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Nonparametric Bounds on Welfare with
Measurement Error in Prices: Techniques
for Non-Market Resource Valuation

John R. Crooker

Nonparametric techniques are frequently applied in recreation demand studies when research-
ers are concerned that parametric utility specifications impart bias upon welfare estimates. A
goal of this paper is to extend previous work on nonparametric bounds for welfare measures to
allow for measurement errors in travel costs. Haab and McConnell (2002) state that issues in
travel time valuation continue to be topical in the recreational demand literature. This paper
introduces a bootstrap augmented nonparametric procedure to precisely bound welfare when
price data contains measurement error. The technique can be extended and becomes more con-
venient relative to other approaches when more than two site visits are made by a single rec-
reationist. These techniques are demonstrated in a Monte Carlo experiment.

Key Words: nonparametrics, welfare estimation, bootstrap, recreation demand, nonmarket

valuation

Interest in nonparametric methods has arisen for
several reasons in applied environmental studies.
Among the reasons is the concern that researcher
assumptions regarding model parameterizations
impose potentially misspecified structure and value
bias on the resulting welfare estimates. For exam-
ple, nonmarket valuation methods typically re-
quire the analyst to specify a functional form
(e.g., a demand, bid, utility, or hedonic price func-
tion). In these settings, the analyst can perform
goodness-of-fit tests or use other tools to choose
among functional forms. However, there is rarely
a preponderance of statistical evidence that sug-
gests the choice of one functional form over
another. This implies that in some instances judg-
ments made by the researcher will influence
model estimates.

The literature has shown that the choice of
functional form for the demand function has had
significant impact on the magnitude of the re-
sulting welfare estimates (Ziemer, Musser, and
Hill 1980, Kling 1989, Ozuna, Jones, and Capps
1993). Given this sensitivity to functional form, it
is natural to consider whether nonparametric meth-
ods such as those refined and developed by Var-
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ian (1982, 1983a, 1983b, 1984, and 1985) and
Crooker and Kling (2000) might be of value in
nonmarket welfare analysis.

Our goal in this research is to extend previous
work on nonparametric bounds for welfare meas-
ures to allow for stochastic shock terms. For com-
pleteness, we mimic a procedure laid out in
Crooker and Kling (2000) to construct upper and
lower bounds on each consumer’s compensating
variation for an environmental improvement. The
interesting feature of this procedure is that the
bounds are derived using only observed quantity
and prices of visits to recreation areas without
resorting to any parametric assumptions on de-
mand or utility. As Crooker and Kling (2000) dem-
onstrate, there is potential for the bounds to be
policy-relevant in a contingent behavior context,
as we are able to tighten the bounds with each
successive data point for each individual. How-
ever, this previous analysis ignores the conse-
quences of measurement error in the formation of
travel costs associated with the recreation site.

This is noteworthy because researchers assume
that site visitors respond to changes in travel costs
as they would to a change in admission price.
This necessitates that the analyst be very accurate
in measuring travel costs (Freeman 1993). In the
applied setting, there are several issues that give
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rise to measurement errors. Freeman (1993)
points out that researchers assume the following:
that the sole purpose of a trip is to visit the site,
that all visits entail the same amount of time spent
at the site, that no utility or disutility can be de-
rived from the trip itself, and that the wage rate is
the relevant opportunity cost of time (or perhaps a
fraction of it). Also, since costs incurred in trav-
eling to visit the site are likely large portions of
the total opportunity cost, calculating these costs
are fundamental to estimating behavioral models
in this setting (Hotelling 1949). However, the
researcher rarely possesses direct methods to as-
sess these costs, and much of these costs may be
unobservable (Randall 1994). For these and re-
lated reasons, Englin and Shonkwiler (1995) for-
mulate a recreation demand model that treats
travel costs as a latent variable.

Further, early studies have suggested that travel
time to the site be included as a component of the
implicit price of attending a site, yet the rate at
which to value this time is not obvious (Knetsch
1963, Scott 1965, Cesario and Knetsch 1970). Re-
cently, Hagerty and Moeltner (2005) suggested
that misperceptions associated with the automo-
tive components of travel costs can generate mis-
specified implicit prices in recreation demand
studies. The issue of travel time valuation contin-
ues to be topical in the recreation demand litera-
ture (Haab and McConnell 2002, Moons et al.
2001). These issues suggest that measurement er-
ror exists in the formulation of travel costs and
that ignoring these errors will in general result in
biased welfare values for either a parametric or
nonparametric approach (we demonstrate this
bias in the section “Nonparametric Bounds in the
Presence of Measurement Error”).

In this paper, we augment the bounds technique
suggested by Crooker and Kling (2000) to incor-
porate the presence of measurement error. Fur-
ther, with the aid of Monte Carlo simulations we
find that we can still bound true welfare with a
high level of precision. Our technique also allows
the researcher to examine the trade-off between
the level of uncertainty in the travel costs and the
resulting width of the bounds, thus allowing the
researcher to relate the policy relevance of the
bounds to the precision of the data. In addition,
formulation of the bounds allows us to assess the
consistency of traditional parametric estimation
techniques with these true bounds on welfare.

The remainder of this paper is divided into five
sections. In the next section we give an overview
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of the methodology for deriving nonparametric
bounds on willingness to pay (WTP) for a price
change from observed data when there is no
measurement error (i.e., the researcher has perfect
knowledge as to the travel costs each recreationist
perceives). In the section “Nonparametric Bounds
in the Presence of Measurement Error,” we ana-
lyze the impact of measurement error on the non-
parametric bounds. Subsequently we present a
methodology to augment the nonparametric bounds
approach that is appropriate when measurement
error is present. The final two sections of the
paper report the results of a Monte Carlo study to
assess the appropriateness of the bootstrap aug-
mented nonparametric bounds approach and pre-
sents our conclusions.

Using Observed Data to Compute Bounds on
Compensating Variation

Bounds Based on One Data Point for Each
Individual

Crooker and Kling (2000) illustrate a technique
proposed by Varian (1982) to construct nonpara-
metric bounds on indifference curves. To ensure
that bounds on compensating variation (CV) are
truly nonparametric, these bounds must include
the CV that would arise from any standard utility
specification. As perfect complements and perfect
substitutes are the bookends to the universe of
acceptable specifications, these specifications are
used to form the bounds on CV (Varian 1982).

Immediately, our focus is on bounding an indi-
vidual’s willingness to pay to receive a decrease
in the price of attending a recreation site—that is,
the individual’s CV. The individual’s objective is
to maximize utility subject to a budget constraint
by choosing combinations of a recreation good
(v) and a composite commodity (z). Suppose that
at initial prices the individual satisfies this objec-
tive at X, ={(zy,v,):z,,v, €R,}. Let M represent
the individual’s income level, and let P, ={p’, p’}
and P,={p",p"} be the prices before and after
the price change, respectively. For the cases ex-
amined below, we will consider only the case for
a price decrease in the recreation good. This im-
plies p!=p..

Allowing preferences to span the space of
acceptable utility specifications results in welfare
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bounds being formed based on the extreme cases
of perfect complements and perfect substitutes.
That is, the true bounds on CV are

M
R ——

v

The CV subscript on the term reflects the fact that
this bound comes from bounds on CV, while the
superscript O indicates that these bounds were
formed only from observing the original com-
modity bundle.'

Bounds Based on Two Data Points for Each
Individual

There are several different ways that a researcher
may observe multiple data points for each indi-
vidual at a particular recreation site. In the design
of a survey instrument, contingent behavior ques-
tions may be posed to the respondent. These
questions may elicit intended visits to a site at
various prices. Price changes may take the form
of access fees, licenses, or even additional access
points (Burt and Brewer 1971). Bockstael and
McConnell (1999) argue that respondents may
more easily imagine facing different prices and
other site characteristics than traditional contin-
gent behavior scenarios. Moreover, data may be
collected on site visitation over multiple seasons
with different prices in each season.” As we pres-
ently explore, knowledge of additional data points
allows us to tighten the welfare bounds.

An innovation presented in Crooker and Kling
(2000) is the use of Hicksian welfare properties
and knowledge of additional chosen commodity
bundles at various prices to further tighten the
bounds on CV. In particular, knowledge of a sec-
ond data point, say Xy chosen at price vector Py,
allows us to compute bounds on equivalent varia-
tion (EV) for a price change from P, to Py. This
is relevant to our task of bounding the individ-
ual’s WTP for a price decrease because, as
Crooker and Kling (2000) illustrate for a normal

! Crooker and Kling (2000) formally discuss the formation of this
bound.

2 We would like to thank the anonymous reviewer who suggested this
application. In this application, hypothetical bias is eliminated as we
use actual trip data.
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good, EV > CV. Thus, a true upper bound on EV
is also a true upper bound on CV. This second
data point is an improvement if the upper bound
onEV, call it M v ,is closer to M than p (M / p?).

Equivalent variation for the price decrease is
defined as

) EV =e(P,U,)=e(P,,U,)

where U, =U,(z,,v,) (i.e., the optimal choice
of the composite commodity and recreation visits
at new prices). Again, following Crooker and
Kling (2000), if we can bound the term e(P,,U,) ,
we can bound equivalent variation for the price
change. In other words, the term e(P,,U, ) is the
minimum expenditure necessary at price P, to
achieve utility level Uy. As argued above, the
highest expenditure level necessary to maintain
utility at Uy will occur if the two goods are per-
fect complements. Thus, the consumer would have
to be guaranteed commodity bundle Xy at price
Py to keep utility at least at Uy. This implies
MY, =P, -X, . Using knowledge of both data points
allows us to write the bounds on CV as

M
M-p| =5 |,
(3) B = <M-pv,, Min {pvo)

MY, -M

The superscripts on B indicate that both points are
used in constructing the bounds. The only para-
metric assumption we have made to this point is
that recreation goods are a normal good (i.e., the
income effect is nonnegative).’

The upper bound on CV will be most concisely
bounded by M —M in natural resource applica-
tions. To see this, note that the expression M —
pY (M / p°) may be equivalently expressed as

M ;
—(p!=p)).
p

v

3 See Crooker and Kling (2000) for a discussion on using the bounds
with inferior goods.
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Similarly, we may write Miw-M as pov, +
piz, —plv,— p’z,. Given that only the price of
the recreation good has changed, this term simpli-
fies to (p!—pY)v,. If M—p"(M/p]) is a more
concise upper bound on CV, it must be that M —
pY(M/p))< M —M . However, this requires
M/p)(p)-p;)<(p]-p))v,. Thatis, v, >M/p].
The ratio of income to the original price of the
recreation good represents the most recreation
visits the consumer could afford if he or she
devoted all income to recreation visits. The only
way that M — p* (M / p?) will be the tighter bound
on CV is if, after the price decrease, the consumer
takes a previously unaffordable level of trips.
Again, in most recreation demand applications,
this is certainly not the case, as most studies seem
to point to small shares of income devoted to
recreation resource use. In fact, this may suggest
a method to check for unreliable observations.

Nonparametric Bounds in the Presence of
Measurement Error

In applied scenarios, we will have collected site
visitation data as well as socio-demographic in-
formation, which includes the price of attending a
recreation site and income data. The nonparamet-
ric bounds, however, are not functions of income.
This feature is demonstrated as follows. From the
lower bound given in equation (3), note that

“4) M_PN'Xo:Po'Xo_PN'Xo:(Po_PN)'XO'

We can rewrite this expression as

(5) p\(:),i _ p\f\,]i ) V,-O

pg,i p?,’i Zzp
In the scenario we are investigating, there is no
change in the price of the composite good. Thus,

the lower bound for an individual may be simply
stated as

(6) LB, = _(pf-\,/i - va,i)ViO =dp, - Vio 5

where the subscript i denotes individual 7 in the
sample, dp, is the individual’s price change pro-
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posed in the contingent behavior survey, and v’
is the number of times the individual visited the
site before the price change. Similar to the re-
statement of the lower bound, we may also restate
the upper bound given in equation (3) as

0 N N

g . V!
p;}l - p‘;\}l ’ [ INJ =dpy,",
b D Z;

where v is the individual’s site visitation after
the price change, assuming that the share of in-
come devoted to site visitation is not exception-
ally large.

The nonparametric bounds will be valid bounds
on compensating variation as long as the data on
each individual is perfectly accurate, including
the analyst’s calculation of travel costs. However,
if the calculated implicit price of attending the
site differs from the perceived costs to the rec-
reationist, the nonparametric bounds based on the
data may be inaccurate. There are many reasons
to believe that the individual does not respond
exactly to the researcher’s calculated implicit
price. Individuals may enjoy the drive to the rec-
reation site (scenery, wildlife viewing, interaction
with other recreationists, etc.). They may have
other motivations for attending the site or may
visit multiple sites. Also, the individual may not
weigh the opportunity cost of time as the re-
searcher has calculated (perhaps employment op-
portunities after 40 hours per week are not equal
to or a fraction of the individual’s regular wage
rate).* This implies that we may model calculated
travel costs to be of the following form:

(7) UB =

i

0 _~0 , .0 N _ =N | N
(8) Py =D,,;tE and P, =P, TE,

where p’ and p are the actual travel costs the
recreationist responds to; however, they are un-
known to the analyst. Again, p’ and p” are the
calculated travel costs the researcher forms based
on the collected data set, and they contain the
noise terms ¢/ and ¢, which represent the errors
in implicit price calculations. If the researcher

4 Randall (1994) and McKean, Johnson, and Walsh (1995) have ques-
tioned the appropriateness of using a fraction of the wage rate as the
relevant opportunity cost of time despite this approach being a com-
mon approach in recreation demand modeling (Freeman 1993).
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constructs the nonparametric bounds ignoring the
impact of any error, the bounds become

) {dpy’ + (el =& W', dpy + (e - )}

If (¢ —¢")>0 (and we are considering a price de-
crease), then the lower bound is mistakenly con-
structed too high by the amount (g’ —¢')v’. If
(e’ —€") <0, then the upper bound is mistakenly
constructed too low by the amount —(g” —&")v".
Thus, the incorporation of measurement error into
the nonparametric bounds methodology implies
that the bounds as Crooker and Kling (2000) have
constructed them and as we have presented them
above are not necessarily valid bounds on wel-
fare.’ As we expect that even under a best-case
scenario our data will contain noise, this is a trou-
bling implication.

Our approach to account for this noise is to
adopt a procedure laid out by Varian (1985) to
ensure that our nonparametric bounds retain satis-
factory coverage properties. This treatment we
prescribe is noteworthy for several reasons. Many
studies have explored the dilemmas inherent in
calculating implicit prices and expressed concern
for probable errors (Knetsch 1963, Scott 1965,
Cesario and Knetsch 1970, Cesario 1976, McCon-
nell and Strand 1981, Bockstael, Strand, and Hane-
mann 1987, Freeman 1993, Randall 1994, Englin
and Shonkwiler 1995); however, these studies
have not formally addressed the effects of these
errors on the resulting welfare estimates. More-
over, the development of the nonparametric bounds
in the literature does not account for the likely
errors in travel cost formations.

Crooker and Kling (2000) present welfare
bounds based on three data points for each indi-
vidual in the sample and suggest that with addi-
tional data points, welfare bounds may be further
tightened. Our purpose in this analysis is to high-
light the implications when errors exist in prices.
The addition of more data points simply imparts
additional stochastic terms in the bound formula-
tions. This suggests that the stochastic terms, if

° As suggested by an anonymous reviewer, the Crooker and Kling
(2000) constructed bounds are entirely appropriate if the error terms
are identical. That is, if the measurement error in prices is equivalent
across collected data sets, the difference in stochastic components falls
to zero.
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correlated, will adversely influence welfare bounds
when errors are not modeled. In these instances,
the techniques described here remain valid. For
this reason and interest in brevity, we do not
consider the implications of three data points in
the body of the paper. However, an analysis for
three data points is included in Appendix A.°

Bootstrap Augmented Nonparametric
Technique

Varian (1985) suggests that the presence of
measurement error is one possible explanation for
detecting violations in the Weak Axiom of Cost
Minimization (WACM) in observed firm data.
The author develops a methodology to test the
hypothesis that the firm data is consistent with
WACM subject to a measurement error. The re-
searcher can then assess the level of variability in
the observed data necessary to satisfy the propo-
sition that firms are actually satisfying WACM.
This is the spirit of our analysis with a few de-
partures. In this paper, we are not interested at
this point in testing the hypothesis that consumers
minimize their expenditures subject to some stan-
dard of utility (though this is a useful exercise).
Instead, we are interested in the effects of meas-
urement error on the width of our nonparametric
bounds. As we have seen above, the presence of
measurement error in the calculation of travel
costs will imply that these bounds as currently
formed are not always accurate.

We will now present a statistical methodology
that will allow us to increase the coverage of the
true bounds on welfare. This methodology allows
us to maintain our claim that this technique is
nonparametric. That is, our statistical formulation
does not rely upon any parametric specification of
utility structure. In a closely related production
setting, Varian (1985) suggests taking draws from
a normal distribution. He argues that these draws
do not diminish the nonparametric specification
of the firm’s production function. In traditional
econometric demand applications, researchers
make a parametric assumption regarding the
structure of demand (e.g., linear) and a parametric
assumption regarding the structure of the sto-
chastic error term (e.g., normal). Studies that fo-

® Appendix A is available online at http:/faculty.cmsu.edu/crooker/
ARER.
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cus on relaxing the parametric imposition on the
nonstochastic portion of the model while retain-
ing the parametric stochastic assumptions are of-
ten termed nonparametric (e.g., Varian 1985).
Still other studies may focus on relaxing the pa-
rametric imposition on the stochastic portion of
the model while retaining parametric restrictions
on the nonstochastic component of the model,
and term these investigations nonparametric. Our
approach is consistent with the Varian (1985)
nonparametric investigation.

We suggest extending Varian’s technique to
this recreation demand setting. In the present con-
text, this means the researcher employs a para-
metric distributional assumption concerning the
measurement error terms ¢’ and ¢ . We assume
the following:

o _N 0 ?7 ON
S

To perform the bootstrap, the researcher will need
to specify a

However, we do not believe this specification
will be prohibitively problematic for the applied
researcher. This is because the researcher can use
a range of various parameterizations of X. The
bootstrap technique we present can speedily cal-
culate the new bounds even when more than two
data points are gathered for some recreationists.
The analytical derivation of the bounds becomes
untractable beyond two data points, as demon-
strated in Appendix B.” Upon examining the re-
sulting nonparametric bounds generated by this
procedure, the researcher would need to make a
determination as to whether or not the parame-
terization of X that makes the bounds no longer
policy-relevant is a realistic possibility in the ap-
plication at hand [Varian’s (1985) work was con-
cerned with the parameterization of X that results
in production decisions being consistent with the
Weak Axiom of Cost Minimization]. We should

7 Appendix B is available online at http:/faculty.cmsu.edu/crooker/
ARER.
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also point out that the researcher could make the
parameterization of X individual-specific. This is
relevant because attitudinal questions asked in the
survey instrument may reveal additional insights
into how the recreationist reacts to implicit prices.
Researchers may begin to formally investigate
these attitudes as well. Seminal work in travel
cost models has explored the proper calculation
of the opportunity cost of time (Cesario 1976,
Bockstael, Strand, and Hanemann 1987, and
McConnell and Strand 1981). This suggests that
the researcher could parameterize Z; on the basis
of these attitudes. To the extent that the re-
searcher could do this accurately, it is reasonable
to expect that the resulting nonparametric bounds
will be further refined.

Succinctly, we are suggesting that the researcher
formulate X; based on sample estimates. Next, the
researcher may take draws from the parametric
distribution expressed in equation (10) above.
This allows the researcher to construct computer-
simulated replicate samples. In the statistics lit-
erature, this process is known as the parametric
bootstrap (Efron and Tibshirani 1993). For each
sample replication, the researcher calculates the
statistics of interest (in our application, this will
be the average lower bound and upper bound).
Doing this for many computer replications allows
us to construct a distribution of the statistics of
interest. Provided that our parametric distribu-
tional assumption is accurate and that we create a
sufficiently large number of replicated samples,
our simulated distribution will resemble the unob-
served true distribution of welfare. We will now
formally present the parametric bootstrap proce-
dure step by step.

The bootstrap procedure is as follows:®

* Draw (nf.b)'o,nf.l’)”v) ~ BNV((O),Z,) for

0
i=12,...,n.
= Form p"=p°+n" and
P =pl

8 For background on the bootstrap, see Efron and Tibshirani (1993).
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= Construct LB"” =dp!"v and
UB" = dpv .

J— 1 n
» Calculate 28" ==> LB" and
n =i

uB"” =13 uB.
ni=y

= Repeat the first four steps B times, storing
the average bootstrap sample lower and up-
per bounds.

* Order the average bootstrap sample lower
bounds from smallest to largest and order
the average bootstrap sample upper bounds
from smallest to largest.

* Use the 0.025B™-ordered average boot-
strap sample lower bound as the Bootstrap
Augmented Nonparametric Lower Bound
on Welfare (call it LBmss ). Similarly, use
the 0.975B"-ordered average bootstrap
sample upper bound as the Bootstrap Aug-
mented Nonparametric Upper Bound on
Welfare (call it ﬁ(nmss) )

Thus, so long as our assumption regarding the
statistical distribution of the measurement error is
an adequate representation and we choose B large
enough, the resulting bootstrap augmented non-
parametric bounds on welfare will be accurate.’
We will now investigate how accurate we may
expect this bootstrap procedure to be in practice
when implicit price calculations do contain errors.
To analyze this situation completely, we must
have a controlled environment. Thus, we propose
the Monte Carlo study in the next section.

We should also point out that given the
parametric bootstrap we have presented in this
section, closed-form analytical percentiles of the
sample average lower and upper bounds can be
derived. We present these derivations in Appen-
dix C."° Despite the existence of this closed-form
analytical result, we find the bootstrap approach

% Shao and Tu (1995) discuss the convergence properties of bootstrap
techniques.

1% Appendix C is available online at http://faculty.cmsu.edu/crooker/
ARER.
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important for several reasons. First, we desire to
establish that the bootstrap procedure will gener-
ate an accurate confidence interval. The best way
to demonstrate these good properties is to com-
pare the bootstrap results with analytical results
when the analytical results are readily available.
We make this comparison in Appendix C. As the
number of data points available to the researcher
for a collection of individuals in the sample ex-
ceeds two, analytical results are not readily avail-
able. This implies that the approach of our boot-
strap procedure is warranted. In fact, the modifi-
cation to the bootstrap procedure when three data
points are available, which we present in Appen-
dix A, is very slight.

Monte Carlo Study
Design of the Study

The Monte Carlo experiment is designed with the
following three questions in mind: (i) How accu-
rate are the sample nonparametric bounds when
the data contains analyst specification error? (ii)
Will the use of a parametric bootstrap improve
the accuracy of our welfare bounds when the data
contains errors? (iii) How robust are the bootstrap
augmented nonparametric bounds across data-
generation mechanisms? To progress towards an-
swering these questions, we assume that the ap-
plied researcher has access to a data set con-
taining a revealed preference and a stated prefer-
ence data point for each individual in the sample.
We have in mind that the researcher may have
undertaken a contingent behavior survey to col-
lect such data. Here we assess how well the re-
searcher could do with such a data set in accu-
rately bounding CV wusing the nonparametric
bounds techniques.

For each sample, we calculate the actual sam-
ple nonparametric bounds on compensating varia-
tion. While this is information that the applied
researcher does not have available, we will use
this information to learn about the accuracy of the
bounds technique when the data contains errors in
implicit price calculations. Next, we calculate the
nonparametric bounds the researcher would con-
struct if he or she assumes that the data contains
no errors (call these bounds the “sample nonpara-
metric” bounds). Thus, comparing the actual non-
parametric bounds to the sample nonparametric
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bounds allows us to assess the accuracy of the
bounds technique when errors in implicit price
calculations are ignored.

Finally, for each sample, we will calculate the
nonparametric bounds the researcher would gen-
erate when employing the bootstrap procedure
discussed above to account for the errors in travel
costs. Comparing these sample bootstrap nonpara-
metric bounds with the actual nonparametric
bounds again allows us to assess the accuracy of
this bootstrap augmented nonparametric bounds
technique. Further, comparing the bounds to the
simple sample nonparametric bounds allows us to
investigate the increased width due to correcting
for errors in travel costs.

We will also calculate the true compensating
variation for each sample as we know precisely
the form of recreation demand. Again, the re-
searcher would not have access to this informa-
tion, yet it is interesting to note it here, in judging
the proximity of the various bounds techniques to
the true welfare values.

To learn about the robustness of the techniques
we present, we will use three different data-gen-
erating mechanisms. Each of the mechanisms are
standard parametric demand functions. They are

(11) log-linear: In(v,) =a+BIn(p,,)+vIn(M,),

semi-log: In(v,)=a+B-p,, +y-M,, and

linear: v,=a+B-p,, +v-M,,

where the Greek letters correspond to parameters.
These demand functions were chosen because of
their common use in recreation demand model-
ing. The variables p,,, M; and v; are the per-
ceived price of site visits to recreationist i (i.e.,
the price that recreationist 7 is actually reacting to
in making decisions), recreationist i’s income,
and recreationist i’s site visits, respectively. Prices
and income differ across individuals in the sam-
ple. Actual implicit price was selected at random
according to a uniform distribution over the range
of (5, 55). Income was selected at random accord-
ing to a uniform distribution for each individual
over the range of (5000, 85,000). Note that this
structure implies that preferences are analogous
across individuals. The only reason that site visi-
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tations vary across individuals is that the values
of price and income differ."

In the linear specification, the parameters o, 3,
and y are 6.72, -0.004, and 0.00002, respectively.
The semi-log model parameters o, 3, and y are
1.234903, -0.004, and 0.00002, respectively. Fi-
nally, the log-linear model parameters o, 3, and y
are 2.028294, -0.004, and 0.00002.

To mimic the information that the researcher
will have available, we form p, =p . +¢,. This
stochastic price reflects the portion of implicit
price calculated in error by the researcher. The
researcher observes only p’, p', M, v’, and
v". The superscripts O and N reflect that the re-
searcher has knowledge of two data points from
each individual. Each data point is generated in
the manner stated above.

The ¢; represents the calculation error. The dis-
tribution of the measurement error was set to be

() (G)=)

for all i=1,2,...,n. The n represents the number

(12)

of observations in the sample and was set at 1,000
throughout this experiment. Also, the variance-
covariance matrix was specified as

2
o’ %
~2
Z‘: cs‘z sz P,
4 2

To explore the consequences of the level of vari-
ability in the measurement error on the nonpara-
metric bounds, we used three different levels for

11 1]
G, b} B .
‘ (40 20°10

This first setting, for example, ensures us that the
observed implicit price (or implicit price calcu-
lated by the researcher) is within 7.5 percent of

""" A methodology that is consistent with neoclassical utility theory
and allows for differing preferences across individuals within the same
utility structure would be a random parameters model. For simplicity
we do not explore the consequences of random parameters on the non-
parametric bounds.
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the actual price (i.e., the implicit price the indi-
vidual actually responds to) for 99 percent of the
simulated observations (according to the 3-sigma
rule). The highest setting ensures us that the ob-
served implicit price is within 30 percent of the
actual price for 99 percent of the simulated ob-
servations. Note that in all cases, the correlation
between individual specific errors in travel costs
was set at 0.5. We generated 1,000 samples based
on a population with these characteristics. These
settings give us the sample data that the re-
searcher has available. However, the researcher
observes neither the parameters nor the g;’s and
does not know the structure of the model that
generates the data set.

The results of the Monte Carlo experiment are
presented in Tables 1 through 3. The columns of
the tables report the true parameterization of the
distribution on the measurement error. The col-
umns headed by an “L” contain information per-
taining to the lower bound, while the columns
headed by a “U” refer to upper bounds. The rows
titled “Actual nonparametric bounds of sampled
individuals” are the nonparametric bounds we
would derive if we observed the individual data
without measurement error. The rows labeled
“Sample nonparametric bounds” list the bounds
derived with the nonparametric technique if we
ignore the presence of errors in implicit price
formations. The “Bootstrap Technique” section of
the tables report the resulting bounds after em-
ploying the bootstrap augmented technique de-
scribed above. The rows in this portion of the
table refer to the parameterization of the bootstrap
errors [see equation (10) above].

Before we begin analyzing the “accuracy” of
the nonparametric bounds techniques, there are a
few points that should be made. Though the true
data-generating mechanisms range over the pos-
sibilities of linear, log-linear, and semi-log de-
mand specifications, in all cases we compare the
nonparametric bounds techniques to the true non-
parametric bounds. That is, the range of possible
welfare values from each parametric specification
is a proper subset of the true nonparametric
bounds. Thus, comparing the sample nonparamet-
ric bounds technique to the true nonparametric
bounds is setting a high standard (in fact, it is the
highest standard, as it is sufficiently general to
cover all possible utility structures even if prefer-
ences are not uniform across the population). The
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reason we feel that this is appropriate is because
in typical applications of these techniques, the re-
searcher will not know the true underlying param-
eterization of demand. This implies that the actual
welfare coverage of the nonparametric techniques
are guaranteed to be at least as high as the per-
formance reported here.

In Tables 1 through 3, we find that the boot-
strap technique does result in a widening of the
nonparametric bounds formed when measurement
error is ignored. In fact, we see that ignoring
measurement error results in bounds that do not
accurately reflect the actual bounds on welfare.
The bootstrap technique results in accurate bounds
being formed when the bootstrapped error vari-
ability is at least as high as the actual variability
in errors. These findings hold in all three demand
specifications considered, and we expect this to
be the case in general. In this Monte Carlo study,
the cost of ignoring errors may not seem large, as
the sample nonparametric bounds are “close” to
the actual nonparametric bounds. However, no-
tice that as the magnitude of the error increases,
the sample nonparametric bounds ignoring errors
do worse. As indicated in the design of the Monte
Carlo section above, price ranged from $5 to $55
for all individuals in the sample. In settings that
have a high degree of uncertainty in prices, we
would anticipate poorer performance when errors
are ignored. The appealing feature is that as we
model these errors in the bootstrap augmented
technique, we are able to construct accurate wel-
fare bounds.

How Accurate Are the Nonparametric Bounds
When Measurement Error Is Ignored?

Tables 4 through 6 list the percentage of times the
sample and bootstrapped sample bounds correctly
contain the true bounds on CV. The row labeled
“Sample nonparametric bounds” contains infor-
mation pertaining to the accuracy of the sample
nonparametric bounds when measurement error is
present but ignored. The columns of the tables
report the true dispersion in recreation site visits.
The best the sample bounds do in terms of accu-
rately bounding true CV is a 0.3 percent accuracy
performance for the case of the semi-log demand
setting. In all the log-linear and the two lower
variance cases in the linear formulations, the
sample bounds fail to contain the true bounds in
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Table 1. Linear Demand and Bounds Value

Actual dispersion coefficient (c;)

c,=(1/40)p,, c,=(1/20)p,,; c;, =(1/10)p,;

L U L U L U
Actual nonparametric bounds of sampled 120.66 129.71 126.06 135.53 125.04 134.26

individuals
Sample nonparametric bounds 120.65 129.70 126.05 135.53 125.08 134.30
Bootstrap Technique

o, =(1/40)p, . p=0.1 119.17 131.28 124.49 137.21 123.52 135.97
4 p=0.5 119.45 130.98 124.79 136.88 123.82 135.65
p=0.9 119.83 130.57 125.19 136.45 124.22 135.23
c,=(1/20)p, , p=0.1 117.70 132.87 122.93 138.89 121.96 137.65
4 p=0.5 118.26 132.26 123.53 138.24 122.56 137.00
p=09 119.02 131.44 124.33 137.38 123.36 136.15
c,=1/10)p,, p=0.1 114.75 136.05 119.80 142.24 118.84 141.00
4 p=0.5 115.88 134.82 121.01 140.96 120.04 139.71
p=0.9 117.39 133.20 122.60 139.23 121.64 137.99

Table 2. Log-Linear Demand and Bounds Value

Actual dispersion coefficient (c;)

c,=(1/40)p,,; c,=(1/20)p,,; c; =(l/10)p,;

L u L 6] L 6]
Actual nonparametric bounds of sampled 119.64 119.97 114.86 115.18 108.58 108.88

individuals
Sample nonparametric bounds 119.63 119.96 114.88 115.20 108.58 108.88
Bootstrap Technique

c,=(1/40)p,, p=0.1 118.22 121.35 113.55 116.53 107.30 110.16
p=0.5 118.49 121.08 113.81 116.27 107.55 109.91
p=0.9 118.85 120.73 114.15 115.93 107.87 109.58
c,=(1/20)p,, p=0.1 116.82 122.75 112.22 117.86 106.02 111.43
p=0.5 117.36 122.21 112.73 117.34 106.51 110.94
p=0.9 118.08 121.50 113.41 116.67 107.17 110.29
c,=(/10)p,, p=0.1 114.01 125.54 109.54 120.51 103.45 113.96
p=0.5 115.09 124.46 110.57 119.49 104.44 113.00
p=09 116.5 123.03 111.93 118.13 105.76 111.70

all 1,000 simulations. Clearly, this illustrates that ~ bounds. This suggests that methods to account for
errors in travel costs may have a serious impact  this error are an appropriate avenue of investiga-
on the accuracy of the sample nonparametric  tion.
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Table 3. Semi-Log Demand and Bounds Value
Actual dispersion coefficient (c;)
c,=(1/40)p,, c,=(1/20)p,, o, =(1/10)p,,
L U L U L U
Actual nonparametric bounds of sampled 142.03 153.45 132.17 141.81 120.65 130.08
individuals
Sample nonparametric bounds 142.01 153.44 132.14 141.90 120.69 134.71
Bootstrap Technique
c,=(1/40)p,, p=0.1 138.50 156.92 128.88 145.12 117.33 138.04
’ p=0.5 138.50 156.93 128.88 145.12 117.33 138.04
p=0.9 138.50 156.93 128.88 145.12 117.33 138.03
c,=(1/20)p,, p=0.1 134.99 160.41 125.63 148.34 113.96 141.39
’ p=0.5 134.99 160.40 125.63 148.35 113.96 141.38
p=0.9 134.99 160.42 125.63 148.35 113.96 141.37
c,=(1/10)p,, p=0.1 124.44 170.86 115.86 158.00 103.87 151.40
’ p=0.5 124.44 170.87 115.86 158.02 103.87 151.34
p=0.9 124.44 170.87 115.86 158.04 103.87 151.38
Table 4. Linear Demand and Bounds Accuracy
Actual dispersion (o;)
c,=(1/40)p,, c,=(1/20)p,,; c;, =(1/10)p,;
% Correct % Correct % Correct
Sample nonparametric bounds 0.0 0.0 0.1
Bootstrap Technique
o,=(1/40)p, , p=0.1 98.3 76.3 46.3
4 p=0.5 95.0 65.6 38.6
p=09 82.0 50.8 25.9
o,=(1/20)p,, p=0.1 100.0 98.0 76.4
‘ p=0.5 100.0 94.4 66.3
p=09 99.1 80.7 49.3
o,=1/10)p,, p=0.1 100.0 100.0 97.7
‘ p=0.5 100.0 100.0 94.2
p=0.9 100.0 98.9 81.9

Does the Bootstrap Augmented Nonparametric
Bounds Technique Improve the Accuracy and at

What Cost?

Tables 4 through 6 also contain the performance
of the Bootstrap Augmented Nonparametric Bounds
Technique (BANBT). The rows in the Bootstrap

Technique section contain the specification of the
¥ matrix regarding the parametrization of (g,
¢'). That is,

(13)

(e0,€))~ BVN((

0
0

),Z),



250  October 2007 Agricultural and Resource Economics Review

Table 5. Log-Linear Demand and Bounds Accuracy

Actual dispersion (o;)

G, = (1/40)1‘3",1' G; = (1/20)]3” G, = (1/10)}3‘,7,-
% Correct % Correct % Correct
Sample nonparametric bounds 0.0 0.0 0.0

Bootstrap Technique

c,=(1/40)p, p=0.1 99.1 77.4 46.6
4 p=0.5 96.6 66.6 38.0

p=09 83.9 489 26.9

o, =(1/20)p,, p=0.1 100.0 98.6 78.6
4 p=0.5 100.0 94.8 69.2

p=09 99.4 813 497

o, =(1/10)p,, p=0.1 100.0 100.0 98.6
4 p=0.5 100.0 100.0 95.0

p=09 100.0 99.2 83.0

Table 6. Semi-Log Demand and Bounds Accuracy

Actual dispersion (o;)

c,=(/40)p,, o, =(1/20)p,, o, =(1/10)p,,
% Correct % Correct % Correct
Sample nonparametric bounds 0.3 0.2 0.1

Bootstrap Technique

o, =(1/40)p,, p=0.1 98.7 76.4 44.6
’ p=0.5 95.6 67.7 35.7
p=09 84.7 52.3 24.4
o, =(1/20)p,, p=0.1 100.0 98.0 7722
’ p=0.5 100.0 93.1 66.9
p=09 99.6 80.7 49.0
o, =(1/10)p,, p=0.1 100.0 100.0 98.3
’ p=0.5 100.0 100.0 94.2
p=09 100.0 98.9 82.2
where rate. Further, in all cases the BANBT more
precisely bounded the CV bounds than the non-
( s po, GJ"J parametric sample bounds. Also, in every in-
X= 5 stance where the BANBT used a level of variance
PG,Oy Gy

that was greater than the true level of variability,
the BANBT accurately bounded the true CV
In over 50 percent of the cases examined, the bounds in every simulated sample. This perform-
BANBT contained actual sample CV upper and  ance suggests that the technique is reliable. How-
lower bounds at least at the desired 95 percent ever, the increased accuracy in bounding the true
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CV bounds comes at some cost. The cost of im-
proved accuracy is increased width in the bounds.
Examining the tables, we notice that as the
researcher allows for greater correlation between
errors, the bounds on CV narrow. If we recon-
sider equation (9), we see that the bounds are
affected by the difference in error terms. Hence,
as the correlation increases, the variability in the
bounds actually decreases. Thus, allowing for
greater correlation is equivalent to imposing
smaller variability on our augmented bounds.

We also calculated the percentage reduction in
the lower bound and percentage increase in the
upper bound from the actual CV bounds.” We
found that when the BANBT supposes a rela-
tively small level of site visitation variability, the
bounds are off at most by 2.8 percent of the true
levels. However, if site visitation variability is
relatively high, the lower bounds are reduced by
up to 13.9 percent, while the upper bound is raised
by up to 12.4 percent (these extremes were ob-
served in the semi-log formulation). Ultimately,
the expense of the BANBT approach hinges on
the dollar value of policy relevance. However,
this analysis suggests that the researcher could
create bounds based on several parameterizations
of X. Thus, the trade-off between precision and
uncertainty in the data can be formally stated. If
the data suggest that a relatively high degree of
error is possible or that some peculiar aspects
exist to specifying the implicit prices, one may
choose a parameterization that conveys a higher
degree of uncertainty.

How Robust Are the Nonparametric Bounds to
Various Data-Generating Mechanisms?

The Monte Carlo study above suggests that the
BANBT does well in all the parameterizations we
explored. This suggests that there is potential for
the BANBT to be quite robust. Further, this result
is not surprising. The BANBT methodology is
based on theoretical foundations that include all
possible utility structures. The bootstrap augmen-
tation ensures that the resulting bounds include
the potential for error to be present in the data.

"2 In the interest of space, tables showing this are not included in this
manuscript but are available from the author.
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Conclusions

Our focus in this study is to investigate the likely
usefulness of nonparametric bounds techniques in
an applied setting. The Crooker and Kling (2000)
study suggests that there is potential for the tech-
nique to be useful. However, this previous work
did not explore the consequences of errors in the
calculation of travel costs, which are sure to plague
almost every applied travel cost estimation study
(Randall 1994). Thus, the contribution of this in-
vestigation is twofold. First, we laid out the ef-
fects of the error theoretically and concluded that
the nonparametric techniques developed in the lit-
erature are not necessarily correct. More signifi-
cantly, we presented a methodology to augment
the nonparametric approach that regains the accu-
racy of the nonparametric bounds techniques.

An interesting feature of this methodology is
that these bounds are accurate regardless of the
true underlying demand behavior. Further, it is
not necessary for the researcher to assume that
people are identical in any sense. As the results of
the Monte Carlo study also suggest, these features
imply that the techniques are likely to be quite
robust.

The findings are generally positive concerning
the techniques explored. We do see that an impli-
cation of the presence of the miscalculation error
i1s wider bounds on CV. Thus, there is increased
potential for the bounds to be uninformative from
a policy perspective. However, the researcher is
able to formally state the relationship between the
precision of the welfare bounds and the level of
uncertainty in the data. These findings suggest
that applying the nonparametric techniques to
empirical data sets would be fruitful.

Further, an interesting direction for new re-
search would be to scrutinize the performance of
parametric demand specifications and consistency
with the nonparametric bounds on welfare. An-
other topic of investigation is to explore the im-
pact of measurement error in site visitations.
These errors could be due to recall error, etc. Ad-
ditionally, the bootstrap methodology presented
above is well-equipped to explore the implica-
tions of correlation across individuals in the sam-
ple. For example, Larson and Shaikh (2004) de-
velop a methodology for estimating the marginal
value of time. They suggest that some individuals
are able to vary work time at the margin while



252 October 2007

others lack this opportunity. They also find that
empirical evidence exists that suggests recreation
demand models must treat these distinct groups of
workers differently in the calculation of implicit
prices. This suggests that implicit prices are likely
to be correlated across individuals in these sub-
groups. There is potential that the bootstrap aug-
mented nonparametric bounds could be further
refined to account for this correlation.
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