measured over

multiple time periods, or weather variables

interacted with other production variables.

More sophisticated weather indexes may

exhibit less basis risk than those based on a

single weather variable.

The analysis presented here considers two

weather-based, predicted-yield indexes. The

first is based on Cao’s examination of the

relationship between detrended county corn

yields for several counties in southern Georgia

and cumulative monthly measures of rainfall

and temperature for weather stations located

in those counties. Cooling degree days (CDD)

were used to measure cumulative monthly

temperature. For a month consisting of 31

days, CDD is calculated as

ð4Þ CDD ~
X31

k ~ 1

max average temperaturek { 65ð Þ,

where k indicates the day of the month, and

the average temperature is measured in

degrees Fahrenheit. Cao found that CDD

for various months was significant in explain-

ing county yield variation, whereas cumulative

monthly rainfall was not.

The second weather-based predicted yield

index uses the CERES-Maize model, a crop

growth-simulation model, under the software

program package Decision Support System

for Agrotechnology Transfer (DSSAT) (Hoo-

genboom et al.). The crop simulation models

under DSSAT are dynamic and physiologi-

cally based, and simulate growth, develop-

ment, and yield on a daily basis as a function

of weather and soil conditions and different

crop management scenarios. The models also

include a genetic component to handle differ-

ences between individual varieties or cultivars.

For instance, the maize (corn) model includes

six parameters that define the number of

photothermal days to flowering and maturity,

sensitivity to photoperiod, the maximum

number of seed kernels per plant, individual

seed filling rate, and the phyllochron interval

for each cultivar (Bannayan, Hoogenboom,

and Crout; Román-Paoli, Welch, and Van-

derlip). It has advanced from a simple stand-

alone model (Duchon; Jones and Kiniry) into

a generic grain cereal model (Ritchie et al.).

Moreover, the CERES–Maize model under

DSSAT has been evaluated extensively across

a wide range of environments, including

Georgia.

To generate a predicted yield index via

DSSAT, weather realizations were imported

into the model while all other choice variables

were held constant. It was hypothesized that

index insurance based on DSSAT predicted

yields would have lower basis risk than index

insurance based on a single weather variable

because DSSAT incorporates several weather

variables and attempts to model interactions

between those weather variables and other

variables that also affect realized yields.

Figure 1 presents shortfalls relative to the

expected value for each of the indexes (area-

yield, CDD, and DSSAT) over the period

1971–2004. Also shown are the pairwise

correlations between shortfalls for the area

yield index and each of the alternative indexes.

Data and Methods

Farm-level corn yield data were obtained from

the U.S. Department of Agriculture (USDA)

Risk Management Agency (RMA). These

data are the 4- to 10-year yield histories from

1991 to 2000 that were used to establish APH

yields for 2001 Multiple Peril Crop Insurance

(MPCI) purchasers. The data were aggregated

to the level of an enterprise unit meaning that

for a given year, the yield reflects all produc-

tion in the county that is associated with a

specific taxpayer identification number. To be

included in the analysis, each farm had to have

yield data for at least the last four consecutive

years of the period (i.e., 1997–2000).

Historical county-level yield data were

collected from NASS. These data were col-

lected from 1971 to 2004. The daily weather

data used to construct the CDD and DSSAT

indexes were obtained from the U.S. National

Climatic Data Center (NCDC).
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The four counties included in the study

each have less than 30% of the planted acreage

under irrigation (Table 1). These counties also

have weather stations located within the

county and daily weather data (with relatively

few missing observations) available for the

time period 1971–2004.

Regression analyses revealed statistically

significant time trends in all county yields. To

account for the temporal component, a

detrending procedure was implemented by

estimating a linear trend model:

ð5Þ ~yjt ~ aj0 z aj1t z ejt,

where j is the county, t is the year with t 5

1971, 1972, . . . , 2004, and ỹjt is the yield in

county j and year t. Detrended county yields

were then calculated as

ð6Þ ydet
jt ~

~yjt

^yjt

^yj2004,

where ŷjt is the predicted county yield estimat-

ed from Equation (5). The detrended county

yields were then used to construct a GRP-like

area yield index insurance contract.

Using the available weather data for each

county, CDD predicted yield indexes were

created based on Cao’s findings. The predicted

yield indexes are linear functions of cumulative

monthly CDD measures as shown in Table 2.

Table 1. Counties Included in the Study

County

Number of Farms for Which

Actual Yield Data Were Available

2002 Percentage of Harvested

Cropland That Was Irrigated

Bulloch 25 23.3

Coffee 12 22.0

Colquitt 10 29.0

Pierce 18 21.6

Source: Irrigation data is from the 2002 Census of Agriculture.

Figure 1. Yield Shortfall Percentage among the Three Indexes over the Period 1971–2004

Deng et al: Crop Insurance Indexes 227



DSSAT predicted yield indexes were also

created for each county. The corn cultivar

‘PIO 31G98’ was used in the DSSAT model,

along with choice variables that included three

planting dates, three soil types, irrigated and

rain-fed conditions, and two technology lev-

els.3 Thus, in each county, 36 scenarios

associated with all possible combinations of

the choice variables were used to generate

DSSAT predicted yields. Under each scenario,

the DSSAT predicted yield was modeled using

historical data on daily minimum and maxi-

mum temperatures, rainfall, and solar radia-

tion throughout the growing season. To

generate a single predicted yield for each

county, a simple average yield (across planting

dates and technology levels) was created for

each of the six possible soil-type and irrigated

versus rain-fed combinations. The irrigation

percentages in each county (see Table 1) were

then used as weights to generate soil-type–

specific weighted average yields for each

county. A county weighted average yield was

then calculated using the percentage of the

county’s crop land in each of the three soil

types as weights. A DSSAT index insurance

contract was constructed based on DSSAT

county weighted average yields simulated over

the period 1971 to 2004.

Farm-Level Yield Simulation

The 4 to 10 years of available farm yield data

provide only limited information about the

underlying yield distribution for each repre-

sentative farm. Low-frequency, high-magni-

tude yield losses may be underrepresented (or

overrepresented) in the small sample of

available farm yield data. To adequately assess

the performance of various insurance instru-

ments, it is necessary to estimate representa-

tive farm yield distributions. To do this, for

each individual farm i, farm-level shocks are

calculated relative to the simple average of the

4 to 10 years of farm-level yields. Specifically,

the shocks eis are calculated as

ð7Þ eis ~
~yis

yyi

,

where s indicates each year between 1991 and

2000 for which the farm yield data are

available and ȳi is the simple average yield

for farm i. Then, a large number of pseudo

farm-level yields can be calculated as all

possible combinations of the available de-

trended county-yield data and the 4 to 10

farm-level shocks. Specifically,

ð8Þ ypseudo
i ~ ydet

j | e
0

i,

where yj
det is a t 3 1 column vector of

detrended yields for county j with t 5 1971,

3 ‘PIO 31G98’ is very common corn cultivar in

Georgia. It is characterized as a high-yield, short- to

mid-season hybrid. The choice variables were selected

based on recommendations from crop scientists in the

region. Details about the choices of the planting dates,

soil types, irrigation systems, and technology levels

will be provided upon request.

Table 2. Regression Equations used to Generate CDD Predicted Yield Indexes

County Regression Equations Pr . F R2

Bulloch ^y ~ 234:410 { 0:2855 Aprilð Þ{ 0:1450 Julyð Þ{ 0:1696 Septemberð Þ
(0:0106) (0:0262) (0:0142)

0.0004 0.41

Coffee ^y ~ 297:304 { 0:0746 Juneð Þ{ 0:2728 Julyð Þ{ 0:1317 Septemberð Þ
(0:3255) (0:0094) (0:0713)

,0.0001 0.51

Colquitt ^y ~ 231:458 { 0:1282 Juneð Þ{ 0:0839 Julyð Þ{ 0:1644 Septemberð Þ
(0:1452) (0:3633) (0:0608)

0.0085 0.30

Pierce
^y ~ 320:565 { 0:1473 Juneð Þ{ 0:2035 Julyð Þ{ 0:2062 Septemberð Þ

(0:1422) (0:1617) (0:0276)

0.0016 0.44

Note: Regression equations are from Cao (2004). The variable names are cumulative CDD measured in that month. Numbers

in parentheses below each formula are standard errors.
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1972, . . . , 2004; ei9 is a 1 3 s row vector of

shocks for farm i located in county j; and yi
pseudo

is a t 3 s matrix of pseudo farm-level yields for

farm i. Designate z as a counter variable for the

pseudo farm-level yields with z 5 1, 2, . . . , Z

and Z 5 t 3 s. Then, each farm i has between

136 # Z # 340 pseudo farm-level yields.

Given the very limited number of farms for

which yield data were available in each county

(see Table 1), the pseudo farm-level yields

within a given county were combined for

purposes of estimating a yield distribution for

a representative farm in that county. Thus, all

of the pseudo farm-level yields within a given

county were stacked into a single vector yf
pseudo

where the subscript f designates a repre-

sentative farm for county j. For each repre-

sentative farm f, the stacked vector contains

R ~
X

i
Z Vi[j pseudo farm-level yields.4

A kernel-smoothing approach was used to

estimate distributions for the three indexes

and representative farm yields in each county.

Formally, ỹfr is used to designate each of the R

elements of the stacked vector yf
pseudo. Each

element of the vector yj
x, the index x for

county j, is repeated for the corresponding

element of yf
pseudo, so that the size of the index

is also R with ~yx
jr being used to designate the

elements of the extended index vector. Then

the joint kernel-density function of yield for

representative farm f and the particular index

x is calculated as

ð9aÞ

h ~yf , ~yx
j

� �
~

1

RDf D
x
j

XR

r ~ 1

K
~yf { ~yfr

Df

,
~yx

j { ~yx
jr

Dx
j

 !
,

the marginal density function of yield for

representative farm f is calculated as

ð9bÞ

h ~yf

� 	
~

ð
h( ~yf , ~yx

j )d ~yx
j

~

ð
1

RDf D
x
j

XR

r ~ 1

K
~yf { ~yfr

Df

,

~yx
j { ~yx

jr

Dx
j

 !
d ~yx

j ,

and the marginal density function of a

particular index x for county j is calculated as

ð9cÞ

h ~yx
j

� �
~

ð
h( ~yf , ~yx

j )d ~yf

~

ð
1

RDf D
x
j

XR

r ~ 1

K
~yf { ~yfr

Df

,

~yx
j { ~yx

jr

Dx
j

 !
d ~yf :

K(N) is a joint kernel function and Df, Dj
x are

bandwidths for the representative farm-level

yield and the yield index, respectively

(Härdle). Because the joint density is for

bivariates, and following Bowman and Foster,

two bandwidths are used (each multiplied by

0.5) to better capture the curvature of the

simulated farm-level yield and each of the

three indexes. The lower and upper bounds

used in the joint kernel density function for

each coordinate’s direction are the realized

lowest and highest values for the simulated

farm-level yield and the index.

The estimated joint farm-level yield and

index distributions were used to assess the

performance of each index insurance contract.

Descriptive statistics calculated from the

estimated joint distributions are presented in

Table 3.

Premium Rating

For each county j, indemnities for all three

index insurance contracts are calculated as in

Equation (1) with fcastx being the expectation

of h (ỹj
x). Coverage and scale are constrained

as in the actual GRP contract (70% #

coverage # 90% and 90% # scale # 150%).

The actuarially fair premium px
j fair is the

expectation of the indemnity function

ð10aÞ

px
j fair~ E ~nx

j
~yx

j jcoverage, scale
� �h i

~

ð
max

(yx
j { ~yx

j )

yx
j

, 0

 !

| fcastx | scale | h ~yx
j

� �
d ~yx

j ,

where h (ỹj
x) is the marginal kernel density

for a particular yield index in county

4 To eliminate unrealistically high yields for the

representative farm in each county, any pseudo farm-

level yield greater than three standard deviations from

the expected county yield was censored.
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j.5 The integral under the kernel density was

calculated using numerical methods. The actu-

arially fair-premium rate rj
x is calculated as

ð10bÞ rx
j fair ~

px
j

yfcastx | scale
:

For GRP, reserve loads are applied by

dividing the actuarially fair-premium rate by

0.9. Premium subsidies vary with the level of

coverage. The premium subsidy for 70% and

75% coverage is 64%, for 80% and 85%

coverage is 59%, and for 90% coverage is

55%. For this analysis, we assume that the

other indexes use the same reserve loading and

premium subsidy structure.6 Thus, the actual

premium for each index is

ð11aÞ

px
j actual ~

E ~nx
j

~yx
j jcoverage, scale

� �h i
0:9

| 1 { subsidy %ð Þ

~
px

j fair

0:9
1 { subsidy %ð Þ,

and the actual premium rate is

ð11bÞ rx
j actual ~

px
j actual

yfcastx | scale
:

Decision Criterion

Assume that each representative farm f holds a

portfolio consisting of only two assets: corn

production and a specific index insurance

contract. For any realization of farm-level

yield ỹf and insurance contract x, the yield net

of insurance premiums and indemnities is

ð12Þ ~ynetx
f ~ ~yf { px

j z ~nx
j :

Table 3. Descriptive Statistics for the Representative Farm Yield and the Three Indexes

Calculated from the Estimated Joint Kernel Densities

Yield

Mean (bu/

acre)

Standard

Deviation

Coefficient of

Variation

Minimum

(bu/acre)

Maximum (bu/

acre)

Bulloch County

Farm-Level Yield 73.15 42.40 0.58 2.23 159.39

Area Yield Index 84.50 24.06 0.28 42.94 124.05

DSSAT Index 54.56 15.36 0.28 28.70 79.40

CDD Index 74.87 17.49 0.23 22.57 99.63

Coffee County

Farm-Level Yield 102.27 45.72 0.45 2.93 199.76

Area Yield Index 108.27 26.88 0.25 41.60 186.80

DSSAT Index 79.14 19.50 0.25 51.39 130.10

CDD Index 75.71 19.33 0.26 32.45 111.99

Colquitt County

Farm-Level Yield 101.56 43.11 0.42 1.21 183.35

Area Yield Index 108.57 22.76 0.21 51.64 159.56

DSSAT Index 77.09 13.52 0.18 52.24 105.72

CDD Index 71.85 13.55 0.19 44.12 99.24

Pierce County

Farm-Level Yield 106.67 49.97 0.47 0.49 208.50

Area Yield Index 111.36 30.64 0.28 22.73 172.49

DSSAT Index 61.56 16.68 0.27 36.11 96.58

CDD Index 73.77 23.12 0.31 11.65 109.98

5 This burn method of establishing premiums is

analogous to that used for the existing GRP product.

Because the insurance product would not trade in

secondary markets, there is no need to use continuous

time pricing models.
6 The optimized coverage in this study is not

discrete with 5% increments as it is for the actual GRP

contract. Thus, premium subsidy is set at 64% for 70%

# coverage , 80%, 59% for 80% # coverage , 90%,

and 55% for coverage at 90%.
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The subscripts for actuarially fair or actual

premium are dropped to maintain concise-

ness.7

When premium rates are not actuarially

fair because of the reserve load and premium

subsidies, insurance purchasing will not only

affect the variance of the net yield but also the

expected net yield. Thus, the contracts cannot

be compared based simply on the reduction in

the variance of net yield as in previous studies

(Barnett et al.; Miranda; Smith, Chouinard,

and Baquet). For this reason, certainty-equiv-

alent revenues (CER) are used to make

comparisons across insurance contracts.

Revenue Rf
x for representative farm f and

index insurance contract x is calculated as

ð13Þ Rx
f ~ p | ~ynetx

f ,

where p is a constant price per bushel of corn.8

For each combination of index insurance

contract x and representative farm f, the

CER was calculated based on a constant

relative risk aversion (CRRA) utility function

ð14Þ U Rx
f

� �
~

(Rx
f )1 { c

1 { c
,

where c is the measure of relative risk

aversion. Myers estimated that for a represen-

tative U.S. crop farmer 1 # c # 3. We

consider three levels of c: 1.5, 2.0, and 2.5

where higher values indicate higher levels of

relative risk aversion. CER is then calculated

as

ð15Þ CERx
f ~

ð
U Rx

f

� �
h ~yf

� 	
d ~yf

 �{1

,

where h( ỹf) is the marginal kernel yield density

(Equation 9b) for representative farm f.

Results

Optimal Coverage and Scale

For each of the index insurance contracts,

coverage and scale were optimized within the

existing GRP constraints to maximize the

difference between the CER with index

insurance and the CER with no insurance.

The optimal scale and coverage were found

simultaneously using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm (Greene;

Miranda and Fackler).9

The premium subsidy may distort crop

producers’ preferences on insurance coverage.

When the subsidy is factored into premium

rating, crop producers may choose coverage

not only based on the risk reduction that can

be achieved but also based on capturing more

premium subsidies. For this reason, actuarial-

ly fair premiums are used to evaluate empir-

ically the relationship between coverage and

scale.

For the representative farm in each county,

Tables 4a–c present optimal coverage and

scale for the three index insurance contracts

when these choice variables are constrained as

in the existing GRP contract. Results are

shown for the three different risk-aversion

levels c.

For each of the Tables 4a–c, there are 12

representative farm/index insurance combina-

tions. Recall that when coverage is uncon-

strained and premiums are actuarially fair, the

optimal scale is equal to the value of the beta

coefficient regardless of the level of risk

aversion. However, for each of the 12 repre-

sentative farm/index insurance combinations,

the beta coefficient is less than 0.90, which is

the lower bound for scale under the existing

GRP contract. To see how that constraint on

7 The actuarially fair premium is used to analyze

empirically the relationship between constrained

optimal coverage and scale. The actual premium is

used to evaluate certainty-equivalent revenue out-

comes for the various index contracts.
8 The price used for corn was the 2004 Chicago

Board of Trade June daily average price on the July

contract.

9 The BFGS algorithm is used instead of a simple

genetic algorithm (such as a gradient method) because

the convergence rate of BFGS is superlinear, which is

faster than the liner convergence rate of a gradient

method. The search directions for BFGS are often

more accurate than the gradient method, thus

allowing for fewer iterations to converge to a local

optimum. Also, the gradient method can stall before

finding a solution.
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Table 4a. Constrained Optimal Coverage, Unconstrained Optimal Coverage, Constrained

Optimal Scale, and Beta Coefficient for the Three Index Insurance Contracts When Premiums

Are Actuarially Fair (CRRA 5 1.5)

Index Insurance

Constrained Optimal

Coverage (70–90%)

Unconstrained

Optimal Coverage if

Scale 5 Beta

Coefficient

Constrained

Optimal Scale

(90–150%)

Beta

Coefficient

Bulloch County

Area Yield Index 70% 147% 90% 0.54

DSSAT Index 70% 146% 90% 0.53

CDD Index 70% 133% 90% 0.42

Coffee County

Area Yield Index 70% 173% 90% 0.69

DSSAT Index 75% 164% 90% 0.39

CDD Index 70% 148% 90% 0.62

Colquitt County

Area Yield Index 90% 147% 90% 0.75

DSSAT Index 75% 137% 90% 0.25

CDD Index 90% 138% 103% 0.68

Pierce County

Area Yield Index 70% 155% 90% 0.86

DSSAT Index 85% 157% 90% 0.62

CDD Index 70% 149% 90% 0.43

Table 4b. Constrained Optimal Coverage, Unconstrained Optimal Coverage, Constrained

Optimal Scale, and Beta Coefficient for the Three Index Insurance Contracts When Premiums

Are Actuarially Fair (CRRA 5 2)

Index Insurance

Constrained

Optimal Coverage

(70–90%)

Unconstrained Optimal

Coverage if Scale 5

Beta Coefficient

Constrained

Optimal Scale

(90–150%)

Beta

Coefficient

Bulloch County

Area Yield Index 70% 147% 90% 0.54

DSSAT Index 70% 146% 90% 0.53

CDD Index 70% 133% 90% 0.42

Coffee County

Area Yield Index 70% 173% 90% 0.69

DSSAT Index 84% 164% 90% 0.39

CDD Index 70% 148% 90% 0.62

Colquitt County

Area Yield Index 90% 147% 100% 0.75

DSSAT Index 75% 137% 90% 0.25

CDD Index 90% 138% 118% 0.68

Pierce County

Area Yield Index 70% 155% 90% 0.86

DSSAT Index 90% 157% 90% 0.62

CDD Index 72% 149% 90% 0.43
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scale affects the optimal coverage, the three

tables also show the unconstrained optimal

coverage when scale is unconstrained so that it

can be set equal to the value of the beta

coefficient.

Likewise recall that when scale is uncon-

strained and premium rates are actuarially

fair, the optimal coverage for a risk averse

policyholder is that which sets yx equal to the

maximum possible value of the index regard-

less of the level of risk aversion. This implies

an optimal coverage that will always be greater

than or equal to 100%. However, the existing

GRP program requires that 70% # coverage

# 90%.

When both coverage and scale are con-

strained, the level of constant relative risk

aversion c can affect the constrained optimal

coverage and scale. For 3 of the 12 represen-

tative farm/index insurance combinations

shown in Tables 4a–c, constrained optimal

coverage increases with the level of risk

aversion but constrained optimal scale is

unchanged. Two combinations have con-

strained optimal scale increasing with risk

aversion though constrained optimal coverage

is unchanged. Two combinations have both

constrained optimal coverage and scale in-

creasing with risk aversion. For five of the

combinations, both constrained optimal cov-

erage and scale are unchanged over the range

of constant relative risk aversion coefficients

considered.

To see the interaction between constrained,

conditionally optimized values of coverage and

scale consider the results for c 5 2 (Table 4b).

Six of the representative farm/index insurance

combinations have both optimal scale and

optimal coverage constrained by the lower

bounds of 90% and 70%, respectively. Were it

not for the lower bound on coverage, the

optimal coverage, conditioned on the con-

strained scale, would be reduced even further.

Consider a case where the optimal cover-

age, conditioned on the constrained scale, is

unconstrained. For example, in Coffee County

the beta coefficient for the DSSAT index is

0.39.

The optimal scale is constrained by the

lower bound of 90%. The optimized coverage,

conditioned on the constrained scale, is 84%.

If scale were not constrained to be higher than

Table 4c. Constrained Optimal Coverage, Unconstrained Optimal Coverage, Constrained

Optimal Scale, and Beta Coefficient for the Three Index Insurance Contracts When Premiums

Are Actuarially Fair (CRRA 5 2.5)

Index Insurance

Constrained Optimal

Coverage (70%–90%)

Unconstrained Optimal

Coverage if Scale 5

Beta Coefficient

Constrained

Optimal Scale

(90%–150%)

Beta

Coefficient

Bulloch County

Area Yield Index 70% 147% 90% 0.54

DSSAT Index 70% 146% 90% 0.53

CDD Index 70% 133% 90% 0.42

Coffee County

Area Yield Index 84% 173% 90% 0.69

DSSAT Index 90% 164% 115% 0.39

CDD Index 90% 148% 90% 0.62

Colquitt County

Area Yield Index 90% 147% 115% 0.75

DSSAT Index 75% 137% 90% 0.25

CDD Index 90% 138% 135% 0.68

Pierce County

Area Yield Index 70% 155% 90% 0.86

DSSAT Index 90% 157% 103% 0.62

CDD Index 77% 149% 90% 0.43
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desired, coverage would have been optimized

at 164%. Similar results occur for the DSSAT

index in Colquitt County and the CDD index

in Pierce County. In general, when scale is

constrained by the lower bound, the optimal

coverage is reduced to compensate for the

higher than desired scale.

Next consider a case where the beta

coefficient is less than the lower bound on

scale of 90%, and the optimal coverage,

conditioned on the constrained scale, is

constrained by the upper bound on coverage

of 90%. For example, in Colquitt County,

scale on the area yield index would be

constrained by the lower bound of 90%

because the beta coefficient is equal to 0.75.

The policyholder would choose to reduce

coverage to offset the higher scale. In this

case, however, the optimized coverage, condi-

tional on the constrained scale, would still be

higher than the 90% upper bound. When both

scale and coverage are constrained, the poli-

cyholder must make interdependent adjust-

ments to these two choice variables. To

compensate for the upper bound on coverage,

the optimal scale (conditioned on the con-

strained coverage) actually increases to 100%,

even though the beta coefficient is equal to

only 0.75. A similar outcome occurs for the

CDD index in Colquitt County.

These results demonstrate the important

interdependencies between constrained and

conditionally optimized index insurance

choice variables. Further, these results dem-

onstrate that existing constraints on GRP and

GRIP coverage and scale likely prevent

policyholders from obtaining optimal index

insurance protection. Further constraints on

these choice variables, as has been proposed

by some in the insurance industry, would

make index insurance contracts even less

attractive to potential purchasers.

Changes in Producer Well-Being

Table 5 shows, for each representative farm,

the CER without insurance and the change in

CER with index insurance (using actual

premiums with subsidies) when the choice

variables are optimized within the current

GRP constraints. Positive (negative) changes

imply that producers are better (worse) off as

a result of purchasing the specific insurance

contract. Percentage changes in CER, as a

result of insurance purchasing, are shown in

brackets.

With the exception of the CDD index in

Bulloch County, the index insurance contracts

increase CER for the representative corn farms

regardless of the level of risk aversion. The

area yield index performs best for all the

representative farms, especially at higher levels

of risk aversion. With the exception of Colquitt

County, the DSSAT index insurance contract

performs better than the simple CDD index

insurance contract. In Pierce County, when

risk aversion is low, the DSSAT index contract

generates increases in CER that are compara-

ble to that of the area yield index contract.

However, as risk aversion increases, the

optimal coverage on the Pierce County DSSAT

index contract increases whereas that on the

area yield index contract does not. This greatly

increases the cost of the DSSAT index contract

so the increase in CER is much lower for

higher levels of risk aversion.

These results suggest that, at least for some

crops and regions, when county yield data are

not available, it may be possible to base index

insurance on predicted yields from crop

simulation or weather-based production mod-

els. Further research is required to determine

how robust this finding would be across other

crops and regions.

Conclusion

This study evaluated the performance of three

index insurance contracts for corn production

in southern Georgia. The study had two

primary objectives. The first was to compare

area yield insurance with alternative index

insurance designs, such as might be required in

marginal production areas where NASS yield

data are not available. The second was to

generalize previous conceptual findings to

other index insurance contracts and demon-

strate empirically the mutually interdependent

adjustments required when binding con-

straints are imposed on coverage and scale.
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Both of these objectives are relevant in the

current public policy context. The first has

implications both for expanding the availabil-

ity of FCIP index insurance contracts and

possibly for the recent proposal to replace

existing federal income support programs with

a federally provided GRIP policy. The second

is important because some crop insurance

industry organizations have recently proposed

that more binding constraints be placed on

GRP and GRIP choice variables.

With regard to the first objective, all of the

index insurance contracts increased CER for

the representative farms except for the CDD

index for the Bulloch County representative

farm. The area yield index insurance contract

was always preferred to either of the alterna-

tives. However, in each county either the CDD

or DSSAT index insurance contracts also

provided comparable increases in CER, espe-

cially at lower levels of risk aversion. This

implies that, at least for some crops and

regions, when county yield data are not

available, it may be possible to base index

insurance on predicted yields from weather-

based production models or more sophisticat-

ed crop simulation models.

With regard to the second objective, the

study showed how constraints on index

insurance coverage and scale affect the optimal

choices of these two variables. To maximize

CER, the policyholder must simultaneously

optimize these two variables within the

constraints. If scale is constrained by a lower

bound, the optimal value of coverage will be

lower than if scale were not constrained. If

coverage is constrained by the upper bound,

the optimal value for scale will be higher than

if coverage were not constrained. Because

GRP currently has a 90% upper bound on

coverage, this explains why many purchasers

would choose a value of scale that exceeds

their beta coefficient and, in some cases,

exceeds 100%. Increasing the scale increases

the amount of indemnity paid whenever an

indemnity is triggered. This compensates, in

part, for the fact that indemnities are

triggered less often than desired because of

the upper bound on coverage. When both

choice variables are constrained, the condi-

tional optimums for each choice variable

must be determined through interdependent

adjustments. Providing policyholders with

sufficient flexibility to optimize these two

Table 5. Changes in Certainty-Equivalent Revenues (CER) Using Actual Premium Rates for

the Three Index Insurance Contracts at Three CRRA Levels

County

CER Without

Contract

Change in CER with Insurance

Area Yield Index DSSAT Index CDD Index

CRRA 5 1.5

Bulloch 177.85 11.46 (6.44%) 8.18 (4.60%) 20.15 (20.09%)

Coffee 264.57 15.93 (6.02%) 13.83 (5.23%) 13.25 (5.01%)

Colquitt 306.40 15.49 (5.06%) 5.20 (1.70%) 12.14 (3.96%)

Pierce 290.05 24.54 (8.46%) 19.74 (6.81%) 18.49 (6.37%)

CRRA 5 2

Bulloch 142.38 7.19 (5.05%) 4.69 (3.30%) 20.87 (20.61%)

Coffee 230.22 12.03 (5.22%) 11.26 (4.89%) 4.46 (1.94%)

Colquitt 282.17 16.80 (5.95%) 3.49 (1.24%) 8.17 (2.89%)

Pierce 249.82 23.59 (9.44%) 11.72 (4.69%) 10.91 (4.37%)

CRRA 5 2.5

Bulloch 115.74 4.28 (3.70%) 3.16 (2.73%) 21.41 (21.22%)

Coffee 197.89 7.81 (3.94%) 7.61 (3.84%) 1.51 (0.76%)

Colquitt 263.38 18.12 (6.88%) 2.46 (0.94%) 6.65 (2.53%)

Pierce 209.40 20.76 (9.91%) 6.53 (3.12%) 3.99 (1.91%)
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choice variables is critical for index insurance

contracts. Further constraints on these choice

variables, as has been proposed for GRP and

GRIP, would make these index insurance

contracts less attractive to potential purchas-

ers.

A limitation of this study is that represen-

tative farm yields had to be simulated based

on short-term (4 to 10 years) farm-level yields

and longer-term county-level yields. It is

unclear how robust the findings would be

across alternative data sources or alternative

procedures for simulating representative farm

yields. Further, the analysis was conducted for

only one crop in selected counties in southern

Georgia. Analyses based on additional crops

and other regions are required to test the

consistency and robustness of these findings.

[Received October 2006; Accepted June 2007.]
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