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Abstract 

This paper has a two-fold contribution.  First, it examines the importance of accounting for 
(in)efficiency in the estimation of primal production function on the input elasticities, technical 
change, and calculation of returns to scale.  Second, it applies a variant of the rolling regression 
technique to identify time-varying input elasticities, technical change, and return to scale.  
Empirical application to the Asian agriculture sector using Food and Agricultural Organization 
data from 1961-2005 indicates returns to scale are underestimated by the traditional pooled and 
panel models.  Further, the time-varying estimates of input elasticities, technical change, and 
returns to scale indicate variations with each additional year of information. 
 

JEL classification: 

Keywords: Asian agriculture sector, time-varying input elasticities, technical change, and 
returns to scale, pooled, two-way random effect, stochastic frontier analysis, 1961-2005. 
 

 



 

 
 

Accounting for (In)Efficiency in the Estimation  
of Time-Varying Returns to Scale1 

Saleem Shaik 
I. Introduction 
 

Production economics, one of the fundamental pillars of neoclassical economics, has 
been the subject of intense research over the last century.  At the macro-level, the focus has been 
on the use of aggregate production functions to explain technological progress, convergence, and 
factors contributing to economic growth.  At the micro-level, economists use production 
functions to construct cost and profit functions, estimate the elasticity of inputs and outputs, and 
compute returns to scale for a firm, industry, sector, state, or country.  Overall, the contributions 
of the neoclassical economists have led to the development of theory and new empirical methods 
which often demand new data that are constantly being designed to use theory to test a particular 
problem applied to economies of all stages of development. 

 
Much of the past work in estimating production functions focused on the developed 

world where inefficiency, though present, was not of paramount interest.  In developing or 
underdeveloped continents like Africa and Asia, the focus has been on poverty alleviation and 
food security, respectively.  The underlying outcome of this effort on production functions is the 
identification, estimation, and examination of elasticity of inputs, technical change, and returns 
to scale.  Production functions have not been as thoroughly measured as well as it has in 
developed nations.  However, when estimating production function in developing countries, 
accounting for inefficiency is critical, particularly when accessing the impact of the green 
revolution.   

 
There are several reasons for identification, estimation, and examination of input 

elasticities, technical change, and returns to scale accounting for inefficiency.  First, technical 
experimental station data, where crops are allowed to grow under ideal conditions, are often 
overused when evaluating the potential of the agricultural sector. What was (is) badly needed is 
information on the gap between crops grown under ideal conditions and performance in the field.  
Accounting for efficiency may provide a better understanding on the size of this gap.  Second, 
while developing nations have greatly benefited from “research” and product development, they 
often lack adequate extension services. This skewing of international and domestic spending 
towards research and experiment stations and away from extension makes it quite likely the 
inefficiencies will occur when new technology is brought to the field.  Third, much of the “new” 
technology (seed, equipment, etc) has been imported from countries or regions with specific soil 
and weather conditions.  For example, seed developed at the International Rice Research 
Institute in the Philippines may not perform ideally when transferred to other countries, perhaps 
Bangladesh.  At the disaggregate level, this information would be useful for farmers, regional 
officials, rural banks, and input suppliers as to the input variables driving output and ultimately 

                                                 
1 This paper has benefited from discussions with and suggestions of Carlos Arnade at USDA, ERS, and David 
Saxowsky and Robert Hearne from North Dakota State University.  Any remaining errors are my own. 
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their profitability.  At the aggregate level, it is useful for policy makers as it will provide 
information on future investments on technology innovations of inputs to improve output and 
profitability for overall growth of the economy. 

 
The interaction between economist Paul Douglas and mathematician Charles W. Cobb 

resulted in the famous two-factor Cobb-Douglas production function, 1K Ky b L C −= .  The 
exponents constitute the elasticity of labor ( )L , capital ( )C  and if the exponents sum to one, 
exhibits constant returns to scale.  Existing literature estimating primal production functions have 
computed the input elasticities and reported the returns to scale using aggregate and disaggregate 
data (Mundlak, Larson, and Butzer, 1997; Basu and Fernald, 1997; Trueblood, 1991) without 
accounting for inefficiency.  When the production function allows for technological change, it 
results in the Solow growth equation, 1rt K Ky e L C −=  (Solow, 1957).  The residual term rte  
captures the trend in technical change over time.  In the post-World War II era, the focus of 
technology change was analyses of cross-country differences in agricultural productivity 
measures using parametric methods (Heady, 1944; Heady and Dillon, 1961; Hayami, 1969 and 
1970; Hayami and Ruttan, 1970 and 1971; Kawagoe and Hayami, 1983 and 1985; and Kawagoe, 
Hayami, and Ruttan, 1985), linear programming methods accounting for technical efficiency and 
technical changes (Bureau, Fare, and Grosskopf, 1995; Arnade, 1998; and Nin, Arndt, and 
Preckel, 2003), and stochastic frontier analysis. 

 
Comprehensive literature reviews (Forsund, Lovell, and Schmidt, 1980; Schmidt, 1986; 

Bauer, 1990; Greene, 1993; and Kumbhakar and Lovell, 2000) on the use of stochastic frontier 
analysis has been evolving since it was first proposed by Aigner, Lovell, and Schmidt; Meeusen 
and van den Broeck in the same year, 1977.  The 1990s produced a surge in the application of 
the stochastic frontier analysis to measure technical change, efficiency change, and productivity 
change.  Furthermore within the primal framework, progress has been made on incorporating 
multiple outputs and inputs via the distance functions (for discussions see Fare, Grosskopf, and 
Lovell), adjusting for time series properties, correcting for autocorrelation and 
heteroskedasticity, and finally using Bayesian techniques in the parametric efficiency measures.  
Additionally, research has investigated the influence of a broader set of determinants of 
inefficiency, namely policy, political, geographic variables, market structure conduct and 
performance hypothesis, farm size, farm programs, and finally heterogeneity. 

 
This research first examines the importance of accounting for (in)efficiency in the 

estimation of input elasticities, technical change, and calculation of returns to scale using the 
stochastic frontier estimation of primal production function.  Stochastic frontier estimation has 
become a popular tool to model the production relationship between input and output quantities  
and has been primarily used to estimate the efficiency2 of firms, states, and countries. Traditional 
estimation of input elasticities3, technical change, and returns to scale does not account for 
inefficiency in the estimation of production function. 

 
                                                 
2 Efficiency concept introduced by Farrell (1957) is defined as the distance of the observation from the production 
frontier and measured by the observed output of a firm, state or country relative to realized output, i.e., output that 
could be produced if it were 100 % efficient from a given set of inputs.   
3 Input elasticity measures the rate of response of output due to input change and the summation of input elasticity 
provides the return to scale estimates. 
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Stochastic frontier analysis accounts for inefficiency in the estimation of input 
elasticities, technical change, and calculation of returns to scale.  Is it necessary to account for 
inefficiency in the estimation of input elasticities, technical change, and returns to scale?  The 
answer is yes, for the simple reason that the estimation of elasticity and return to scale should be 
based on the relationship between the actual inputs used and final output.  Accounting for 
inefficiency which was not done in production function estimation prior to the 1980s, leads to 
realization of true input elasticities, technical change, and returns to scale measures.  If 
inefficiency is not accounted, it is possible to over or under estimate input elasticity.  For 
example, in countries dominated by nonfarm economy, an increase in the education level leads to 
labor saving technology due to increased productivity.  Thus, the elasticity of labor is expected to 
be lower if inefficiency is accounted for in the stochastic frontier estimation compared to the 
pooled or random effect models.  In countries dominated by farm economy, labor elasticity is 
expected to be higher due to the availability and extensive use of labor.  For inputs like fertilizer, 
the elasticities might be lower in the stochastic frontier estimation compared to the pooled or 
random effect models.  This could be possible if the use of fertilizer was relatively high but used 
inefficiently.  Hence, accounting for inefficiency in the production function would lead to true 
input elasticities, technical change, and returns to scale.  Accounting for inefficiency also 
quantifies the gap between crops grown in ideal conditions (technical experimental station data), 
performance in the field, and across countries due to transfer of “new” technology (seed, 
equipment etc). 

 
Second, literature in this area seldom estimates the importance of time-varying input 

elasticities, technical change, and returns to scale.  Time-varying estimates represent one of the 
most widely used concepts in finance.  The importance of time-varying estimates has been well 
established in the finance, risk, and time series literature (Rosenberg and Guy, 1976; Fisher and 
Kamin, 1985; Lawrence and Kamin, 1985; Chiang, 1988; Corckett, Nothaft, and Wang, 1991; 
Groenewold and Fraser, 1999; Smith and Taylor, 2001).  It is widely used by financial economist 
and practitioners to estimate the stock’s sensitivity to the market and identify variations in stock 
prices.  In the context of production function, input elasticities, technical change, and returns to 
scale were assumed to be systematic (constant over time) and driven by state, national, and 
worldwide difference.  However, the systematic nature of the input elasticities, technical change, 
and returns to scale is questionable due to changes in the industry induced by the advancements 
in structure of agriculture production and domestic and international policies.  This paper aims to 
close this gap by empirically analyzing the time-varying estimates of input elasticities, technical 
change, and returns to scale.  Cumulative rolling regression, a variant of the rolling regression 
technique is applied to estimate time-varying input elasticity and returns to scale.  The 
cumulative rolling regression allows the quantification of changes in the input elasticities, 
technical change, and returns to scale estimates with each additional year of data or information. 

 
Next, the time-varying stochastic production function frontier model is proposed along 

with the traditional pooled and panel model of production function.  In the data section, the 
details on the sources and construction of the regression variables along with their average and 
standard deviation are discussed.  Results of empirical applications to Food and Agricultural 
Organization (FAO) data from 15 Asian countries forming the cross-sectional units over the 
period 1961-2005 with emphasis on the agricultural sector are presented next.  Finally, general 
and policy implications are presented. 
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II. Time-Varying Stochastic Frontier Production Function Econometric Model 
 

Depending on the availability of the data, returns to scale can be estimated for a single 
country using time series data or multiple countries using cross-sectional or panel data.  To 
estimate input elasticity, technical change, and compute returns to scale of a country i , 1,...,i I=  
over time t , 1,...,t T= , the basic form of the production function can be represented as: 
 
(1) ( )( ), , ,; ,β ε= ⋅i t i t i ty f x t  

 
where y  denotes output produced from a vector of input, x, β  the associated vector of parameter 
coefficients, t  the time trend represents the technical change, and ε  the error term.  These 
parameter coefficients are the elasticity of inputs if the vectors of inputs and output are in 
logarithmic form.  This research focuses on the pooled and the two-way random effects 
specification of the initial production function model. 

 
The two-way random effects model allows the error, ,ε i t  to be decomposed into spatial,

iu  temporal, tv and remaining residual, ,i tw  components.  This can be represented as 
 

(2) ( )( ) ( ), , ,; ,β= ⋅ + +i t i t i t i ty f x t u v w  

 
where u  represents a 1 × I  matrix of spatial random error,  v  represents a 1 ×T matrix of 
temporal random error, and w  represents a 1×NT matrix of remaining random error assumed to 
be uncorrelated and follow normal distribution. 

 
Following Battese and Coelli, 1992, the error component stochastic frontier production 

function that decomposes the error term, ε  into random error, v  and u  efficiency is used in the 
estimation.  This can be represented for panel data as: 

 
 (3) ( )( ), , , ,; ,β= ⋅ −i t i t sfa i t i ty f x t v u  

 
where  βsfa  is the vector of error component stochastic frontier parameter coefficients, ,i tv  
represents firm and time-specific random errors which are assumed to be i.i.d. and normally 
distributed variables with mean zero and variance 2

Vσ , and ,i tu represents technical efficiency.  
This variable must be positive and is an absolutely normally distributed variable with mean zero 
and variance 2

Uσ .  The variables y and x are as defined in equation (1).  The returns to scale are 
computed as the sum of the parameter coefficients or the elasticity of inputs. 

 
To examine time-varying input elasticities, technical change, and the returns to scale, 

simple methods such as time dummies or testing for breaks using Chow tests and separating the 
estimation into different periods and Bayesian techniques have been used in the literature.  These 
are far more costly ways to examine the importance of each additional year of information on the 
efficiency or coefficient estimates.  To examine time-varying input elasticities, technical change, 
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and the returns to scale, a cumulative rolling regression of stochastic production function frontier 
is estimated.  With cumulative rolling regression, a set of coefficients are estimated with each 
additional year of data.  To represent the primal production function in the cumulative rolling 
stochastic frontier analysis framework, equation (3) can be re-written as: 

 
(4) ( )( ), , , ,; ,β= ⋅ −j j j j j j

i t i t i t i ty f x t v u
 

 
where 26,.......,j T= and represents the number of rolling regression runs. The first regression 
starts with a window of the first 26 observations.  The second regression includes an additional 
year of data; that is the first 27 observations.  The third regression includes two additional years 
of data; that is the first 28 observations.  The final regression would include all T  years of data.  
This would be equivalent to the traditional regression analysis. 
 
Proposition 1:  Comparison of pool/panel models and stochastic frontier model allows the 
difference (over or under estimation) in input elasticity and return to scale associated with 
accounting for inefficiency in the estimation of production function to be quantified. 
 

Conceptually, over or under estimation of input elasticity and return to scale associated 
with accounting for inefficiency4 using stochastic frontier analysis could be quantified by 
comparing the parameters estimated from pool or panel and stochastic frontier model.  Earlier 
literature have examined one or the other methods and compared the differences between 
methods.  Comparison of stochastic frontier model and pool or panel model would be useful 
because this gap is important as it relates to issues such as adoption and transfer of appropriate 
technology to the farm and across countries.  Over or under estimation of input elasticity can be 
represented as: 

 

(5) 
( )sfa

ineffineff

y y y y y
x x x xx x

β β ∂ ∂ ∂ ∂ ∂
= ≡ ±
∂ ∂ ∂ ∂∂ +

¦ ¦ ¦
 

 
where sfaβ  and β  are the parameter coefficients estimated from stochastic frontier model and 
pool or panel model, respectively.  When dealing with inefficiency, sfaβ  can be zero or negative 
due to the decomposed error structure assumptions of stochastic frontier analysis.  The parameter 
β  from the pool or panel model would be underestimated compared to sfaβ  estimated from 
stochastic frontier model if and only if (iff) the inputs are actually utilized in the production even 
after accounting for inefficiency.  The pool or panel model parameter, β  would be 
overestimated compared to stochastic frontier model parameter sfaβ  iff the inputs are actually 
utilized in the production but not efficiently.  The sfaβ will be equal to β  iff the same amount of 
                                                 
4 There are two issues associated with the derivative, ∂ ∂ ineffy x .  First, examine what happens when over using 
inputs or not using inputs efficiently. Second, and not discussed in this paper: Parameter biases that may arise from 
not correctly specifying your estimating equations.  This is an issue by itself and is not explored in this paper.  For 
example, if the one side error relates to any of the inputs in the production function, then it is possible to end up with 
a parameter bias if you do not account for inefficiency.  Battese and Coelli (1995) addressed this issue by relating 
one side error to variables. 
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inputs are utilized with and without accounting for inefficiency in the production function.  The 
over or under estimation of parameter ( )sfaβ β− can be represented as: 
 

(6) ( )

......

0 ......

.....

ineff

sfa ineff

ineff

y ypositive iff the input is actually utilized but efficiently
x x

yZero iff x is zero
x
y ynegative iff the actual input is utilized but inefficiently
x x

β β

⎧ ⎫∂ ∂
−⎪ ⎪∂ ∂⎪ ⎪

⎪ ⎪∂⎪ ⎪− ⇒ −⎨ ⎬∂⎪ ⎪
⎪ ⎪∂ ∂

+⎪ ⎪
∂ ∂⎪⎩ ⎭⎪  

 
Proposition 2: Time-varying parameter, jβ  estimated from the equation (4) allows quantifying 
the extent of variation in the parameter with each additional year of information. 
 

Irrespective of the model (pool, panel or stochastic frontier), the parameter estimate 
varies with each additional year and this variation would be captured if the input and output 
variation is different than the earlier sample.  Mathematically this can be represented as 

 

(7) 
( )
( )

11
1

1 1

jj j j
j j

j j jj

y yy y y
x x xx x

β β
+

+
+

∂ +∂ ∂ ∂
= ≡
∂ ∂ ∂∂ +

¦ ¦ ¦
 

 
The 1jβ +  estimated from production function with j  observations plus one additional year of 
observation would be greater than β  estimated with j  observations if the marginal effect, 

1 1 1y xβ = ∂ ∂  is positive and greater than j j jy xβ = ∂ ∂ .  The 1jβ +  parameter estimated from 
production function with j  observations plus one additional year of observation would be less 
than β  parameter estimated with j  observations if the marginal effect, 1 1 1y xβ = ∂ ∂  is negative 
and greater than j j jy xβ = ∂ ∂ .  The 1jβ +  will be equal to β  if the marginal effect, 

1 1 1y xβ = ∂ ∂  is equal to zero.  This can be represented as 
 

 

8)

         

( )

( )

( )

1
1 1

1

1
1

1
1 1

1

1

...

0 0 ...

...

&

j
j

j

j
j

jj j

j
j

j

y ypositive or iff is positive
x x

yzero or iff is zero
x

y ynegative or iff is negative
x x

greater than

β β β

β β
β β

β β β

β

+

⎧ ⎫⎛ ⎞∂ ∂
+ +⎪ ⎪⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪

⎪ ⎪⎛ ⎞∂⎪ ⎪+ +⎪ ⎪⎜ ⎟∂− ⇒ ⎨ ⎬⎝ ⎠
⎪ ⎪⎛ ⎞∂ ∂⎪ ⎪− −⎜ ⎟⎪ ⎪∂ ∂⎝ ⎠⎪ ⎪
⎪ ⎪⎩ ⎭
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The over or under estimation in input elasticity ( )sfaβ β−  and return to scale associated with 
accounting for inefficiency in the estimation of production function, and the extent of variation 
in the time-varying parameter with each additional year of information is empirically examined 
next. 
 
III. Input and Output Agriculture Sector Data for Asian Countries 
 

This study is based on Food and Agricultural Organization data available online.  The 
study includes 15 Asian countries for the period 1961 to 2005.  For the output and the five 
inputs, a quantity index with 1961 as the base year was constructed. 

 
Output Series 

Due to the problems of estimating multiple outputs in primal production functions, an 
aggregate output variable published by FAO is used in the analysis.  The FAO output concept is 
the output from the agriculture sector net of quantities of various commodities used as feed and 
seed, which is why feed and seed are not included in the input series.  Details on the construction 
of aggregate output variable are available on the FAO webpage, www.fao.org. 
 
Input Series 

This analysis considers only five input variables following earlier studies estimating a 
production function.  These variables include land, labor, capital, fertilizer, and livestock.  The 
land variable includes harvested acres of cereals, fibers, fruits, nuts, oil crops, pulses, roots and 
tubers, rubber, spices, stimulants, sugar crops, tobacco, and vegetables unlike earlier studies (Rao 
and Coelli, 2003).  The capital variable covers the total number of agricultural tractors and 
number of harvesters and threshers used in agriculture. With respect to tractors, no allowance 
was made to the quality (horsepower) of the tractors.  The labor variable refers to the 
economically active population in agriculture. An economically active population is defined as 
all persons engaged or seeking employment in an economic activity, whether as employers, own-
account workers, salaried employees, or unpaid workers assisting in the operation of a family 
farm or business. The economically active population in agriculture includes all economically 
active persons engaged in agriculture, forestry, hunting, or fishing. This variable obviously 
overstates the labor input used in agricultural production, but the extent of overstatement 
depends on the level of development of the country.  Following other studies on inter-country 
comparisons of agricultural productivity, this analysis uses the sum of nitrogen (N), potassium 
(P2O2), and phosphate (K2O) contained in the commercial fertilizers consumed. This variable is 
expressed in thousands of metric tons. 
 

The livestock input variable used in the study is the sheep-equivalent of five categories of 
animals.  The categories considered are buffalo, cattle, goats, pigs, and sheep. The number of 
animals is converted into sheep equivalents using conversion factors of 8.0 for buffalo and cattle 
and 1.00 for sheep, goats, and pigs. Chicken numbers are not included in the livestock figures. 
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Table 1. Average and Standard Deviations of Variables, 1961-2005 
Country Output Land Labor Capital Fertilizer Livestock
   

Average 
Bangladesh 152.18 121.58 178.20 512.79 2,862.11 138.82
Cambodia 115.37 80.97 158.56 227.89 144.65 266.40
China 286.48 106.75 153.39 1,106.20 2,575.88 897.07
India 186.73 110.93 166.88 2,554.29 2,431.97 150.94
Indonesia 241.75 142.28 164.02 1,490.80 1,101.64 183.04
Malaysia 332.64 185.59 188.60 1,174.61 871.29 193.86
Myanmar 218.15 140.33 149.76 696.35 1,484.64 177.04
North Korea 190.64 116.25 160.47 836.84 379.22 210.81
Nepal 179.26 153.28 167.32 1,689.96 29,797 189.13
Pakistan 254.67 138.92 199.80 2,857.11 3,427.76 192.77
Philippines 215.39 140.74 191.04 227.82 508.62 216.89
South Korea 243.00 90.32 150.41 220,201 231.02 412.63
Sri Lanka 159.39 122.01 153.30 204.51 156.38 111.23
Thailand 240.57 177.99 167.80 748.18 4,511.56 173.55
Vietnam 217.86 139.66 168.85 4,235.85 394.10 212.15
All Countries 215.60 131.17 167.89 1,325.94 3,391.85 248.42

Standard deviation 
Bangladesh 42.56 8.93 53.37 231.16 2,214.90 30.45
Cambodia 44.37 21.74 47.16 84.30 126.60 143.83
China 162.97 6.15 29.69 687.74 1,928.00 711.46
India 71.68 5.82 46.13 2,458.04 1,802.46 45.66
Indonesia 114.04 30.37 40.21 1,652.75 791.87 73.05
Malaysia 178.85 54.34 62.36 1,042.18 621.68 74.79
Myanmar 98.98 33.14 30.34 426.17 1,197.68 42.17
North Korea 54.81 8.02 34.36 611.62 204.12 69.30
Nepal 68.63 38.13 50.03 1,190.41 25,981 53.37
Pakistan 121.69 22.18 74.68 2,320.40 2,612.60 61.78
Philippines 76.58 20.16 60.78 62.10 286.86 84.12
South Korea 87.16 16.56 26.35 313,751 63.97 251.36
Sri Lanka 31.30 9.80 29.03 60.26 44.18 10.54
Thailand 90.91 38.88 36.94 780.63 4,163.68 44.74
Vietnam 124.16 35.52 45.13 6,086.94 458.71 115.28
All Countries 91.25  23.32 44.44 1,263.91 2,833.25  120.79 

 
 
Table 1 provides the means and standard deviations of the output and input index 

variables used in the analysis for the period 1961-2005.  Vietnam, Myanmar, Thailand, 
Indonesia, South Korea, Pakistan, China, and Malaysia each have a higher realized output index 
compared to the average across all the countries.  However, Myanmar, Indonesia, Pakistan, 
Vietnam, China, and Malaysia were the only countries with a relatively higher deviation in the 
output index compared to the average of all the countries.  This would be reflected in the time-
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varying input elasticity and returns to scale estimates.  Pakistan, Vietnam, Myanmar, Philippines, 
Indonesia, Nepal, Thailand, and Malaysia have allocated more land to agriculture production 
than the average of all the countries.  The countries that allocated more than average also 
realized higher variation compared to the average, with the exception of Pakistan and 
Philippines. 

 
The variation in agriculture labor and amount of labor working with agriculture 

production was higher in Vietnam, Bangladesh, Malaysia, Philippines, and Pakistan compared to 
the average of all the countries.  South Korea and Nepal had the highest growth in capital and 
fertilizer, respectively, for the time period.  Indonesia, Pakistan, India, and Vietnam allocated 
relatively more capital to agriculture production compared to the average and there was 
relatively more variation in capital allocation for the time period.  Pakistan and Thailand applied 
more fertilizer than the average of all the countries.  Thailand had the highest variation in 
fertilizer use for the time period.  Cambodia, South Korea, and China had more livestock than 
the average. 

 
IV. Empirical Application and Results5 
 

Effect of accounting for technical inefficiency (Proposition 1) and time-varying estimates 
applying cumulative rolling regression (Proposition 2) on the elasticity of inputs, technical 
change, and returns to scale are examined.  When using the Cobb-Douglas production function, 
returns to scale can be easily computed using the elasticity of input variables, technical change, 
and the returns to scale.  Three sets of results are presented for pooled, panel, and stochastic 
frontier models using logs of the input and output variables.  A nice feature about using logs is 
that the slope coefficient measures the elasticity of endogenous variables with respect to 
exogenous variation, that is by the percentage change in endogenous variable given a percentage 
change in exogenous variation.  The first set of estimates does not include time trend to capture 
technical change, the second set of estimates include time trend to capture technical change, and 
finally, the country specific dummy variables are included along with time trend to capture 
technical change.  Result of Proposition 1 is presented in Table 2 and results of Proposition 2 are 
presented in Tables 3 and 4, and Figures 1a and 1b. 

 
Proposition 1:  Comparison of pool/panel models and stochastic frontier model allows the 
difference (over or under estimation) in input elasticity and return to scale associated with 
accounting for inefficiency in the estimation of production function to be quantified. 
 

Over or under estimation of elasticity of inputs, technical change, and returns to scale 
associated with accounting for inefficiency is examined by comparing the stochastic frontier 
production function defined in equation (3),  pool model defined in equation (1), and panel 
model defined in equation (2).  Regression results of the three models presented in Table 2 
indicate all the variables are positive and significantly affect agricultural output with the 
exception of fertilizer.  The fertilizer variable is negative and significant for the pooled and 

                                                 
5 Confidence interval of parameter coefficients of pool, panel and stochastic frontier model for proposition 1 and 2 
based on bootstrapping estimates are available upon request from the author.  The bootstrapping estimate provides 
similar difference across pool, panel and stochastic frontier models. 
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stochastic frontier models, but positive and insignificant for the random effects model with and 
without time trend or technical change. 

 
First, the results from the pooled model indicate an input elasticity of 0.86 for land which 

is very high relative to the other inputs.  A 100 percent increase in the allocation of land to 
agriculture would increase the output by 86 percent, which indicates more agricultural products 
can be produced when more land is under agricultural production.  For the pooled model 
accounting for time trend or technical change, the input elasticity for land is 0.88.  However, 
once the difference across countries is accounted by country specific dummies, the input 
elasticity for land dropped to 0.68.  Farm labor has an elasticity of 0.46 and ranks second with 
respect to the magnitude of contributions to agricultural output.  Accounting for time trend, the 
input elasticity for labor reduced by more than half to 0.22 indicating the technology was labor 
saving.  This appears to be consistent with the decline in use of labor in agriculture.  With the 
difference across countries accounted by country specific dummies, the labor elasticity increased 
slightly to 0.24.  

 
Livestock with an input elasticity of 0.30 is ranked third after land and farm labor.  A 100 

percent increase in the availability of livestock on the farm would increase the output by 30 
percent.  Accounting for technical change and difference across countries by country specific 
dummies, the livestock elasticity declined slightly to 0.29 and 0.27, respectively, but moved to 
second, followed by labor in the pooled model.  Capital with an elasticity of 0.085 and fertilizer 
with an elasticity of -0.038 are relatively less compared to land or farm labor, showing that these 
inputs have a smaller positive and negative influence respectively on agricultural output.  
Accounting for technical change, the capital and fertilizer elasticity did not change.  However, 
accounting for technical change and difference across countries, the elasticity of capital and 
fertilizer declined to 0.051 and -0.012, respectively. 

 
To account for the availability of time series and cross-sectional data, a two-way random 

effects model is estimated and the results are provided in Table 2.  Similar to the pooled model, 
the elasticity of land is 0.66 and 0.62 with and without time trend or technical change, indicating 
land has a strong influence on the output after accounting for the spatial variation across 
countries and temporal variation over time.  With an elasticity of 0.52 and 0.004 for farm labor 
and fertilizer, respectively, the two-way random effects model indicates a relatively higher 
contribution to output compared to the pooled model.  Accounting for time trend or technical 
change, the elasticity of farm labor and fertilizer reduced to 0.21 and 0.001, respectively, 
accounting for spatial variations across countries and temporal variations over time.  However, 
the elasticities of 0.06 and 0.28 for capital and livestock, respectively, indicate a smaller 
contribution to output compared to the pooled model.  The elasticity of capital and livestock was 
slightly different even after accounting for time trend or technical change.  In general, the panel 
model accounting for the spatial and temporal variation increases the contribution of farm labor 
and fertilizer to agriculture output. 
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Table 2.  Parameter Coefficients or Input Elasticities of Production 
Function for the Period, 1961-2005 

  No time trend  With time trend 
Country dummies 

  Coefficient T-value  Coefficient
T-

value   Coefficient T-value
Pooled Model 

Intercept -3.120 -24.8 -4.009 -16.7 -4.068 -17.1
Land 0.860 33.6 0.884 34.2 0.677 24.1
Labor 0.458 15.4 0.216 3.4 0.235 3.5
Capital 0.085 19.7 0.081 18.5 0.051 9.9
Fertilizer -0.038 -8.8 -0.038 -8.9 -0.012 -1.9
Livestock 0.300 25.0 0.289 23.9 0.267 17.5
Time trend 0.474 4.3 0.706 6.3
Returns to 
Scale 1.665 1.432 1.218

Returns to 
Scale (trend) 1.906 1.924

Panel Model 
Intercept -2.322 -15.7 -3.750 -14.3
Land 0.623 20.1 0.662 25.1
Labor 0.524 11.3 0.214 3.4
Capital 0.059 9.8 0.052 10.9
Fertilizer 0.004 0.5 0.001 0.2
Livestock 0.283 9.5 0.270 18.8
Time trend 0.668 6.1
Returns to 
Scale 1.493 1.199

Returns to 
Scale (trend) 1.867

Stochastic Frontier Model 
Intercept -3.560 -31.6 -4.920 -17.5 -5.492 -5.5
Land 0.623 24.5 0.680 25.2 0.673 27.4
Labor 0.837 23.1 0.449 5.7 0.676 9.8
Capital 0.050 12.5 0.042 9.9 0.034 7.2
Fertilizer -0.021 -4.1 -0.029 -5.5 0.0003 0.1
Livestock 0.278 26.1 0.269 23.2 0.205 16.8
Time trend 0.730 5.4 0.718 3.2
Returns to 
Scale 1.767 1.411 1.589

Returns to 
Scale (trend) 2.141 2.306
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In the error component stochastic frontier model, the elasticity of land is 0.62 (compared 
to 0.86 and 0.62 in the pooled and panel models, respectively) but still has the largest 
contribution among the inputs. For the error component stochastic frontier model accounting for 
time trend or technical change, the input elasticity for land slightly increased to 0.68.  However 
once the difference across countries is accounted by country specific dummies, the input 
elasticity for land dropped to 0.67.  Land elasticity of 0.68 seems to be high compared to earlier 
estimates that range 0.02 to 0.42 (see Table 1 from Mundlak, Larson, and Butzer, 1997).  This 
difference might be due to the use of longer time series, 1961-2005 and application to Asian 
countries.  Contribution of farm labor, which has an elasticity of 0.84, seems very high compared 
to the pooled or panel model and earlier estimates that range from 0.03 to 0.46 (see Table 1 from 
Mundlak, Larson, and Butzer, 1997) without accounting for time trend or technical change.   
However, accounting for time trend and difference across countries, the input elasticity for labor 
reduced to 0.45 and 0.68, respectively.  This is appropriate because even after accounting for 
inefficiency in the estimation of production function, more labor is used in the output production 
in Asian agriculture and this is reflected in the higher elasticity. 

 
A livestock variable with an elasticity of 0.28 is not that different compared to elasticity 

of 0.30 and 0.28 in the pooled and panel models, respectively.   For the error component 
stochastic frontier model accounting for technical change and difference across countries, the 
input elasticity for livestock decreased slightly to 0.27 and 0.21, respectively.  Capital with its 
elasticity of less than 0.10 is still relatively low compared to land and livestock.  Accounting for 
technical change and difference across countries, the capital elasticity decreased slightly to 0.042 
and 0.034, respectively.  Capital elasticity estimates are in a similar range estimated by earlier 
researchers. 

 
Fertilizer with an elasticity of -0.021 compared to -0.029 and 0.0003 for the model 

accounting for technical change and difference across countries, respectively, is still low.  
Fertilizer elasticity estimated from the error component stochastic frontier model is higher 
compared to the panel and pooled model.  Fertilizer elasticity estimates are lower than those for 
previous research (see Table 1 from Mundlak, Larson, and Butzer, 1997).  This might be due to 
the relatively low use of fertilizer in Asia and substitution of labor for fertilizer. 

 
Before comparing pool and stochastic frontier models, a comparison between a pool – 

panel model and panel– stochastic frontier model reveals the importance of accounting for 
spatial and temporal variation and inefficiency respectively.  Labor and fertilizer elasticity are 
higher for stochastic frontier model (compared to panel) and panel (compared to pool) models.  
The elasticity of land, capital, and livestock are lower for stochastic frontier model (compared to 
panel) and panel (compared to pool) models.  To quantify the differences in the input elasticity 
estimates accounting for inefficiency in the production function using stochastic frontier 
analysis, a comparison needs to be drawn between pool and stochastic frontier models without 
and with time trend.  The elasticity of labor and fertilizer is higher in the stochastic frontier 
model by 0.379 and 0.017, respectively, compared to pool model.  Similar higher elasticity of 
labor and fertilizer was estimated by stochastic frontier model accounting for time trend or 
technical change and difference across countries.  The difference in the elasticity of labor and 
fertilizer was 0.233 and 0.009 (0.441 and 0.012), respectively for stochastic frontier model 
accounting for technical change (technical change and accounting for difference across countries 
with country specific dummies). 
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This indicates even after accounting for inefficiency in the estimation of production 
function, higher values seem to reflect the higher usage of labor and fertilizer in the production 
of output leading to higher return to scale measure.  These results are quite interesting as they 
suggest that fertilizer is overused due to the prevalence of wetland rice in Asian agriculture and 
the introduction of new “green revolution” seed and technology.   

 
In contrast, the elasticity of land, capital, and livestock are lower in stochastic frontier 

model by 0.237, 0.035, and 0.022, respectively compared to the pool model without accounting 
from time trend or technical change indicating inefficient use of these variables in the production 
of output.  Accounting for technical change (technical change and accounting for difference 
across countries with country specific dummies), the elasticity of land, capital, and livestock are 
lower in stochastic frontier model by 0.204, 0.039, and 0.020 (0.003, 0.017, and 0.062), 
respectively, compared to the pool model. 

 
Overall, the variations of agricultural output in Asia are largely explained by the input 

levels for land, livestock, and labor, and less so by capital and fertilizer. The estimated returns to 
scale from the three models are 1.67, 1.49, and 1.77, respectively, for the pooled, panel, and 
stochastic frontier models, meaning that a one unit change in inputs results in more than a one 
unit change in agricultural output.  The higher return to scale estimates from a stochastic frontier 
model was dominated by the efficient utilization of labor.  Further, it is not surprising to find 
strong evidence of increasing returns to scale due to small farm plots and policy.  Scale 
economies tend to be a local measure and it is no surprise to find increasing returns to scale as 
the Asian farms are famously fragmented into small farm size.  Programs which allow for 
coordination (farm coops) or plot consolation could produce some significant production gains. 

 
Proposition 2: Time-varying parameter, jβ  estimated from the equation (3) allows quantifying 
the extent of variation in the parameter with each additional year of information. 
 

Tables 3 and 4 present the time-varying parameter coefficients estimated from stochastic 
frontier cumulative rolling regression analysis of 17 runs by addition of each year from 1986 to 
2005. The mean, minimum, and maximum values of the actual and year-to-year difference in the 
time-varying input elasticities, technical change, and return to scale also are presented in the 
tables.  The year-to-year difference of land, labor, capital, fertilizer, livestock, technical change, 
and return to scale estimated from the stochastic frontier cumulative rolling regression model6 
accounting for technical change and difference across countries is graphically presented in 
Figures 1a and 1b, respectively.  

 
Time-varying parameter coefficients estimated from stochastic frontier cumulative rolling 

regression analysis by addition of each year from 1986 to 2005 accounting for time trend or 
technical change is presented in Table 3.  Results from Table 3 indicate the mean elasticity of 
land from stochastic frontier cumulative rolling regression analysis was 0.667 with a standard 
deviation of 0.008.  The upper and lower bound of the estimated elasticity of land is 0.682 using 
data from 1961-2005 and 0.654 using data from 1961-1997.  The time-varying elasticity of land 
indicates a decreasing trend from 1961-1986 to 1961-1995.  This indicates the land elasticity 

                                                 
6 Similar table and graphs of input elasticity and returns to scale estimates of pooled and panel models are available 
from the author.   
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decreases at a decreasing rate with each additional year of data.  Elasticity of land shows an 
increasing trend from 1961-1996 to 1961-2005 indicating that with each additional year of data, 
the land elasticity increases at an increasing rate.  The mean year-to-year difference in the 
elasticity of land by addition of each year from 1986 to 2005 was 0.0004 with a standard 
deviation of 0.003. 

 
 

Table 3.   Input Elasticities and Returns to Scale from Stochastic Frontier           
Cumulative Rolling Regressions, 1986-2005 

Year Land Labor Capital Fertilizer Livestock Time 
trend RTS RTS 

(trend)
    
1961 - 1986 0.672 0.771 0.056 -0.019 0.179 0.238 1.660 1.898
1961 - 1987 0.670 0.732 0.052 -0.022 0.184 0.345 1.615 1.961
1961 - 1988 0.671 0.701 0.050 -0.024 0.191 0.409 1.588 1.997
1961 - 1989 0.670 0.688 0.048 -0.025 0.199 0.424 1.580 2.004
1961 - 1990 0.667 0.657 0.046 -0.027 0.206 0.481 1.550 2.031
1961 - 1991 0.666 0.624 0.046 -0.029 0.211 0.529 1.518 2.047
1961 - 1992 0.663 0.596 0.047 -0.030 0.215 0.570 1.490 2.060
1961 - 1993 0.662 0.566 0.045 -0.034 0.221 0.643 1.460 2.103
1961 - 1994 0.658 0.558 0.044 -0.033 0.228 0.644 1.455 2.099
1961 - 1995 0.657 0.557 0.044 -0.027 0.240 0.582 1.471 2.053
1961 - 1996 0.656 0.520 0.041 -0.024 0.262 0.596 1.455 2.051
1961 - 1997 0.654 0.480 0.037 -0.021 0.285 0.621 1.435 2.056
1961 - 1998 0.657 0.459 0.037 -0.022 0.290 0.640 1.422 2.062
1961 - 1999 0.663 0.462 0.037 -0.023 0.293 0.626 1.433 2.059
1961 - 2000 0.670 0.453 0.037 -0.024 0.298 0.635 1.434 2.069
1961 - 2001 0.675 0.437 0.037 -0.027 0.301 0.665 1.425 2.089
1961 - 2002 0.674 0.471 0.042 -0.028 0.283 0.625 1.442 2.067
1961 - 2003 0.679 0.465 0.042 -0.028 0.277 0.652 1.434 2.086
1961 - 2004 0.682 0.457 0.042 -0.029 0.276 0.683 1.428 2.111
1961 - 2005 0.680 0.449 0.042 -0.029 0.269 0.730 1.411 2.141
    
Mean 0.667 0.555 0.044 -0.026 0.245 0.567 1.485 2.052
Std 0.008 0.107 0.005 0.004 0.042 0.126 0.074 0.055
Minimum 0.654 0.437 0.037 -0.034 0.179 0.238 1.411 1.898
Maximum 0.682 0.771 0.056 -0.019 0.301 0.730 1.660 2.141
    
    
Mean 0.0004 -0.017 -0.001 -0.001 0.005 0.026 -0.013 0.013
Std 0.003 0.018 0.002 0.002 0.009 0.039 0.017 0.024
Minimum -0.004 -0.040 -0.004 -0.003 -0.019 -0.061 -0.045 -0.046
Maximum 0.006 0.034 0.005 0.006 0.022 0.108 0.018 0.063
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Table 4. Input Elasticities and Returns to Scale from Stochastic Frontier 
Cumulative Rolling Regressions with Country Dummies, 1986-2005 

Year Land Labor Capital Fertilizer Livestock Time 
trend RTS RTS 

(trend)
    
1961 - 1986 1.597 0.617 0.037 0.0112 0.113 -1.293 2.375 1.082
1961 - 1987 1.584 0.626 0.038 0.0071 0.112 -0.890 2.368 1.478
1961 - 1988 1.260 0.654 0.036 0.0033 0.125 -0.157 2.078 1.921
1961 - 1989 1.063 0.667 0.033 0.0028 0.159 -0.173 1.926 1.753
1961 - 1990 0.869 0.664 0.018 -0.0038 0.169 0.581 1.716 2.297
1961 - 1991 0.946 0.622 0.028 0.0010 0.166 0.156 1.762 1.918
1961 - 1992 0.776 0.670 0.028 -0.0099 0.162 0.621 1.626 2.247
1961 - 1993 0.818 0.642 0.028 -0.0066 0.162 0.157 1.644 1.801
1961 - 1994 0.701 0.668 0.031 -0.0072 0.163 0.030 1.555 1.585
1961 - 1995 0.570 0.684 0.025 -0.0036 0.192 0.216 1.468 1.684
1961 - 1996 0.589 0.623 0.037 -0.0011 0.227 0.276 1.473 1.749
1961 - 1997 0.434 0.651 0.031 0.0006 0.253 0.196 1.369 1.565
1961 - 1998 0.391 0.672 0.029 0.0015 0.253 0.476 1.346 1.822
1961 - 1999 0.329 0.678 0.025 0.0028 0.262 0.700 1.297 1.997
1961 - 2000 0.319 0.660 0.021 0.0030 0.280 0.689 1.283 1.972
1961 - 2001 0.417 0.642 0.018 0.0044 0.278 1.030 1.360 2.390
1961 - 2002 0.472 0.650 0.021 0.0057 0.259 0.728 1.408 2.136
1961 - 2003 0.527 0.659 0.025 0.0035 0.245 0.647 1.460 2.107
1961 - 2004 0.582 0.670 0.028 0.0008 0.231 0.851 1.512 2.363
1961 - 2005 0.676 0.673 0.034 0.0003 0.205 0.718 1.589 2.306
    
Mean 0.746 0.655 0.028 0.001 0.201 0.278 1.631 1.909
Std 0.381 0.020 0.006 0.005 0.055 0.578 0.326 0.338
Minimum 0.319 0.617 0.018 -0.010 0.112 -1.293 1.283 1.082
Maximum 1.597 0.684 0.038 0.011 0.280 1.030 2.375 2.390
    
    
Mean -0.048 0.003 0.000 -0.001 0.005 0.106 -0.041 0.064
Std 0.121 0.027 0.006 0.004 0.018 0.344 0.102 0.293
Minimum -0.325 -0.061 -0.016 -0.011 -0.026 -0.463 -0.290 -0.446
Maximum 0.098 0.049 0.012 0.005 0.034 0.754 0.077 0.545
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Figure 1a.  Year to Year Difference in Time-Varying Input Elasticity 

 
 
 

The mean elasticity of labor from stochastic frontier cumulative rolling regression analysis 
was 0.555 with a standard deviation of 0.107.  The upper bound of elasticity of labor is 0.771 and 
is estimated using data from 1961-1986; the lower bound of labor elasticity is 0.437 estimated 
using data from 1961-2001.  The time-varying elasticity of labor indicates a decreasing trend 
from 1961-1986 to 1961-2005 indicating the elasticity decreases at a decreasing rate with each 
additional year of data.  The mean year-to-year difference in the elasticity of labor by addition of 
each year from 1986 to 2005 was -0.017 with a standard deviation of 0.018.  

 
Elasticity of capital indicates the mean from stochastic frontier cumulative rolling 

regression analysis from 1986 to 2005 was 0.044 and a standard deviation of 0.005.  The upper 
and lower bound of the estimated elasticity of capital is 0.056 using data from 1961-1986 and 
0.037 using data from 1961-1997 to 1961-2001.  Time-varying elasticity of capital indicates a 
decreasing trend from 1961-1986 to 1961-2001.  The mean year-to-year difference in the 
elasticity of capital by addition of each year from 1986 to 2005 was -0.001 with a standard 
deviation of 0.002.  

 
The mean elasticity of fertilizer from stochastic frontier cumulative rolling regression 

analysis was -0.026 with a standard deviation of 0.004.  The upper bound of elasticity of 
fertilizer was -0.019 and estimated using data from 1961-1986.  Similarly the lower bound of 
elasticity of fertilizer was -0.034 using data from 1961-1995.  The time-varying fertilizer 
elasticities indicates a decreasing trend from 1961-1986 to 1961-1993.  This indicates the 
fertilizer elasticity decreases at a decreasing rate with each additional year of data.  Elasticity of 
fertilizer from 1961-1994 to 1961-2005 is a cup-shaped curve indicating the elasticity decreases, 
reaches a minimum, and starts to increase with each additional year of data.  The mean year-to-
year difference in the elasticity of fertilizer by addition of each year from 1986 to 2005 is -0.001 
with a standard deviation of 0.002. 
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Elasticity of livestock indicates the mean of stochastic frontier cumulative rolling 
regression analysis from 1986 to 2005 was 0.245 with a standard deviation of 0.042.  The upper 
and lower bound of the estimated elasticity of livestock is 0.301 using data from 1961-2001 and 
0.179 using data from 1961-1986.  Time-varying elasticity of livestock indicates an increasing 
trend from 1961-1986 to 1961-2001 and declining to the present.  The mean year-to-year 
difference in the elasticity of livestock by addition of each year from 1986 to 2005 was 0.005 
with a standard deviation of 0.009. 

 
Elasticity of technical change indicates the mean of stochastic frontier cumulative rolling 

regression analysis from 1986 to 2005 was 0.567 and a standard deviation of 0.126.  The lower 
and upper bound of the estimated elasticity of technical change is 0.238 and 0.730, respectively, 
in the first and the last cumulative regression.  Time-varying elasticity of technical change 
indicates an increasing trend from 1961-1986 to the present.  The mean year-to-year difference 
in the elasticity of technical change by addition of each year from 1986 to 2005 was 0.026 with a 
standard deviation of 0.039. 

 
Finally, the returns to scale results indicate the mean of stochastic frontier cumulative 

rolling regression analysis from 1986 to 2005 was 1.485 and a standard deviation of 0.074.  The 
upper and lower bound of the return to scale is 1.66 using data from 1961-1986 and 1.411 using 
data from 1961-2005, indicating a declining trend in the return to scale.  However with the 
addition of technical change, the returns to scale results indicate a higher mean of 2.052 for the 
stochastic frontier cumulative rolling regression analysis from 1986 to 2005 and an increasing 
return to scale. 

 
Time-varying input elasticity, technical change and return to scale estimated from the 

error component stochastic frontier model accounting for technical change and difference across 
countries is presented in Table 4.  Compared to results in Table 3, the mean and standard 
deviation of time-varying land elasticity was higher with a value of 0.746 and 0.381 respectively.  
However the trend in the time-varying elasticity of land was quite similar to the model 
accounting for technical change.  The mean year-to-year difference in the elasticity of land for 
addition of each year from 1986 to 2005 was -0.048 with a standard deviation of 0.121. 

 
Mean elasticity of labor from stochastic frontier cumulative rolling regression analysis 

was around 0.655 with a standard deviation of 0.02 for the error component stochastic frontier 
model accounting for technical change and difference across countries.  Unlike a clear trend in 
the time-varying labor elasticity estimated from model accounting for technical change, in this 
case there is variation in the labor elasticity.  The mean year-to-year difference in the elasticity of 
labor from stochastic frontier cumulative rolling regression analysis by addition of each year 
from 1986 to 2005 was 0.003 with a standard deviation of 0.0127.  Similar to labor, there is no 
clear trend in the time-varying elasticity of capital.  The mean of stochastic frontier cumulative 
rolling regression analysis from 1986 to 2005 was 0.028 with a standard deviation of 0.006.  The 
mean year-to-year difference was almost zero with a standard deviation of 0.006.  

 
The mean elasticity of fertilizer from stochastic frontier cumulative rolling regression 

analysis was 0.001 with a standard deviation of 0.005.  The time-varying elasticity of fertilizer 
indicates decreasing positive trend from 1961-1986 to 1961-1989, decreasing negative trend 
from 1961-1990 to 1961-1996, increasing trend from 1961-1999 to 1961-2002 and a decline 
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thereafter.  The mean year-to-year difference in the elasticity of fertilizer was -0.001 with a 
standard deviation of 0.004.  Time-varying elasticity of livestock indicates an increasing trend 
from 1961-1986 to 1961-2000 and declining to the present.  The mean year-to-year difference in 
the elasticity of livestock was 0.005 with a standard deviation of 0.018. 

 
Figure 1b.  Year to Year Difference in Time-Varying Input Elasticity With                             

Country Dummies 

 
 
 
Elasticity of technical change indicates the mean of stochastic frontier cumulative rolling 

regression analysis from 1986 to 2005 was 0.278 and a standard deviation of 0.578.  Unlike a 
clear trend in the time-varying technical change estimated from model accounting for technical 
change, variation in the technical change is experienced accounting for difference across 
countries.  The mean year-to-year difference in the elasticity of technical change from stochastic 
frontier cumulative rolling regression analysis was 0.106 with a standard deviation of 0.344.   

 
Returns to scale results indicate the mean of stochastic frontier cumulative rolling 

regression analysis from 1986 to 2005 was 1.631 and a standard deviation of 0.326.  However 
with the addition of technical change, the returns to scale results indicate the mean of stochastic 
frontier cumulative rolling regression analysis from 1986 to 2005 was 1.909 and a standard 
deviation of 0.338.  Trends in the time-varying return to scale indicate an increasing trend with 
technical change in the model and a decreasing trend without the technical change in the model. 
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V. Conclusions 
 

In this paper, first the importance of accounting for technical efficiency on the input 
elasticities, technical change, and calculation of returns to scale as defined in proposition 1 is 
examined.   Accounting for inefficiency in the estimation of production has important 
implications including the ability to quantify the gap between crops grown under ideal conditions 
(technical experimental station data) and performance in the field, and across countries due to 
transfer of “new” technology (seed, equipment, etc).  At the disaggregate level this information 
would be useful for farmers, regional officials, rural banks, and input suppliers as to the input 
variables driving output and ultimately their profitability.  At the aggregate level it is useful for 
policy makers as it will provide information on future investments of technology innovations of 
inputs to improve output and profitability for overall growth of the economy. 

 
Second, the importance of each additional year of data or information on the input 

elasticities, technical change estimates, and calculation of returns to scale as defined in 
proposition 2 is quantified applying cumulative rolling regression.  In the context of production 
function, input elasticities, technical change, and returns to scale were assumed to be systematic 
(constant over time) and driven by state, national, and worldwide differences.  However, the 
time-varying input elasticities, technical change, and returns to scale is estimated to examine the 
changes in the industry induced by the yearly advancements in structure of agriculture 
production.   

 
Both analyses are conducted using the stochastic frontier analysis of primal Cobb-

Douglas production functions with an application to Asian agriculture data from 1961-2005.  In 
contrast to previous studies that assume technical efficient production function, stochastic 
frontier analysis accounts for technical efficiency and estimates the relationship between input 
and output quantities via the elasticities and returns to scale estimation.  Second, earlier studies 
assumed input elasticities, technical change, and returns to scale to be systematic over time and 
driven by state, national, and worldwide difference.  The time-varying estimates of input 
elasticities, technical change, and returns to scale estimated using cumulative rolling regression 
provide evidence of variation in the measures with each additional year of data or information. 

 
Estimates from this study indicate returns to scale are underestimated by the traditional 

pooled and panel compared to stochastic frontier model that accounts for inefficiency.  These 
results are slightly different from earlier research results for two good reasons.  First, 1961-2005 
time period follows the onset of green revolution especially in the Asian countries.  Also, the 
returns to scale are overestimated by earlier research as they used time-series, pooled, and panel 
models that do not account for technical inefficiency as stochastic frontier analysis.   

 
Time-varying estimates of input elasticities, technical change, and returns to scale 

indicate variations with each additional year of information.  Further the time-varying input 
elasticities, technical change, and returns to scale indicate variations across inputs and over time 
questioning the systematic nature due to changes in the industry induced by the advancements in 
structure of agriculture production, investments, and domestic and international policies over 
time.
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