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An Internet-Based Tool for Weather Risk 
Management 
 
Calum G. Turvey and Michael Norton 
 
 This paper introduces a web-based computer program designed to evaluate weather risk man-

agement and weather insurance in the United States. The paper outlines the economics of 
weather risk in terms of agricultural production and household well-being; defines weather 
risk in terms of intensity, duration, and frequency; and illustrates the computer program use by 
comparing heat and precipitation risks at Ardmore, Oklahoma, and Ithaca, New York. 
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The pricing of weather insurance, and more gen-
erally the enumeration of weather risk, is not an 
easy task. Data are not so easily accessible, and 
assessing the data in terms of all of the possibili-
ties of risk is burdensome (Campbell and Diebold 
2003, Changnon and Changnon 1990). Further-
more the numbers of possibilities are virtually 
endless, and what might be an insurable weather 
risk at one location may not be insurable at an-
other. It is for this reason that academic research 
has focused so heavily on the general rules of 
probability that govern loss and weather insur-
ance/derivative premiums rather than on making 
broad generalized statements about application 
(Turvey 2005). 
 There are two gaps in the literature. The first is 
rudimentary. The literature on weather risk man-
agement as cited above focuses more on insur-
ability than on how weather interacts with agri-
cultural production and farm households as a 
source of risk. The idea that weather and crop 
yields represent covariate risks is taken as given 

and the effects of climate and weather variance on 
crop production has long been understood (Bard-
sley, Abey, and Davenport 1984, Changnon 2003, 
Huff and Neill 1982, Runge 1968 ). A more com-
plete understanding of how covariate risks evolve 
in a production system, even at the conceptual 
level, can provide invaluable insights to the prac-
titioner and theorist. In this paper we present such 
a model. It is not a precise model, nor are we in a 
position to empirically validate the model, but it 
does provide the requisite insight to understand-
ing covariate risk and how covariate risks interact 
with farm livelihoods to create an insurable 
condition. 
 The second gap, and the focal point of this pa-
per, is the measurement of weather risk and the 
insurability of weather risk. Despite recent inter-
est in weather insurance, the idea of insuring 
weather risk as an alternative to crop insurance is 
not new (several articles predating 2000 that 
made such propositions include Changnon and 
Changnon 1990, Gautman, Hazell, and Alderman 
1994, Quiggen 1986, Patrick 1998, Sakurai and 
Reardon 1997). Since 2000, a variety of weather 
insurance models, propositions, theorems, and 
structures have been proposed, but there is little 
agreement on how weather risk should be defined 
or how weather insurance should be priced [Ala-
ton, Djehiche, and Stillberger 2002, Alderman 
and Haque 2006, Cao and Wei 2004, Considine 
(undated), Davis 2001, Dischel 2002, Geman 1999, 
Jewson and Brix 2005, Leggio and Lien 2002, 
Muller and Grandi 2000, Nelken 1999, Richards, 
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Manfredo, and Sanders 2004, Turvey 2001, Tur-
vey 2005, Zeng 2000]. Applications of weather 
insurance in North America, Europe, and devel-
oping economies are varied and include numer-
ous important contributions to a range of issues 
including agricultural production risk, food secu-
rity, poverty alleviation, irrigation insurance, in-
tertemporal risks, and so on (Alderman and 
Haque 2006, Hao and Skees 2003, Hazell, Oram, 
and Chaherli 2001, Hazell and Skees 2006, Hess, 
Richter, and Stoppa 2002, Lacoursiere 2002, Leiva 
and Skees 2005, Mafoua and Turvey 2003, Mar-
tin, Barnett, and Coble 2001, Muller and Grandi 
2000, Skees, Hartell, and Hao 2006, Skees et al. 
2001, Stoppa and Hess 2003, Turvey, Weersink, 
and Chiang 2006, Vedenov and Barnett 2004, 
Veeramani, Maynard, and Skees 2003). 
 Part of the problem is that use of the term 
“weather risk” is far too ubiquitous, and agricul-
tural economists seeking agreement on a defini-
tion of weather risk will ultimately be disap-
pointed. As will be discussed presently, the term 
implicitly includes considerations of frequency, 
intensity, and duration. The gap extends when 
one asks “what risk?” and expands even further 
when one tries to determine, evaluate, or measure 
the risk. It is no easy task, and perhaps too much 
of the academics’ energy is used on measuring 
the risk rather than defining the risk and applying 
the risk. This is at the core of this paper. In this 
paper we describe a web-based application pro-
gram called WeatherWizard1 that was developed 
along the lines of Turvey (2001) for specific 
event temperature and precipitation risks and 
Turvey (2005) for degree-day temperature risk. 
The program accesses heat and precipitation data 
for all NOAA weather stations (currently avail-
able through 2001) in the United States and can 
be used to investigate weather-related risk and 
calculate insurance for virtually all possible single 
and multiple specific events. 
 The main contribution of this research is the 
outreach tool itself. WeatherWizard can be ac-
cessed by researchers, crop insurance specialists, 
educators, and practitioners. In a very short pe-
riod of time—measured in minutes rather than 
days or weeks—the user can select any location, 
define a specific event, and enumerate that risk. 

 
1 See www.weatherwizard.us. 

Furthermore, users can evaluate up to five joint 
precipitation and temperature risks as well as ba-
sis risk for a specific weather event for all 
weather stations within 50 miles of a specific lo-
cation. 
 The paper proceeds as follows. First we pro-
vide a conceptual overview of weather risk in the 
theory of production. Second, we focus on the 
meaning of “weather risk,” and then we describe 
in general terms the underlying philosophy of the 
computer program and the meaning of specific 
event risk. Following our conclusions, in the Ap-
pendix the program is illustrated in terms of 
screen displays and application. 
 
 
Economics and Weather Risk 
 
The central focus of this paper is the presentation 
of a web-based computer program designed for 
the measurement of weather risk. To motivate the 
need for such a program, this section outlines the 
relationships between production economics, 
weather risk, and farm livelihoods to show how 
specific weather events interact as a source of risk 
and how these risks can be mitigated using 
weather insurance. We make two assumptions. 
First we assume that the specific weather event is 
treated as a stochastic input into the production 
function, and second we assume that livelihood is 
measured in the context of a whole farm or house-
hold production function. We do not assume a 
stochastic production function that simply adds 
randomness to a deterministic function. Rather, 
we assume that the weather event creates random-
ness in the production coefficients themselves so 
that marginal productivity is endogenously ran-
dom. Keeping in mind that any production 
function will do, we start with a classical form of 
production: 
 
(1) ( ) ( ) ( ) ( ) 2

1 2 3,ω =α ω +α ω -α ωY x x x , 
 
where x is an ordinary input (e.g., fertilizer), and 
αi ( ) are random coefficients of the production 
function. If one were to assume that αi(ω) = αi + 

iωiβ + ε  is a function of some specific weather 
event ω defined over some (known or unknown) 
probability distribution function that describes the 
specific event risk, then the stochastic production 
function is 
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with expected production being 

(3) ( ) ( )
( )

1 1 2 2

2
3 3

, α +β α +β
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E Y x x

x
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Under the independence assumption, yield vari-
ance, conditional on weather risk, is defined by 

(4) ( ) (
( )

1
21 2

3 3

2 2 2 2 2 2 2
ε ω ε

2 2 2 4
ω ε

σ β σ σ β σ +σ

β σ +σ .

Y ) 2x

x

ω= + +

+

 

In words, the standard errors of the production 
coefficients comprise two influences. The first, 
we argue, is the influence of weather risk, and the 
second is an unrelated risk. It is of course as-
sumed that if weather insurance is to be viable as 
a risk management tool, then the portion of the 
standard error attributable to weather must be 
significantly and proportionately higher than the 
non-systematic risk component. In any case, 
weather risk influences the production of agri-
cultural products by causing a shift in the location 
of the production function as well as its slope and 
shape, and the nature of these risks is contingent 
on the ex ante choice of x. This choice will be 
based upon average or expected evolution of 
crop-specific weather events throughout the grow-
ing season. The interaction of ideal weather events 
with optimum input levels can lead, ex post, to 
higher yields and marginal productivity, while 
poor weather interacts to reduce marginal pro-
ductivity and yields. In other words, the produc-
tion function coefficients are random, and the final 
yield depends on the specific weather event con-
ditional on the initial deterministic choice of x. 
 The effect on total productivity due to a change 
in ω from its mean is 

(5)   
( ) ( ) ( ) ( )1 1 1 2, α α αY x

x x
∂ ω ∂ ω ∂ ω ∂ ω

= + −
∂ω ∂ω ∂ω ∂ω

. 

Because ω is a random variable, the ex post dis-
tribution of crop yields would appear as 
 

(6) . ( ) ( ) ( ) 

 
|

l

u
Y x Y f dω = ω ω ω∫

The marginal product function of ( , )Y x ω  is given 
by 
 

(7) 
( ) ( ) ( )2 3

,
α 2α

Y x
x

x
∂ ω

= ω − ω
∂

, 

 
and basing ex ante input choice on the expected 
value of ω, the expected yield-maximizing choice 
of input is 
 

  * 2

3

α ( )
2α ( )

x
ω

=
ω

. 

 
In reality, the actual marginal productivity of x is 
a stochastic function, 
 

(8) 
( ) ( ) ( )2

2 3, α α
2

Y x
x

x
∂ ω ∂ ω ∂ ω

= −
∂ ∂ω ∂ω ∂ω

, 

 
which can also be expressed as a conditional mar-
ginal product function, 
 

(9) ( ) ( )
( )

*
 l*
 u

|
MPP |

Y x
x f d

∂ ω
ω = ω

∂ω∫ ω . 

 
In other words, weather is not simply a passive 
actor in agricultural productivity, but can change 
not only the total productivity by shifting the 
production function up or down, but also the 
marginal productivity. Nor is it a simple distribu-
tion about some level of expected yields, but a 
factor that can change the shape of the production 
function throughout the range of x. The efficiency 
of production is also at risk. Given a prior choice 
of x and no bounds on 
 

  ( )iα ω , 
( )2 ,

0
Y x

x
∂ ω

<=>
∂ ∂ω

, 

 
ex post production relative to input choice can 
exhibit increasing, constant, or diminishing returns 
to scale, even though in the deterministic model, 
only diminishing marginal productivity would be 
observed. 
 We now define a weather-contingent livelihood 
function that can be thought of as a stochastic 
household production function. Its general form 
is given by 
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(10) 
 

 
[ ( ), ] [ ( ), ] ( )

u

l
H Y h Y fω ω = ω ω ω ω∫ d . 

 
Weather risk enters the livelihood function in two 
ways. First, as discussed above, agricultural pro-
ductivity is affected directly by weather risk, but 
other aspects of livelihood can also be affected. 
For example, if the farm is financially leveraged, 
short on working capital, or requires investment, 
liquidity shortfalls from adverse weather events 
can have economic impacts beyond production. 
Thus the more flexible form of weather risk man-
agement is not necessarily tied to agricultural 
productivity, but household livelihood. From this 
we can extract the coverage for a specific weather 
event by extracting from H(ω) the value for ω 
that satisfies a minimal livelihood level *( )H ω , 

* -1( )Hω = ω . Therefore, a downside weather risk 
policy will be established according to 
 
(11) { } { *E Max ,0 E Max ,0H H⎡ ⎤ }⎡ ⎤− = ψ ω −ω⎣ ⎦⎣ ⎦ , 

 
where ψ converts units of weather into units of 
currency. A convenient measure is 
 

  *

H
ψ =

ω
. 

 
It is this interaction between production and farm 
household well-being that motivates weather risk 
as an area of study and makes weather insurance 
useful. However, the actual measurement of 
weather risk is not easily accomplished. The 
characteristics of weather risk are discussed in the 
next section, and the tool developed to measure 
weather risk and weather risk insurance follows. 
 
Frequency, Duration, and Intensity of Specific 
Weather Events 
 
The preceding discussion uses the term “weather 
risk” in a very general way. It is in fact more 
complex than a simple definition of a random 
variable as described. The intent above was to 
provide a conceptual basis for the measurement 
of risks that follows. For purposes of this paper 
and the description of WeatherWizard, we will 
use for determining the expectation of loss the 
working definition that a specific event risk is 

uniquely defined at any location by the functional 
relationship between duration, frequency, and in-
tensity. Duration is a definition in time ranging 
from a day, week, month, year, or more or less. 
The model additionally uses the concept of multi-
ple events, which implies a second dimension of 
time. The first dimension therefore measures the 
period over which the weather event is to be in-
vestigated, while the second dimension is a time 
frame within that period. For example, duration 
could be measured by any non-overlapping 21-
day period between June 1 and August 31. There 
is a possibility of four non-overlapping events. If 
the event were measured on a 7-day basis, there 
could be as many as 12 non-overlapping events. 
 Frequency measures the probability scale de-
fined in terms of the frequency that the event oc-
curs over the specified duration. Frequency here 
can be based on historical fact (often referred to 
as the burn rate) or by a defined distribution (e.g., 
an assumption of log normality). 
 Intensity is a measure of scale and refers to the 
quality or condition under investigation and thus 
requires a point of reference from which quality 
can be measured and a directional indicator by 
which condition can be measured. The former 
will usually be measured by a quantitative crite-
rion such as rainfall or temperature, and the con-
dition is normally defined by whether the actual 
quantity is above or below the point of reference. 
 But the terms in their totality must remain flexi-
ble. For example, a degree-day derivative product 
is normally defined for a single event in which 
the event length equals the period over which the 
product is being measured. Extreme heat or heat 
waves regarded as a sequential number of days 
over which daily temperatures exceed a criterion 
can be defined as multiple events. Likewise, pre-
cipitation events based on daily or cumulative 
precipitation can be multiple or single events, and 
so on. 
 Care must also be taken in establishing the cri-
teria. Specificity is important. For example, we do 
not in any of our models facilitate insurance or 
risk management in terms of averages, because 
averages, unto themselves, are meaningless. Spe-
cific events as we have defined them are based 
wholly on the sequencing and timing of weather 
patterns, for which full information on the fre-
quency, duration, and intensity is required. 
 The final element is loss value. Unlike crop 
insurance, for which a measured loss can be as-
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certained by the actual weight of crop harvested 
times a price, the loss value from yield-independ-
ent weather risk is less obvious. By “yield-inde-
pendent” we mean that any payout from weather 
insurance is provided based on recognized 
weather measurements at specific weather sta-
tions rather than yield loss. It is of course as-
sumed that there is some a priori recognition that 
the weather event will be highly correlated with 
yield loss and that the loss value can be estimated 
or approximated so that volumetric loss is ap-
proximated more or less. This might allow for 
some speculation on the part of the insured, but 
such speculation does not constitute moral hazard 
or adverse selection as it is normally construed in 
the insurance literature, since the premium calcu-
lated is actuarially consistent with the weather 
event. Nonetheless, it serves little purpose to even 
consider specific events near the average since 
such insurance will ultimately be expensive and 
largely uncorrelated with yield loss. Rather, 
weather insurance should focus on events of the 
extreme, which, at least within the realm of 
memoried probability, would most surely result in 
volumetric and economic loss. For example, it 
makes little sense for an insured to select a con-
tract insuring against a heat wave based on daily 
high temperatures in excess of 75°F when loss 
does not occur until temperatures exceed 90°F, or 
a contract insuring against less than 1 inch of cu-
mulative rain over 7 days when it is known that 
the crop can withstand 21 days with no or little 
rain. 
 On this basis we use two dollar-valued meas-
urements. The first is a lump sum or binary pay-
out, which simply pays an agreed sum if the event 
occurs (regardless of intensity) and zero other-
wise. The second is a unit payout, similar to op-
tions payouts or crop insurance payments in 
which the payout for each event increases linearly 
with intensity. The binary option is simple and 
convenient and is most applicable when the event 
itself, rather than the intensity of the event, is 
what causes risk. For example, it matters not 
whether a frost event is measured at 31°F or 
20°F—the damage is still done; or if it rains less 
than 2 inches in 21 days, irrigation costs will still 
be incurred whether rainfall is 0.5 inches or 1.99 
inches. The unit payout is most useful when 
volumetric losses are known to increase with in-
tensity—for example, when crop losses increase 
proportionately (or approximately so) as crop heat 

units fall below or rise above the boundaries of 
normal crop heat units, or losses increase as cu-
mulative rain falls below a stated quantity, and 
so on. 
 
Assessing Weather Risk and Weather Risk 
Insurance with WeatherWizard 
 
We provide in the Appendix screen shots of the 
WeatherWizard program. In this section we pro-
vide, as a matter of illustration, heat and precipi-
tation insurance results obtained entirely from 
WeatherWizard. We use for our example the city 
of Ardmore, Oklahoma (Carter County), which has 
continuous daily heat and precipitation data from 
1902 to 2001. Perhaps more than this is its loca-
tion between Oklahoma City and Dallas, Texas, 
which places it centrally in the areas affected by 
the Dust Bowl activity of the 1930s, providing 
thus a historical perspective on extreme weather 
events that is represented by the data and which 
will be familiar to most readers. We compare this 
to weather risk recorded at Cornell University at 
Ithaca in central New York. 
 
Heat Insurance 
 
Insurance based on heat is far more common in 
the energy industry than found in agriculture, but 
for many agricultural commodities extreme heat 
can cause volumetric decline in yield, quality 
loss, energy consumption, and livestock death. 
The events we speak of are not ordinary events 
but, as indicated above, extreme events that per-
sist for extended periods of time. 
 Table 1 provides a summary of degree-days for 
Ardmore and Ithaca. Recall that degree-days in 
the energy industry are measured relative to 65°F 
and corn heat units relative to 50°F, but this need 
not be viewed as a meaningful economic stan-
dard. Heat stress in agriculture does not in most 
cases occur until temperatures are well in excess 
of 80°F, so it makes little sense to include tem-
peratures below the stress levels. But stress must 
also be measured relative to climate. The degree-
days measured in Table 1 are obtained by adding 
together the difference between the (91) daily 
high temperatures in excess of the degrees identi-
fied in the first column. The mean degree-days 
are provided in column 2, the standard deviation 
across years in column 3, and the historical maxi- 
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Table 1. Historical Degree-Day Comparison for Ardmore, OK, and Ithaca, NY, June 1–August 31 

Degree-Day Based on 
Degrees Fahrenheit (F)  Degree-Days Standard Deviation Maximum Minimum 

ARDMORE, OKLAHOMA 

80° 1269 246 1909 520 

85° 837 233 1454 344 

90° 458 201 1007 84 

95° 184 137 595 0 

100° 48 57 247 0 

ITHACA, NEW YORK 

80° 218 111 508 26 

85° 67 58 235 2 

90° 13 19 83 0 

95° 1.4 4.23 27 0 

100° 0.14 0.76 6 0 

Note: Degree-day measures based on temperatures above daily high temperatures ranging from 80°F to 100°F. 
 
 
 
mums and minimums in columns 4 and 5. For the 
same temperature measures the degree-days are 
strikingly different between Ardmore and Ithaca. 
In Ardmore, a southern location, for example, the 
average degree-days based on 90°F is 458 with a 
standard deviation of 201, but for Ithaca it is only 
13 with a standard deviation of 19. Clearly, any 
heat insurance policy designed for Ithaca is not 
applicable to Ardmore. 
 WeatherWizard in fact was designed with such 
differences in mind. Weather insurance cannot be 
applied in an ad hoc fashion, but must be com-
puted at each individual location. The effect is 
seen in Table 2 which provides premiums for an 
85°F degree-day excess heat contract for June 1 
through August 31 for Ardmore and Ithaca. Not 
only are insurance strike or coverage levels evalu-
ated at Ithaca irrelevant to the climatic conditions 
at Ardmore, but the cost differences are also sig-
nificant. Given the range of degree-days in Table 
1 for 85°F, it makes little sense to consider insur-
ance that is close to the mean for it is unlikely 
that economic damage would be significant at 
that level. In addition, to choose a strike of, say, 
1,000 for Ardmore or 100 for Ithaca comes at 
such a high cost because at these levels some 
amount of payment will appear in almost every 

year. It is the extreme events with low probability 
but high economic loss that matter. In Ardmore, 
considering such insurance at a strike of 1,350 or 
higher, or in Ithaca of 200 or higher, would 
probably be more sensible. This discussion also 
raises the issue of what is an extreme event. Is it a 
1 in 100 year event, 1 in 50 year event, or 1 in 10 
year event? There is no set answer but Weather-
Wizard can be used to identify the risks. 
 The use of degree-days as a measure of risk 
represents a broad seasonal measure of risk. It is 
specific only to the time frame in question (e.g., 
June 1 through August 31) and represents more or 
less the intensity of broad temperature risks such 
as a summer that is hotter than usual or cooler 
than usual. An alternative approach is to examine 
specific events. Table 3 presents results for the 
specific event of a heat wave in which the daily 
high temperature exceeds 90°F for N consecutive 
days (the event length). WeatherWizard can also 
compute risks of multiple events. For example, 
for a 7-day heat wave there are 13 possible non-
overlapping 7-day events, and for a 35-day heat 
wave there are only 2. The results in Table 3 are 
based on the maximum possible events. Again, 
one must rethink what constitutes a heat wave. A 
7-day event will occur at least once a year in 
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Table 2. Degree-Day Heat Insurance Premiums Based on 85°F Degree-Days ($1,000/degree) for 
Strike Levels of 850–1,400 Degree-Days 

ARDMORE, OKLAHOMA ITHACA, NEW YORK 

Strike Premium Strike Premium 

850 89,520 50 30,041 

900 70,270 75 20,054 

950 53,739 100 13,514 

1,000 40,307 125 8,518 

1,050 29,818 150 4,730 

1,100 21,473 175 2,108 

1,150 15,224 200 797 

1,200 9,974 225 135 

1,250 5,943   

1,300 3,339   

1,350 1,615   

1,400 573   
 
 
 
Table 3. Multiple Event Heat-Wave Frequencies (events per 100 years) Based on Daily High 
Temperatures Exceeding 90°F for N Consecutive Days and Showing Risk Differences Between 
Ardmore and Ithaca 

  Frequency of Events 

Event Length 
(days) Premium 

Percent 0 
Events 

Percent 1 
Event 

Percent 2 
Events 

Percent 3 
Events 

Percent 4 or 
More Events 

ARDMORE, OKLAHOMA 

7 7,469 0 0.0104 0.0208 0.0417 0.9271 

14 2,729 0.0625 0.1042 0.2604 0.2708 0.3021 

21 1,427 0.1667 0.3958 0.2917 0.1354 0.0104 

28 823 0.375 0.4355 0.1771 0.0104 0 

35 510 0.5521 0.3854 0.0625 0 0 

ITHACA, NEW YORK 

2 1,865 0.405 0.162 0.176 0.054 0.203 

3 757 0.608 0.189 0.122 0.014 0.067 

4 324 0.77 0.162 0.041 0.027 0 

5 95 0.92 0.068 0.014 0 0 

6 68 0.93 0.07 0 0 0 

7 27 0.97 0.03 0 0 0 

8 14 0.99 0.01 0 0 0 
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Ardmore, and in fact there is a 92.71 percent 
chance of four or more such events, but a 7-day 
event in Ithaca is extremely rare, occurring only 3 
of every 100 years. Likewise, a 9-day heat wave 
has never occurred in Ithaca (given the data avail-
able), but in Ardmore in 38 of every 100 years 
there is a possibility that daily high temperatures 
will exceed 90°F for 35 straight days, and in 6 of 
every 100 years this could occur twice. 
 When considering weather insurance one must 
also consider how agriculture has adapted to the 
climates in each region. Irrigated cotton and wheat 
in southern Oklahoma is an agricultural adapta-
tion to that region’s climate as much as dairy, or-
chards, grapes for vines, corn, and soybeans are 
an adaptive response to the climate of the north-
east. Furthermore, grain and oilseed hybrids have 
been developed for specific heat units that are 
adaptive to a region’s climate. It is when climate 
exceeds the bounds of adaptation that weather 
insurance is most valuable. 
 
Precipitation Insurance 
 
WeatherWizard also calculates an array of spe-
cific-event risks based on precipitation. Again, 
regional adaptability and differences need to be 
considered. Table 4 illustrates premiums and risk 
for cumulative rainfall between June 1 and Au-
gust 31. This is a 91-day event and is the most 
basic of precipitation insurance contracts. There 
are two insurance calculations in Table 4. The 
first is that if the event happens then a $1,000 
payment would be made. The second is based on 
a unit payout, which means that a payment is 
made on the positive difference between the cov-
erage level and actual cumulative rainfall only. 
For this reason the lump-sum insurance is more 
expensive at lower precipitation levels and less 
expensive at higher precipitation levels. 
 In Ardmore the cumulative rainfall is 9.08 inches 
with a standard deviation of 4.57 inches, while in 
Ithaca the average cumulative rainfall is 10.74 
inches with a standard deviation of 2.77 inches. 
Clearly, rainfall is less prevalent and more vari-
able in southern Oklahoma than in central New 
York. Furthermore, southern Oklahoma is far more 
drought-prone than central New York, with a 1 in 
100 year event of less than 2 inches of rain over 
the 91-day period, and a 30.3 percent chance of 
cumulative rain falling below 5 inches. In con-
trast, the data available for Ithaca indicates that in 

no year did cumulative rainfall fall below 5 
inches. In Ardmore there is a 57.58 percent chance 
of less than 9 inches of rainfall, but in Ithaca the 
chance is only 31.08 percent. For this reason the 
insurance cost for drought insurance is much 
higher in Ardmore than Ithaca, and again one 
must consider the practicality of offering drought 
insurance in an area prone to drought. 
 Table 5 provides examples of specific event 
risks for different risk criteria. The values are 
premiums based on lump sum and unit payouts as 
well as the maximum number of possible events. 
Here the specific event risk is defined by event 
lengths from 7 to 42 days. Close examination of 
the results indicate the significance of the timing 
and sequencing of rainfall in determining insur-
ance premiums for specific event risks. Reading 
across the rows it is clear that the cost of precipi-
tation insurance will increase as the event criteria 
increases. Insuring against receiving less than 
0.25 inches in any 21-day period will cost only 
$104, $636, $19.50, and $162, in comparison to a 
policy with a 2-inch requirement costing $3,071, 
$2,828, $416, and $2,541. This is simply reflect-
ing the fact that it is far less likely that cumulative 
rainfall will be less than 0.25 inches than rainfall 
would be less than 2.0 inches. Looking down each 
column reflects the temporal risk. It is far more 
likely that rainfall in any 7-day period will be less 
than 0.25 inches than in any 42-day period. 
 
Summary 
 
Space constrains all the possible considerations 
for weather insurance and weather risk manage-
ment with WeatherWizard. The degree-day de-
rivative worksheet, for example, was not pre-
sented in this paper, but a word on the pricing of 
degree-day insurance using the Black-Scholes 
model is warranted. The algorithm underlying the 
degree-day “derivative” approach is outlined in 
Turvey (2005), and in that paper considerable 
space is dedicated to a reasoned comparison of a 
number of methods, including that proposed by 
Richards, Manfredo, and Sanders (2004). It is not 
the final word for sure, for there is still consider-
able debate on the role of the market price of risk 
[assumed zero in Turvey (2005)] and the use of 
equilibrium pricing models in general. 
 Having said that, the intent of this paper was 
not to provide the mathematical or structure of 
weather insurance or derivative pricing, but to 

 



Turvey and Norton An Internet-Based Tool for Weather Risk Management   71 
 

Table 4. Seasonal Cumulative Precipitation Insurance Premiums, 91 Days, June 1–August 31, for 
Lump-Sum and Unit Payouts ($1,000/inch) 

 ARDMORE, OKLAHOMA ITHACA, NEW YORK 

Average  9.08″   10.74″  

Std Dev  4.57″   2.77″  

Less than ...  Lump Sum Unit Payout Frequency Lump Sum Unit Payout Frequency 

2″ 10.10 0.30 0.0101 0 0 0 

3″ 50.51 26.26 0.0505 0 0 0 

4″ 101.01 97.37 0.101 0 0 0 

5″ 212.12 246.77 0.2121 0 0 0 

6″ 303.03 487.78 0.303 13.51 2.97 0.0135 

7″ 383.84 838.48 0.3838 81.08 50.81 0.0811 

8″ 474.75 1276.06 0.4747 162.16 167.3 0.1622 

9″ 575.76 1798.28 0.5758 310.81 408.51 0.3108 

 
 
 
present a tool that can be used to investigate spe-
cific event weather risks and to price the value of 
mitigating such risk. Not presented in this paper 
are newer developments to the program that in-
clude two new algorithms. The first follows 
through on the definition of risk. In many circum-
stances yield loss may not be due to a single event 
but to joint events. Rust, nematodes, molds, and 
insect infestations often arise from combined 
events such as a wet spring followed by a cool 
summer, or a dry spring followed by a hot sum-
mer, and so on. Again the risk combinations are 
specific. As of the time of this writing, up to five 
separate events could be defined and the joint 
probabilities assessed. We believe that measuring 
intertemporal covariate risks such as excess heat 
jointly with rainfall shortfalls by season or event 
is clearly the next step in designing insurance in-
struments to manage weather risks. 
 The second innovation not presented in this 
paper is the evaluation of basis risk. At the time 
of writing, this particular algorithm was near 
completion. It too is important. One of the major 
concerns with weather insurance is the problem 
of basis risk, which refers to the risk differential 
between a defined location such as a farm, and 
the point of measurement or weather station. If 
there is too much variability across space and 
time, then weather insurance may not capture the 
true intended covariate risk. The WeatherWizard 

algorithm defines a radius of up to 100 miles 
around a given location (zip code) and identifies 
all weather stations within the defined circle. The 
weather station locations can be viewed using 
Google Earth. Furthermore, a regression algo-
rithm using the basis difference between the 
central location and the weather stations as the 
dependent variable, and distance, altitude differ-
ence, and directional indicators (e.g., NW, NE, 
etc.) is included to provide an explanation for the 
basis risks. 
 Finally, the emergence of weather risk manage-
ment through insurance or derivative instruments 
has given rise to a different perspective on risk 
and risk management. In production economics 
the measurement of yield risk defined by mean 
and variance is no longer standard practice. The 
impact of risks in the extreme and covariate risk 
should now be defined by specific events, and 
this is no trivial matter. As illustrated in the heat 
and precipitation examples at Ardmore, Okla-
homa, and Ithaca, New York, specific event risks 
are such that between any two locations compari-
son is useful for academic and policy purposes 
only. As a practical matter, no common statement 
of risk between the two locations can reasonably 
be asserted; the timing and sequencing and fre-
quency of specific weather event risks in Ard-
more will have a totally different effect on the 
production economy than the timing and se- 
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Table 5. Multiple Event Cumulative Rainfall Insurance ($1,000 lump sum or $1,000/inch) 

Event Length 
(days) 0.25″ 0.50″ 0.75″ 1.00″ 1.50″ 2.0″ 

ARDMORE, OKLAHOMA—UNIT PAYOUT 

7 1,584 3,369 5,341 7,380 11,809 16,505 

14 504 1,141 1,824 2,626 4,430 6,361 

21 224 521 876 1,200 2,162 3,071 

28 104 239 418 609 1,064 1,588 

35 63 150 247 362 633 952 

42 23 57 96 186 346 589 

ARDMORE, OKLAHOMA—LUMP SUM PAYMENT 

7 7,828 8,565 9,182 9,626 10,111 10,424 

14 2,798 3,293 3,747 4,162 4,566 4,949 

21 1,354 1,687 1,990 2,222 2,566 2,828 

28 636 869 1,080 1,313 1,485 1,808 

35 384 525 687 798 1,050 1,253 

42 162 232 354 475 707 879 

ITHACA, NEW YORK—UNIT PAYOUT 

7 784 2,061 3,718 5,712 10,501 16,124 

14 101 319 713 1,051 2,391 4,153 

21 19.5 64 158 245 663 1,304 

28 7.3 16 43 67 202 416 

35 2.03 6 13 15 57 157 

42 2.03 5 9 0.41 22 53 

ITHACA, NEW YORK—LUMP SUM PAYOUT 

7 5,635 7,919 9,365 10,351 11,675 12,351 

14 838 1,675 2,581 3,243 4,473 5,257 

21 162 432 676 1,000 1,932 2,541 

28 54 81 203 324 730 1,203 

35 14 27 54 81 230 486 

42 14 14 14 27 95 189 
 
 

 
quencing and probability of the same specific 
event risk defined at Ithaca. This new frontier in 
risk management demands specificity over gener-
alization in order to be meaningful. It is with this 
in mind that WeatherWizard was developed. 
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APPENDIX: The WeatherWizard Program 
 
 

 
Figure A1. WeatherWizard Main Screen 
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Figure A2. Date Selection Screen for Specific Event Risk 
Note: Indicates that the user has selected daily high temperatures as the risk to be measured, at the Cornell Weather Station, using 
data from 1926 and 2001, and over the period June 1–August 31. 
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Figure A3. Temperature Insurance Worksheet 
Note: Illustrates application of a degree-day excessive heat measure based on an 85°F standard, with strike of 200 degree-days, 
and a payout of $1,000/degree-day. 
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Figure A4. Temperature Insurance Worksheet 
Note: Illustrates excess heat risk above 85°F for four multiple events of six days in length, and the multiple event probability 
matrix. 
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Figure A5. Precipitation Insurance Worksheet 
Note: For Ithaca, NY, showing risk of cumulative rain in 21 days being less than 1 inch for up to three events and $1,000/event. 
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