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Nonparametric Bounds on Welfare with 
Measurement Error in Prices: Techniques 
for Non-Market Resource Valuation 
 
John R. Crooker 
 
 Nonparametric techniques are frequently applied in recreation demand studies when research-

ers are concerned that parametric utility specifications impart bias upon welfare estimates. A 
goal of this paper is to extend previous work on nonparametric bounds for welfare measures to 
allow for measurement errors in travel costs. Haab and McConnell (2002) state that issues in 
travel time valuation continue to be topical in the recreational demand literature. This paper 
introduces a bootstrap augmented nonparametric procedure to precisely bound welfare when 
price data contains measurement error. The technique can be extended and becomes more con-
venient relative to other approaches when more than two site visits are made by a single rec-
reationist. These techniques are demonstrated in a Monte Carlo experiment. 

 
 Key Words: nonparametrics, welfare estimation, bootstrap, recreation demand, nonmarket 

valuation 
 
 
Interest in nonparametric methods has arisen for 
several reasons in applied environmental studies. 
Among the reasons is the concern that researcher 
assumptions regarding model parameterizations 
impose potentially misspecified structure and value 
bias on the resulting welfare estimates. For exam-
ple, nonmarket valuation methods typically re-
quire the analyst to specify a functional form 
(e.g., a demand, bid, utility, or hedonic price func-
tion). In these settings, the analyst can perform 
goodness-of-fit tests or use other tools to choose 
among functional forms. However, there is rarely 
a preponderance of statistical evidence that sug-
gests the choice of one functional form over 
another. This implies that in some instances judg-
ments made by the researcher will influence 
model estimates. 
 The literature has shown that the choice of 
functional form for the demand function has had 
significant impact on the magnitude of the re-
sulting welfare estimates (Ziemer, Musser, and 
Hill 1980, Kling 1989, Ozuna, Jones, and Capps 
1993). Given this sensitivity to functional form, it 
is natural to consider whether nonparametric meth-
ods such as those refined and developed by Var-

ian (1982, 1983a, 1983b, 1984, and 1985) and 
Crooker and Kling (2000) might be of value in 
nonmarket welfare analysis. 
 Our goal in this research is to extend previous 
work on nonparametric bounds for welfare meas-
ures to allow for stochastic shock terms. For com-
pleteness, we mimic a procedure laid out in 
Crooker and Kling (2000) to construct upper and 
lower bounds on each consumer’s compensating 
variation for an environmental improvement. The 
interesting feature of this procedure is that the 
bounds are derived using only observed quantity 
and prices of visits to recreation areas without 
resorting to any parametric assumptions on de-
mand or utility. As Crooker and Kling (2000) dem-
onstrate, there is potential for the bounds to be 
policy-relevant in a contingent behavior context, 
as we are able to tighten the bounds with each 
successive data point for each individual. How-
ever, this previous analysis ignores the conse-
quences of measurement error in the formation of 
travel costs associated with the recreation site. 
 This is noteworthy because researchers assume 
that site visitors respond to changes in travel costs 
as they would to a change in admission price. 
This necessitates that the analyst be very accurate 
in measuring travel costs (Freeman 1993). In the 
applied setting, there are several issues that give 
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rise to measurement errors. Freeman (1993) 
points out that researchers assume the following: 
that the sole purpose of a trip is to visit the site, 
that all visits entail the same amount of time spent 
at the site, that no utility or disutility can be de-
rived from the trip itself, and that the wage rate is 
the relevant opportunity cost of time (or perhaps a 
fraction of it). Also, since costs incurred in trav-
eling to visit the site are likely large portions of 
the total opportunity cost, calculating these costs 
are fundamental to estimating behavioral models 
in this setting (Hotelling 1949). However, the 
researcher rarely possesses direct methods to as-
sess these costs, and much of these costs may be 
unobservable (Randall 1994). For these and re-
lated reasons, Englin and Shonkwiler (1995) for-
mulate a recreation demand model that treats 
travel costs as a latent variable. 
 Further, early studies have suggested that travel 
time to the site be included as a component of the 
implicit price of attending a site, yet the rate at 
which to value this time is not obvious (Knetsch 
1963, Scott 1965, Cesario and Knetsch 1970). Re-
cently, Hagerty and Moeltner (2005) suggested 
that misperceptions associated with the automo-
tive components of travel costs can generate mis-
specified implicit prices in recreation demand 
studies. The issue of travel time valuation contin-
ues to be topical in the recreation demand litera-
ture (Haab and McConnell 2002, Moons et al. 
2001). These issues suggest that measurement er-
ror exists in the formulation of travel costs and 
that ignoring these errors will in general result in 
biased welfare values for either a parametric or 
nonparametric approach (we demonstrate this 
bias in the section “Nonparametric Bounds in the 
Presence of Measurement Error”). 
 In this paper, we augment the bounds technique 
suggested by Crooker and Kling (2000) to incor-
porate the presence of measurement error. Fur-
ther, with the aid of Monte Carlo simulations we 
find that we can still bound true welfare with a 
high level of precision. Our technique also allows 
the researcher to examine the trade-off between 
the level of uncertainty in the travel costs and the 
resulting width of the bounds, thus allowing the 
researcher to relate the policy relevance of the 
bounds to the precision of the data. In addition, 
formulation of the bounds allows us to assess the 
consistency of traditional parametric estimation 
techniques with these true bounds on welfare. 
 The remainder of this paper is divided into five 
sections. In the next section we give an overview 

of the methodology for deriving nonparametric 
bounds on willingness to pay (WTP) for a price 
change from observed data when there is no 
measurement error (i.e., the researcher has perfect 
knowledge as to the travel costs each recreationist 
perceives). In the section “Nonparametric Bounds 
in the Presence of Measurement Error,” we ana-
lyze the impact of measurement error on the non-
parametric bounds. Subsequently we present a 
methodology to augment the nonparametric bounds 
approach that is appropriate when measurement 
error is present. The final two sections of the 
paper report the results of a Monte Carlo study to 
assess the appropriateness of the bootstrap aug-
mented nonparametric bounds approach and pre-
sents our conclusions. 
 
Using Observed Data to Compute Bounds on 
Compensating Variation 
 
Bounds Based on One Data Point for Each 
Individual 
 
Crooker and Kling (2000) illustrate a technique 
proposed by Varian (1982) to construct nonpara-
metric bounds on indifference curves. To ensure 
that bounds on compensating variation (CV) are 
truly nonparametric, these bounds must include 
the CV that would arise from any standard utility 
specification. As perfect complements and perfect 
substitutes are the bookends to the universe of 
acceptable specifications, these specifications are 
used to form the bounds on CV (Varian 1982). 
 Immediately, our focus is on bounding an indi-
vidual’s willingness to pay to receive a decrease 
in the price of attending a recreation site—that is, 
the individual’s CV. The individual’s objective is 
to maximize utility subject to a budget constraint 
by choosing combinations of a recreation good 
(v) and a composite commodity (z). Suppose that 
at initial prices the individual satisfies this objec-
tive at 0 0 0 0 0 . Let M represent 
the individual’s income level, and let 

{( , ) : , }z v z v R+=X
0 0

0 { , }z vp p=P  
and 0 { , }N N

z vp p=P  be the prices before and after 
the price change, respectively. For the cases ex-
amined below, we will consider only the case for 
a price decrease in the recreation good. This im-
plies 0 .N

z zp p=  
 Allowing preferences to span the space of 
acceptable utility specifications results in welfare 
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bounds being formed based on the extreme cases 
of perfect complements and perfect substitutes. 
That is, the true bounds on CV are 
 

(1) CV 0 0,O
N v

v

MB M M p
p

⎧ ⎛ ⎞⎪= − ⋅ −⎨ ⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

P X N ⎫⎪
⎬

                                                                                   

. 

 
The CV subscript on the term reflects the fact that 
this bound comes from bounds on CV, while the 
superscript O indicates that these bounds were 
formed only from observing the original com-
modity bundle.1

 
Bounds Based on Two Data Points for Each 
Individual 
 
There are several different ways that a researcher 
may observe multiple data points for each indi-
vidual at a particular recreation site. In the design 
of a survey instrument, contingent behavior ques-
tions may be posed to the respondent. These 
questions may elicit intended visits to a site at 
various prices. Price changes may take the form 
of access fees, licenses, or even additional access 
points (Burt and Brewer 1971). Bockstael and 
McConnell (1999) argue that respondents may 
more easily imagine facing different prices and 
other site characteristics than traditional contin-
gent behavior scenarios. Moreover, data may be 
collected on site visitation over multiple seasons 
with different prices in each season.2 As we pres-
ently explore, knowledge of additional data points 
allows us to tighten the welfare bounds. 
 An innovation presented in Crooker and Kling 
(2000) is the use of Hicksian welfare properties 
and knowledge of additional chosen commodity 
bundles at various prices to further tighten the 
bounds on CV. In particular, knowledge of a sec-
ond data point, say XN chosen at price vector PN, 
allows us to compute bounds on equivalent varia-
tion (EV) for a price change from PO to PN . This 
is relevant to our task of bounding the individ-
ual’s WTP for a price decrease because, as 
Crooker and Kling (2000) illustrate for a normal 

 
1 Crooker and Kling (2000) formally discuss the formation of this 

bound. 
2 We would like to thank the anonymous reviewer who suggested this 

application. In this application, hypothetical bias is eliminated as we 
use actual trip data. 

good, EV ≥ CV. Thus, a true upper bound on EV 
is also a true upper bound on CV. This second 
data point is an improvement if the upper bound 
on EV, call it EV

N
M , is closer to M than ( / ).N O

v vp M p  
 Equivalent variation for the price decrease is 
defined as 
 
(2) ( ) (

( )
0

0

EV , ,

, ,
N N

N

e U e U

e U M

= =

= −

P P

P
)N  

 
where  (i.e., the optimal choice 
of the composite commodity and recreation visits 
at new prices). Again, following Crooker and 
Kling (2000), if we can bound the term , 
we can bound equivalent variation for the price 
change. In other words, the term  is the 
minimum expenditure necessary at price P

( , )N N N NU U z v≡

0( , )Ne UP

0( , )Ne UP
0 to 

achieve utility level UN. As argued above, the 
highest expenditure level necessary to maintain 
utility at UN will occur if the two goods are per-
fect complements. Thus, the consumer would have 
to be guaranteed commodity bundle XN at price 
P0 to keep utility at least at UN. This implies  

EV 0
N

NM = ⋅P X . Using knowledge of both data points 
allows us to write the bounds on CV as 
 

(3)   CV 0

EV

,  
,   .

 

N
v OON N

vv

N

MM p
pB M p v Min

M M

⎧ ⎫⎛ ⎞⎛ ⎞
−⎪ ⎪⎜ ⎟⎜ ⎟

≡ −⎨ ⎬⎜ ⎟⎝ ⎠
⎪ ⎪⎜ ⎟−⎝ ⎠⎩ ⎭

 

 
The superscripts on B indicate that both points are 
used in constructing the bounds. The only para-
metric assumption we have made to this point is 
that recreation goods are a normal good (i.e., the 
income effect is nonnegative).3

 The upper bound on CV will be most concisely 
bounded by EV

N
M M−  in natural resource applica-

tions. To see this, note that the expression M – 
0( / )N

v vp M p may be equivalently expressed as 
 

  0
0 ( )N

v v
v

M p p
p

− . 

 

                                                                                    
3 See Crooker and Kling (2000) for a discussion on using the bounds 

with inferior goods. 

 



242    October 2007 Agricultural and Resource Economics Review 
 

Similarly, we may write EV
N

M M−  as 0
v Np v +  

0 .N N
z N v N z Np z p v p z− −  Given that only the price of 

the recreation good has changed, this term simpli-
fies to v v N

0( ) .Np p v− 0( / )N If v vM p M p−  is a more 
concise upper bound on CV, it must be that M – 

0( / )N
v vp M p < EV

N
M M− . However, this requires 

0 0/ ( )N
v v vM p p p− < .v v N

0( )Np p v−  That is, 0/ .N vv M p>  
The ratio of income to the original price of the 
recreation good represents the most recreation 
visits the consumer could afford if he or she 
devoted all income to recreation visits. The only 
way that v

0( / )N
vM p M p−

0N

O
i

 will be the tighter bound 
on CV is if, after the price decrease, the consumer 
takes a previously unaffordable level of trips. 
Again, in most recreation demand applications, 
this is certainly not the case, as most studies seem 
to point to small shares of income devoted to 
recreation resource use. In fact, this may suggest 
a method to check for unreliable observations. 
 
Nonparametric Bounds in the Presence of 
Measurement Error 
 
In applied scenarios, we will have collected site 
visitation data as well as socio-demographic in-
formation, which includes the price of attending a 
recreation site and income data. The nonparamet-
ric bounds, however, are not functions of income. 
This feature is demonstrated as follows. From the 
lower bound given in equation (3), note that 
 
(4)   . ( )0 0 0 0 0N NM − ⋅ = ⋅ − ⋅ = − ⋅P X P X P X P P X

 
We can rewrite this expression as 
 

(5) . 
0 0
, ,

0 0
, ,

N
v i v i i

N
z i z i i

p p v
p p z

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 
In the scenario we are investigating, there is no 
change in the price of the composite good. Thus, 
the lower bound for an individual may be simply 
stated as 
 
(6) , ,( )N O O

i v i v i i iLB p p v dp v= − − = ⋅ , 
 
where the subscript i denotes individual i in the 
sample, dp i is the individual’s price change pro-

posed in the contingent behavior survey, and  
is the number of times the individual visited the 
site before the price change. Similar to the re-
statement of the lower bound, we may also restate 
the upper bound given in equation (3) as 

O
iv

 

(7) , , ,

, ,

O N N
v i v i Ni

i iO N N
z i z i i

p p v
UB dp v

p p z

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − ⋅ =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

i

O

 
where  is the individual’s site visitation after 
the price change, assuming that the share of in-
come devoted to site visitation is not exception-
ally large. 

N
iv

 The nonparametric bounds will be valid bounds 
on compensating variation as long as the data on 
each individual is perfectly accurate, including 
the analyst’s calculation of travel costs. However, 
if the calculated implicit price of attending the 
site differs from the perceived costs to the rec-
reationist, the nonparametric bounds based on the 
data may be inaccurate. There are many reasons 
to believe that the individual does not respond 
exactly to the researcher’s calculated implicit 
price. Individuals may enjoy the drive to the rec-
reation site (scenery, wildlife viewing, interaction 
with other recreationists, etc.). They may have 
other motivations for attending the site or may 
visit multiple sites. Also, the individual may not 
weigh the opportunity cost of time as the re-
searcher has calculated (perhaps employment op-
portunities after 40 hours per week are not equal 
to or a fraction of the individual’s regular wage 
rate).4 This implies that we may model calculated 
travel costs to be of the following form: 
 
(8) , ,

O O
v i v i ip p= + ε�  and  , , ,N N N

v i v i ip p= + ε�

 
where ,

O
v ip�  and ,

N
v ip�  are the actual travel costs the 

recreationist responds to; however, they are un-
known to the analyst. Again, ,

O
v ip  and ,

N
v ip  are the 

calculated travel costs the researcher forms based 
on the collected data set, and they contain the 
noise terms O

iε  and N
iε , which represent the errors 

in implicit price calculations. If the researcher 

                                                                                    
4 Randall (1994) and McKean, Johnson, and Walsh (1995) have ques-

tioned the appropriateness of using a fraction of the wage rate as the 
relevant opportunity cost of time despite this approach being a com-
mon approach in recreation demand modeling (Freeman 1993). 
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constructs the nonparametric bounds ignoring the 
impact of any error, the bounds become 
 
(9)     ( ) ( ){ },   O O N O N O N N

i i i i i i i i i idp v v dp v v+ ε − ε + ε − ε� � . 

 
If  (and we are considering a price de-
crease), then the lower bound is mistakenly con-
structed too high by the amount (  If 

, then the upper bound is mistakenly 
constructed too low by the amount .i i i  
Thus, the incorporation of measurement error into 
the nonparametric bounds methodology implies 
that the bounds as Crooker and Kling (2000) have 
constructed them and as we have presented them 
above are not necessarily valid bounds on wel-
fare.

( )O N
i iε − ε > 0

.
0

O N Nv− ε − ε

                                                                                   

)O N O
i i ivε − ε

( )O N
i iε − ε <

( )

5 As we expect that even under a best-case 
scenario our data will contain noise, this is a trou-
bling implication. 
 Our approach to account for this noise is to 
adopt a procedure laid out by Varian (1985) to 
ensure that our nonparametric bounds retain satis-
factory coverage properties. This treatment we 
prescribe is noteworthy for several reasons. Many 
studies have explored the dilemmas inherent in 
calculating implicit prices and expressed concern 
for probable errors (Knetsch 1963, Scott 1965, 
Cesario and Knetsch 1970, Cesario 1976, McCon-
nell and Strand 1981, Bockstael, Strand, and Hane-
mann 1987, Freeman 1993, Randall 1994, Englin 
and Shonkwiler 1995); however, these studies 
have not formally addressed the effects of these 
errors on the resulting welfare estimates. More-
over, the development of the nonparametric bounds 
in the literature does not account for the likely 
errors in travel cost formations. 
 Crooker and Kling (2000) present welfare 
bounds based on three data points for each indi-
vidual in the sample and suggest that with addi-
tional data points, welfare bounds may be further 
tightened. Our purpose in this analysis is to high-
light the implications when errors exist in prices. 
The addition of more data points simply imparts 
additional stochastic terms in the bound formula-
tions. This suggests that the stochastic terms, if 

 

                                                                                   

5 As suggested by an anonymous reviewer, the Crooker and Kling 
(2000) constructed bounds are entirely appropriate if the error terms 
are identical. That is, if the measurement error in prices is equivalent 
across collected data sets, the difference in stochastic components falls 
to zero. 

correlated, will adversely influence welfare bounds 
when errors are not modeled. In these instances, 
the techniques described here remain valid. For 
this reason and interest in brevity, we do not 
consider the implications of three data points in 
the body of the paper. However, an analysis for 
three data points is included in Appendix A.6

 
Bootstrap Augmented Nonparametric 
Technique 
 
Varian (1985) suggests that the presence of 
measurement error is one possible explanation for 
detecting violations in the Weak Axiom of Cost 
Minimization (WACM) in observed firm data. 
The author develops a methodology to test the 
hypothesis that the firm data is consistent with 
WACM subject to a measurement error. The re-
searcher can then assess the level of variability in 
the observed data necessary to satisfy the propo-
sition that firms are actually satisfying WACM. 
This is the spirit of our analysis with a few de-
partures. In this paper, we are not interested at 
this point in testing the hypothesis that consumers 
minimize their expenditures subject to some stan-
dard of utility (though this is a useful exercise). 
Instead, we are interested in the effects of meas-
urement error on the width of our nonparametric 
bounds. As we have seen above, the presence of 
measurement error in the calculation of travel 
costs will imply that these bounds as currently 
formed are not always accurate. 
 We will now present a statistical methodology 
that will allow us to increase the coverage of the 
true bounds on welfare. This methodology allows 
us to maintain our claim that this technique is 
nonparametric. That is, our statistical formulation 
does not rely upon any parametric specification of 
utility structure. In a closely related production 
setting, Varian (1985) suggests taking draws from 
a normal distribution. He argues that these draws 
do not diminish the nonparametric specification 
of the firm’s production function. In traditional 
econometric demand applications, researchers 
make a parametric assumption regarding the 
structure of demand (e.g., linear) and a parametric 
assumption regarding the structure of the sto-
chastic error term (e.g., normal). Studies that fo-

 
6 Appendix A is available online at http://faculty.cmsu.edu/crooker/ 

ARER. 

 



244    October 2007 Agricultural and Resource Economics Review 
 

cus on relaxing the parametric imposition on the 
nonstochastic portion of the model while retain-
ing the parametric stochastic assumptions are of-
ten termed nonparametric (e.g., Varian 1985). 
Still other studies may focus on relaxing the pa-
rametric imposition on the stochastic portion of 
the model while retaining parametric restrictions 
on the nonstochastic component of the model, 
and term these investigations nonparametric. Our 
approach is consistent with the Varian (1985) 
nonparametric investigation. 
 We suggest extending Varian’s technique to 
this recreation demand setting. In the present con-
text, this means the researcher employs a para-
metric distributional assumption concerning the 
measurement error terms  and O

iε
N
iε . We assume 

the following: 
 

(10)  ( )
2

2

0
, ~ ,

0
O N O ON
i i

ON N

BVN
⎛ ⎛ ⎞σ σ⎛ ⎞

ε ε ⎜ ⎜ ⎟⎜ ⎟⎜ σ σ⎝ ⎠ ⎝ ⎠⎝
.
⎞
⎟⎟
⎠

                                                                                   

 
To perform the bootstrap, the researcher will need 
to specify a 
 

   
2

2 .O ON

ON N

⎛ ⎞σ σ
Σ = ⎜ ⎟

σ σ⎝ ⎠
 
However, we do not believe this specification 
will be prohibitively problematic for the applied 
researcher. This is because the researcher can use 
a range of various parameterizations of Σ. The 
bootstrap technique we present can speedily cal-
culate the new bounds even when more than two 
data points are gathered for some recreationists. 
The analytical derivation of the bounds becomes 
untractable beyond two data points, as demon-
strated in Appendix B.7 Upon examining the re-
sulting nonparametric bounds generated by this 
procedure, the researcher would need to make a 
determination as to whether or not the parame-
terization of Σ that makes the bounds no longer 
policy-relevant is a realistic possibility in the ap-
plication at hand [Varian’s (1985) work was con-
cerned with the parameterization of Σ that results 
in production decisions being consistent with the 
Weak Axiom of Cost Minimization]. We should 

 
7 Appendix B is available online at http://faculty.cmsu.edu/crooker/ 

ARER. 

also point out that the researcher could make the 
parameterization of Σ individual-specific. This is 
relevant because attitudinal questions asked in the 
survey instrument may reveal additional insights 
into how the recreationist reacts to implicit prices. 
Researchers may begin to formally investigate 
these attitudes as well. Seminal work in travel 
cost models has explored the proper calculation 
of the opportunity cost of time (Cesario 1976, 
Bockstael, Strand, and Hanemann 1987, and 
McConnell and Strand 1981). This suggests that 
the researcher could parameterize Σi on the basis 
of these attitudes. To the extent that the re-
searcher could do this accurately, it is reasonable 
to expect that the resulting nonparametric bounds 
will be further refined. 
 Succinctly, we are suggesting that the researcher 
formulate Σi based on sample estimates. Next, the 
researcher may take draws from the parametric 
distribution expressed in equation (10) above. 
This allows the researcher to construct computer-
simulated replicate samples. In the statistics lit-
erature, this process is known as the parametric 
bootstrap (Efron and Tibshirani 1993). For each 
sample replication, the researcher calculates the 
statistics of interest (in our application, this will 
be the average lower bound and upper bound). 
Doing this for many computer replications allows 
us to construct a distribution of the statistics of 
interest. Provided that our parametric distribu-
tional assumption is accurate and that we create a 
sufficiently large number of replicated samples, 
our simulated distribution will resemble the unob-
served true distribution of welfare. We will now 
formally present the parametric bootstrap proce-
dure step by step. 
 The bootstrap procedure is as follows:8

 

▪ Draw ( ) ( )( ) ( ), , 0, ~ ,0
b O b N

i i iBNV ⎛ ⎞η η Σ⎜ ⎟
⎝ ⎠

 for 

1,2, , .i n= …  
 
▪ Form  and 

. 

( ) ( ), ,b O b OO
i i ip p= + η

( ) ( ), ,b N b NN
i i ip p= + η

 

                                                                                    
8 For background on the bootstrap, see Efron and Tibshirani (1993). 
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i▪ Construct ( ) ( )b b O
i iLB dp v=  and 

. ( ) ( )b b N
i iUB dp v= i

 

▪ Calculate ( ) ( )

1

1 nb b
i

i
LB L

n =

= ∑ B  and 

( ) ( )

1

1 .
nb b

i
i

UB UB
n =

= ∑  

 
▪ Repeat the first four steps B times, storing 

the average bootstrap sample lower and up-
per bounds. 

 
▪ Order the average bootstrap sample lower 

bounds from smallest to largest and order 
the average bootstrap sample upper bounds 
from smallest to largest. 

 
▪ Use the 0.025B th-ordered average boot-

strap sample lower bound as the Bootstrap 
Augmented Nonparametric Lower Bound 
on Welfare (call it (0.025 )BLB ). Similarly, use 
the 0.975Bth-ordered average bootstrap 
sample upper bound as the Bootstrap Aug-
mented Nonparametric Upper Bound on 
Welfare (call it ( )0.975BUB ). 

 
Thus, so long as our assumption regarding the 
statistical distribution of the measurement error is 
an adequate representation and we choose B large 
enough, the resulting bootstrap augmented non-
parametric bounds on welfare will be accurate.9 
We will now investigate how accurate we may 
expect this bootstrap procedure to be in practice 
when implicit price calculations do contain errors. 
To analyze this situation completely, we must 
have a controlled environment. Thus, we propose 
the Monte Carlo study in the next section. 
 We should also point out that given the 
parametric bootstrap we have presented in this 
section, closed-form analytical percentiles of the 
sample average lower and upper bounds can be 
derived. We present these derivations in Appen-
dix C.10 Despite the existence of this closed-form 
analytical result, we find the bootstrap approach 

                                                                                    
9 Shao and Tu (1995) discuss the convergence properties of bootstrap 

techniques. 
10 Appendix C is available online at http://faculty.cmsu.edu/crooker/ 

ARER. 

important for several reasons. First, we desire to 
establish that the bootstrap procedure will gener-
ate an accurate confidence interval. The best way 
to demonstrate these good properties is to com-
pare the bootstrap results with analytical results 
when the analytical results are readily available. 
We make this comparison in Appendix C. As the 
number of data points available to the researcher 
for a collection of individuals in the sample ex-
ceeds two, analytical results are not readily avail-
able. This implies that the approach of our boot-
strap procedure is warranted. In fact, the modifi-
cation to the bootstrap procedure when three data 
points are available, which we present in Appen-
dix A, is very slight. 
 
Monte Carlo Study 
 
Design of the Study 
 
The Monte Carlo experiment is designed with the 
following three questions in mind: (i) How accu-
rate are the sample nonparametric bounds when 
the data contains analyst specification error? (ii) 
Will the use of a parametric bootstrap improve 
the accuracy of our welfare bounds when the data 
contains errors? (iii) How robust are the bootstrap 
augmented nonparametric bounds across data-
generation mechanisms? To progress towards an-
swering these questions, we assume that the ap-
plied researcher has access to a data set con-
taining a revealed preference and a stated prefer-
ence data point for each individual in the sample. 
We have in mind that the researcher may have 
undertaken a contingent behavior survey to col-
lect such data. Here we assess how well the re-
searcher could do with such a data set in accu-
rately bounding CV using the nonparametric 
bounds techniques. 
 For each sample, we calculate the actual sam-
ple nonparametric bounds on compensating varia-
tion. While this is information that the applied 
researcher does not have available, we will use 
this information to learn about the accuracy of the 
bounds technique when the data contains errors in 
implicit price calculations. Next, we calculate the 
nonparametric bounds the researcher would con-
struct if he or she assumes that the data contains 
no errors (call these bounds the “sample nonpara-
metric” bounds). Thus, comparing the actual non-
parametric bounds to the sample nonparametric 

 



246    October 2007 Agricultural and Resource Economics Review 
 

iM

iM

iM

bounds allows us to assess the accuracy of the 
bounds technique when errors in implicit price 
calculations are ignored. 
 Finally, for each sample, we will calculate the 
nonparametric bounds the researcher would gen-
erate when employing the bootstrap procedure 
discussed above to account for the errors in travel 
costs. Comparing these sample bootstrap nonpara-
metric bounds with the actual nonparametric 
bounds again allows us to assess the accuracy of 
this bootstrap augmented nonparametric bounds 
technique. Further, comparing the bounds to the 
simple sample nonparametric bounds allows us to 
investigate the increased width due to correcting 
for errors in travel costs. 
 We will also calculate the true compensating 
variation for each sample as we know precisely 
the form of recreation demand. Again, the re-
searcher would not have access to this informa-
tion, yet it is interesting to note it here, in judging 
the proximity of the various bounds techniques to 
the true welfare values. 
 To learn about the robustness of the techniques 
we present, we will use three different data-gen-
erating mechanisms. Each of the mechanisms are 
standard parametric demand functions. They are 
 

(11) log-linear:  ,ln( ) ln( ) ln( ),i v iv p= α +β + γ�

  semi-log:  and ,ln( ) ,i v iv p= α +β ⋅ + γ ⋅�

  linear:  , ,i v iv p= α +β ⋅ + γ ⋅�

 
where the Greek letters correspond to parameters. 
These demand functions were chosen because of 
their common use in recreation demand model-
ing. The variables ,v ip� , Mi, and vi are the per-
ceived price of site visits to recreationist i (i.e., 
the price that recreationist i is actually reacting to 
in making decisions), recreationist i’s income, 
and recreationist i’s site visits, respectively. Prices 
and income differ across individuals in the sam-
ple. Actual implicit price was selected at random 
according to a uniform distribution over the range 
of (5, 55). Income was selected at random accord-
ing to a uniform distribution for each individual 
over the range of (5000, 85,000). Note that this 
structure implies that preferences are analogous 
across individuals. The only reason that site visi-

tations vary across individuals is that the values 
of price and income differ.11

 In the linear specification, the parameters α, β, 
and γ are 6.72, -0.004, and 0.00002, respectively. 
The semi-log model parameters α, β, and γ are 
1.234903, -0.004, and 0.00002, respectively. Fi-
nally, the log-linear model parameters α, β, and γ 
are 2.028294, -0.004, and 0.00002. 
 To mimic the information that the researcher 
will have available, we form , ,v i v i i . This 
stochastic price reflects the portion of implicit 
price calculated in error by the researcher. The 
researcher observes only ,

p p= + ε�

,O
v ip  , ,N

v ip  Mi,  and ,O
iv

.N
iv  The superscripts O and N reflect that the re-

searcher has knowledge of two data points from 
each individual. Each data point is generated in 
the manner stated above. 
 The εi represents the calculation error. The dis-
tribution of the measurement error was set to be 
 

(12)  0~ ,0

O
i
N
i

BVNε ⎛ ⎞⎛ ⎞ ⎛ ⎞ Σ⎜ ⎟⎜ ⎟⎜ ⎟ε ⎝ ⎠⎝ ⎠ ⎝ ⎠
 
for all 1, 2, , .i n= …  The n represents the number 
of observations in the sample and was set at 1,000 
throughout this experiment. Also, the variance-
covariance matrix was specified as 
 

  

2
2

2
2 2 ,

4 .

4 2

i
i

i v
i i

ip

σ⎡ ⎤σ⎢ ⎥
Σ = ⎢ ⎥σ σ⎢ ⎥

⎢ ⎥⎣ ⎦

�  

 
To explore the consequences of the level of vari-
ability in the measurement error on the nonpara-
metric bounds, we used three different levels for 
 

  iσ  1 1 1, ,
40 20 10

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

                                                                                   

 

 
This first setting, for example, ensures us that the 
observed implicit price (or implicit price calcu-
lated by the researcher) is within 7.5 percent of 

 
11 A methodology that is consistent with neoclassical utility theory 

and allows for differing preferences across individuals within the same 
utility structure would be a random parameters model. For simplicity 
we do not explore the consequences of random parameters on the non-
parametric bounds. 
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the actual price (i.e., the implicit price the indi-
vidual actually responds to) for 99 percent of the 
simulated observations (according to the 3-sigma 
rule). The highest setting ensures us that the ob-
served implicit price is within 30 percent of the 
actual price for 99 percent of the simulated ob-
servations. Note that in all cases, the correlation 
between individual specific errors in travel costs 
was set at 0.5. We generated 1,000 samples based 
on a population with these characteristics. These 
settings give us the sample data that the re-
searcher has available. However, the researcher 
observes neither the parameters nor the εi’s and 
does not know the structure of the model that 
generates the data set. 
 The results of the Monte Carlo experiment are 
presented in Tables 1 through 3. The columns of 
the tables report the true parameterization of the 
distribution on the measurement error. The col-
umns headed by an “L” contain information per-
taining to the lower bound, while the columns 
headed by a “U” refer to upper bounds. The rows 
titled “Actual nonparametric bounds of sampled 
individuals” are the nonparametric bounds we 
would derive if we observed the individual data 
without measurement error. The rows labeled 
“Sample nonparametric bounds” list the bounds 
derived with the nonparametric technique if we 
ignore the presence of errors in implicit price 
formations. The “Bootstrap Technique” section of 
the tables report the resulting bounds after em-
ploying the bootstrap augmented technique de-
scribed above. The rows in this portion of the 
table refer to the parameterization of the bootstrap 
errors [see equation (10) above]. 
 Before we begin analyzing the “accuracy” of 
the nonparametric bounds techniques, there are a 
few points that should be made. Though the true 
data-generating mechanisms range over the pos-
sibilities of linear, log-linear, and semi-log de-
mand specifications, in all cases we compare the 
nonparametric bounds techniques to the true non-
parametric bounds. That is, the range of possible 
welfare values from each parametric specification 
is a proper subset of the true nonparametric 
bounds. Thus, comparing the sample nonparamet-
ric bounds technique to the true nonparametric 
bounds is setting a high standard (in fact, it is the 
highest standard, as it is sufficiently general to 
cover all possible utility structures even if prefer-
ences are not uniform across the population). The 

reason we feel that this is appropriate is because 
in typical applications of these techniques, the re-
searcher will not know the true underlying param-
eterization of demand. This implies that the actual 
welfare coverage of the nonparametric techniques 
are guaranteed to be at least as high as the per-
formance reported here. 
 In Tables 1 through 3, we find that the boot-
strap technique does result in a widening of the 
nonparametric bounds formed when measurement 
error is ignored. In fact, we see that ignoring 
measurement error results in bounds that do not 
accurately reflect the actual bounds on welfare. 
The bootstrap technique results in accurate bounds 
being formed when the bootstrapped error vari-
ability is at least as high as the actual variability 
in errors. These findings hold in all three demand 
specifications considered, and we expect this to 
be the case in general. In this Monte Carlo study, 
the cost of ignoring errors may not seem large, as 
the sample nonparametric bounds are “close” to 
the actual nonparametric bounds. However, no-
tice that as the magnitude of the error increases, 
the sample nonparametric bounds ignoring errors 
do worse. As indicated in the design of the Monte 
Carlo section above, price ranged from $5 to $55 
for all individuals in the sample. In settings that 
have a high degree of uncertainty in prices, we 
would anticipate poorer performance when errors 
are ignored. The appealing feature is that as we 
model these errors in the bootstrap augmented 
technique, we are able to construct accurate wel-
fare bounds. 
 
How Accurate Are the Nonparametric Bounds 
When Measurement Error Is Ignored? 
 
Tables 4 through 6 list the percentage of times the 
sample and bootstrapped sample bounds correctly 
contain the true bounds on CV. The row labeled 
“Sample nonparametric bounds” contains infor-
mation pertaining to the accuracy of the sample 
nonparametric bounds when measurement error is 
present but ignored. The columns of the tables 
report the true dispersion in recreation site visits. 
The best the sample bounds do in terms of accu-
rately bounding true CV is a 0.3 percent accuracy 
performance for the case of the semi-log demand 
setting. In all the log-linear and the two lower 
variance cases in the linear formulations, the 
sample bounds fail to contain the true bounds in 
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Table 1. Linear Demand and Bounds Value 
 Actual dispersion coefficient (σi) 

 
,(1/ 40)i vp iσ = �

 ,(1/ 20)i vp iσ = �
 ,(1/10)i vpσ = � i  

 L U L U L U 

Actual nonparametric bounds of sampled 
individuals 

120.66 129.71 126.06 135.53 125.04 134.26 

Sample nonparametric bounds 120.65 129.70 126.05 135.53 125.08 134.30 

Bootstrap Technique 

ρ = 0.1 119.17 131.28 124.49 137.21 123.52 135.97 

ρ = 0.5 119.45 130.98 124.79 136.88 123.82 135.65 
,(1/ 40)i v ipσ =

i

i

 

ρ = 0.9 119.83 130.57 125.19 136.45 124.22 135.23 

ρ = 0.1 117.70 132.87 122.93 138.89 121.96 137.65 

ρ = 0.5 118.26 132.26 123.53 138.24 122.56 137.00 
,(1/ 20)i vpσ =  

ρ = 0.9 119.02 131.44 124.33 137.38 123.36 136.15 

ρ = 0.1 114.75 136.05 119.80 142.24 118.84 141.00 

ρ = 0.5 115.88 134.82 121.01 140.96 120.04 139.71 
,(1/10)i vpσ =  

ρ = 0.9 117.39 133.20 122.60 139.23 121.64 137.99 

 
 
Table 2. Log-Linear Demand and Bounds Value 

 Actual dispersion coefficient (σi) 

 
,(1/ 40)i vp iσ = �

 ,(1/ 20)i vp iσ = �
 ,(1/10)i vpσ = � i  

 L U L U L U 

Actual nonparametric bounds of sampled 
individuals 

119.64 119.97 114.86 115.18 108.58 108.88 

Sample nonparametric bounds 119.63 119.96 114.88 115.20 108.58 108.88 

Bootstrap Technique 

ρ = 0.1 118.22 121.35 113.55 116.53 107.30 110.16 

ρ = 0.5 118.49 121.08 113.81 116.27 107.55 109.91 
,(1/ 40)i v ipσ =

i

i

 

ρ = 0.9 118.85 120.73 114.15 115.93 107.87 109.58 

ρ = 0.1 116.82 122.75 112.22 117.86 106.02 111.43 

ρ = 0.5 117.36 122.21 112.73 117.34 106.51 110.94 
,(1/ 20)i vpσ =  

ρ = 0.9 118.08 121.50 113.41 116.67 107.17 110.29 

ρ = 0.1 114.01 125.54 109.54 120.51 103.45 113.96 

ρ = 0.5 115.09 124.46 110.57 119.49 104.44 113.00 
,(1/10)i vpσ =  

ρ = 0.9 116.5 123.03 111.93 118.13 105.76 111.70 

 
 

 
all 1,000 simulations. Clearly, this illustrates that 
errors in travel costs may have a serious impact 
on the accuracy of the sample nonparametric 

bounds. This suggests that methods to account for 
this error are an appropriate avenue of investiga-
tion. 
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Table 3. Semi-Log Demand and Bounds Value 
 Actual dispersion coefficient (σi) 

 
,(1/ 40)i vp iσ = �

 ,(1/ 20)i vp iσ = �
 ,(1/10)i vpσ = � i  

 L U L U L U 

Actual nonparametric bounds of sampled 
individuals 

142.03 153.45 132.17 141.81 120.65 130.08 

Sample nonparametric bounds 142.01 153.44 132.14 141.90 120.69 134.71 

Bootstrap Technique 

ρ = 0.1 138.50 156.92 128.88 145.12 117.33 138.04 

ρ = 0.5 138.50 156.93 128.88 145.12 117.33 138.04 
,(1/ 40)i v ipσ =

i

i

 

ρ = 0.9 138.50 156.93 128.88 145.12 117.33 138.03 

ρ = 0.1 134.99 160.41 125.63 148.34 113.96 141.39 

ρ = 0.5 134.99 160.40 125.63 148.35 113.96 141.38 
,(1/ 20)i vpσ =  

ρ = 0.9 134.99 160.42 125.63 148.35 113.96 141.37 

ρ = 0.1 124.44 170.86 115.86 158.00 103.87 151.40 

ρ = 0.5 124.44 170.87 115.86 158.02 103.87 151.34 
,(1/10)i vpσ =  

ρ = 0.9 124.44 170.87 115.86 158.04 103.87 151.38 

 
Table 4. Linear Demand and Bounds Accuracy 

 Actual dispersion (σi) 

 
,(1/ 40)i vp iσ = �

 ,(1/ 20)i vp iσ = �
 ,(1/10)i vpσ = � i  

 % Correct % Correct % Correct 

Sample nonparametric bounds 0.0 0.0 0.1 

Bootstrap Technique 

ρ = 0.1 98.3 76.3 46.3 

ρ = 0.5 95.0 65.6 38.6 
,(1/ 40)i v ipσ =

i

i

 

ρ = 0.9 82.0 50.8 25.9 

ρ = 0.1 100.0 98.0 76.4 

ρ = 0.5 100.0 94.4 66.3 
,(1/ 20)i vpσ =  

ρ = 0.9 99.1 80.7 49.3 

ρ = 0.1 100.0 100.0 97.7 

ρ = 0.5 100.0 100.0 94.2 
,(1/10)i vpσ =  

ρ = 0.9 100.0 98.9 81.9 

 
 
Does the Bootstrap Augmented Nonparametric 
Bounds Technique Improve the Accuracy and at 
What Cost? 
 
Tables 4 through 6 also contain the performance 
of the Bootstrap Augmented Nonparametric Bounds 
Technique (BANBT). The rows in the Bootstrap 

Technique section contain the specification of the 
Σ matrix regarding the parametrization of ( ,O

iε  
)N

iε . That is, 
 

(13) ( ) ( )0, ~ ,0
O N
i i BVN ⎛ ⎞,ε ε Σ⎜ ⎟

⎝ ⎠
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Table 5. Log-Linear Demand and Bounds Accuracy 
 Actual dispersion (σi) 

 
,(1/ 40)i vp iσ = �

 ,(1/ 20)i vp iσ = �
 ,(1/10)i vpσ = � i  

 % Correct % Correct % Correct 

Sample nonparametric bounds 0.0 0.0 0.0 

Bootstrap Technique 

ρ = 0.1 99.1 77.4 46.6 

ρ = 0.5 96.6 66.6 38.0 
,(1/ 40)i v ipσ =

i

i

 

ρ = 0.9 83.9 48.9 26.9 

ρ = 0.1 100.0 98.6 78.6 

ρ = 0.5 100.0 94.8 69.2 
,(1/ 20)i vpσ =  

ρ = 0.9 99.4 81.3 49.7 

ρ = 0.1 100.0 100.0 98.6 

ρ = 0.5 100.0 100.0 95.0 
,(1/10)i vpσ =  

ρ = 0.9 100.0 99.2 83.0 

 
Table 6. Semi-Log Demand and Bounds Accuracy 

 Actual dispersion (σi) 

 
,(1/ 40)i vp iσ = �

 ,(1/ 20)i vp iσ = �
 ,(1/10)i vpσ = � i  

 % Correct % Correct % Correct 

Sample nonparametric bounds 0.3 0.2 0.1 

Bootstrap Technique 

ρ = 0.1 98.7 76.4 44.6 

ρ = 0.5 95.6 67.7 35.7 
,(1/ 40)i v ipσ =

i

i

 

ρ = 0.9 84.7 52.3 24.4 

ρ = 0.1 100.0 98.0 77.2 

ρ = 0.5 100.0 93.1 66.9 
,(1/ 20)i vpσ =  

ρ = 0.9 99.6 80.7 49.0 

ρ = 0.1 100.0 100.0 98.3 

ρ = 0.5 100.0 100.0 94.2 
,(1/10)i vpσ =  

ρ = 0.9 100.0 98.9 82.2 

 
 
where 
 

  . 
2

2

O O

O N N

σ ρσ σ⎛ ⎞
Σ = ⎜ ⎟ρσ σ σ⎝ ⎠

N

 
In over 50 percent of the cases examined, the 
BANBT contained actual sample CV upper and 
lower bounds at least at the desired 95 percent 

rate. Further, in all cases the BANBT more 
precisely bounded the CV bounds than the non-
parametric sample bounds. Also, in every in-
stance where the BANBT used a level of variance 
that was greater than the true level of variability, 
the BANBT accurately bounded the true CV 
bounds in every simulated sample. This perform-
ance suggests that the technique is reliable. How-
ever, the increased accuracy in bounding the true 
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CV bounds comes at some cost. The cost of im-
proved accuracy is increased width in the bounds. 
 Examining the tables, we notice that as the 
researcher allows for greater correlation between 
errors, the bounds on CV narrow. If we recon-
sider equation (9), we see that the bounds are 
affected by the difference in error terms. Hence, 
as the correlation increases, the variability in the 
bounds actually decreases. Thus, allowing for 
greater correlation is equivalent to imposing 
smaller variability on our augmented bounds. 
 We also calculated the percentage reduction in 
the lower bound and percentage increase in the 
upper bound from the actual CV bounds.12 We 
found that when the BANBT supposes a rela-
tively small level of site visitation variability, the 
bounds are off at most by 2.8 percent of the true 
levels. However, if site visitation variability is 
relatively high, the lower bounds are reduced by 
up to 13.9 percent, while the upper bound is raised 
by up to 12.4 percent (these extremes were ob-
served in the semi-log formulation). Ultimately, 
the expense of the BANBT approach hinges on 
the dollar value of policy relevance. However, 
this analysis suggests that the researcher could 
create bounds based on several parameterizations 
of Σ. Thus, the trade-off between precision and 
uncertainty in the data can be formally stated. If 
the data suggest that a relatively high degree of 
error is possible or that some peculiar aspects 
exist to specifying the implicit prices, one may 
choose a parameterization that conveys a higher 
degree of uncertainty. 
 
How Robust Are the Nonparametric Bounds to 
Various Data-Generating Mechanisms? 
 
The Monte Carlo study above suggests that the 
BANBT does well in all the parameterizations we 
explored. This suggests that there is potential for 
the BANBT to be quite robust. Further, this result 
is not surprising. The BANBT methodology is 
based on theoretical foundations that include all 
possible utility structures. The bootstrap augmen-
tation ensures that the resulting bounds include 
the potential for error to be present in the data. 
 
 

 
12 In the interest of space, tables showing this are not included in this 

manuscript but are available from the author. 

Conclusions 
 
Our focus in this study is to investigate the likely 
usefulness of nonparametric bounds techniques in 
an applied setting. The Crooker and Kling (2000) 
study suggests that there is potential for the tech-
nique to be useful. However, this previous work 
did not explore the consequences of errors in the 
calculation of travel costs, which are sure to plague 
almost every applied travel cost estimation study 
(Randall 1994). Thus, the contribution of this in-
vestigation is twofold. First, we laid out the ef-
fects of the error theoretically and concluded that 
the nonparametric techniques developed in the lit-
erature are not necessarily correct. More signifi-
cantly, we presented a methodology to augment 
the nonparametric approach that regains the accu-
racy of the nonparametric bounds techniques. 
 An interesting feature of this methodology is 
that these bounds are accurate regardless of the 
true underlying demand behavior. Further, it is 
not necessary for the researcher to assume that 
people are identical in any sense. As the results of 
the Monte Carlo study also suggest, these features 
imply that the techniques are likely to be quite 
robust. 
 The findings are generally positive concerning 
the techniques explored. We do see that an impli-
cation of the presence of the miscalculation error 
is wider bounds on CV. Thus, there is increased 
potential for the bounds to be uninformative from 
a policy perspective. However, the researcher is 
able to formally state the relationship between the 
precision of the welfare bounds and the level of 
uncertainty in the data. These findings suggest 
that applying the nonparametric techniques to 
empirical data sets would be fruitful. 
 Further, an interesting direction for new re-
search would be to scrutinize the performance of 
parametric demand specifications and consistency 
with the nonparametric bounds on welfare. An-
other topic of investigation is to explore the im-
pact of measurement error in site visitations. 
These errors could be due to recall error, etc. Ad-
ditionally, the bootstrap methodology presented 
above is well-equipped to explore the implica-
tions of correlation across individuals in the sam-
ple. For example, Larson and Shaikh (2004) de-
velop a methodology for estimating the marginal 
value of time. They suggest that some individuals 
are able to vary work time at the margin while 
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others lack this opportunity. They also find that 
empirical evidence exists that suggests recreation 
demand models must treat these distinct groups of 
workers differently in the calculation of implicit 
prices. This suggests that implicit prices are likely 
to be correlated across individuals in these sub-
groups. There is potential that the bootstrap aug-
mented nonparametric bounds could be further 
refined to account for this correlation. 
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