
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

12th Congress of the European Association of Agricultural Economists – EAAE 2008 

1

Panel Data Estimation Techniques for Farm-level Data Model * 
Platoni S., Sckokai P. and Moro D. 

Istituto di Economica Agro-alimentare, Università Cattolica, 29100 Piacenza, Italy 

* This research has been carried out as part of the WEMAC (World Econometric Modelling of Arable Crops) research project (Scientific 
coordinator: Catherine Benjamin), funded by the European Commission under the 6th Framework programme. The FADN data have been 
provided in the context of that project. 

Abstract - Econometric models wishing to estimate 
relevant parameters for agricultural policy analysis are 
increasingly relying on unbalanced panels of farm-level 
data. Since in the agricultural economics literature such 
models have often been estimated through simplified 
approaches, in this paper we try to verify whether the 
adoption of more sophisticated panel data techniques 
may impact the estimation results. For this reason, the 
policy model by Moro and Sckokai (1999) has been re-
estimated using techniques recently developed in the 
econometric literature. The preliminary results show a 
strong impact on the estimations. This seems to suggest 
that the adoption of proper panel-data techniques is 
likely to be very important in order to obtain reliable 
estimates of some key policy parameters. 

Keywords - Agricultural policy, Panel data, Systems of 
equations 

I. INTRODUCTION 

Econometric models wishing to estimate relevant 
parameters for agricultural policy analysis are 
increasingly relying on farm-level data, like the Farm 
Accounting Data Network (FADN - EU) or the 
Agricultural Resource Management Survey (ARMS - 
US). The structure of these databases is quite similar, 
since they are typically unbalanced panels, where we 
find repeated information on some farms but the same 
farm may not enter the sample every year. Moreover, 
they typically collect data referring to a large number 
of farms, providing very detailed information on farm 
production activities as well as on farm structural 
characteristics and resource use. 

In recent years, a number of papers have been 
published drawing relevant policy implications from 
the estimation of arable crop supply/acreage equations 
carried out on these databases, either related to the EU 
Common Agricultural Policy (CAP) (see, e.g., Oude 

Lansink and Peerlings (1996), Oude Lansink (1999), 
Moro and Sckokai (1999), Sckokai and Anton (2005), 
Serra et al. (2005), Sckokai and Moro (2006) and 
Serra et al. (2006)) or to the corresponding US policy 
(see, e.g., Goodwin and Mishra (2006)). However, 
these papers have always adopted a simplified 
approach in taking into account the complex 
econometric issues implied by the use of these 
databases. In fact, their use implies the adoption of 
proper panel-data techniques suitable for system of 
equation estimation, in which the issue of censoring is 
properly taken into account, since it is very common 
that not every farm produces each crop every year. 

In light of these considerations, the present paper 
re-examines the analyses proposed for Italy by Moro 
and Sckokai (1999), adopting a more suitable 
econometric approach. Thus, we model the CAP 
arable crop regime using FADN data for Italy in order 
to analyse supply and acreage response to policy 
parameters, under the maintained hypothesis of risk-
neutral behaviour by farmers. This empirical 
application has mainly illustrative purposes, since the 
main objective of the paper is to underline the 
different results obtained adopting different panel data 
techniques. 

In terms of econometric approach, the paper relies 
on the Error Component Model (ECM), which is the 
most frequently used approach to analyse panel data in 
econometrics. When the panel is incomplete, which is 
the rule rather than the exception when the data come 
from large-scale surveys, standard estimation methods 
cannot be applied (see, e.g., Wansbeek and Kapteyn 
(1989), Baltagi et al. (2001) and Davis (2002)). Hence 
the general model we consider is a two-way error 
component regression for unbalanced panel data, in 
which both firm and time effects are introduced 
(among recent empirical applications adopting this 
approach, see, e.g., Boumahdi et al. (2004)). We 
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present results obtained using both single equation and 
system of equation estimation techniques, in which 
censoring issues have been taken into account using a 
proper two-step approach. 

II. MODEL 

A. Theoretical model 

The model we adopt refers specifically to the CAP 
for arable crops as it was implemented before the 2003 
reform1. Under this package, farm income was 
supported through three main policy tools: the 
intervention price for cereals, the crop-specific area 
payments, introduced with the 1993 reform of the 
CAP, and the compulsory rate of set-aside. Thus, any 
model wishing to analyse farmers’ response to these 
policy tools have to incorporate them in its assumed 
decision making structure. 

As in Moro and Sckokai (1999), we consider the 
following profit function for the representative farmer: 
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where y is the n-dimensional vector of farm outputs 
and ep  is the corresponding vector of expected output 
prices, x is the m-dimensional vector of variable inputs 
and w the corresponding vector of input prices, s is the 
vector of land allocations to the n crops, with Ts  being 
total farm land, nnp <  is the number of crops included 
in the arable crop regime, b is the vector of crop-
specific area payments, d is the set-aside payment, c is 
the set-aside percentage, rs  is the land that must be set 
aside, z is the vector of quasi-fixed inputs in the short 
run and T is the multi-output short-run technology. 
Finally, the three constraints are the total land 
                                                 
1 As it is well known, the most recent reform of the CAP 
was implemented starting in 2005. Thus, reliable farm-level 
data referring to the application of the new Single Farm 
Payment scheme will become available only in the near 
future. 

constraint, the set-aside constraint and the 
technological constraint, respectively. 

If we assume that ( )zbwp ,,,,,, csd T
eπ  is twice 

continuously differentiable, we can write the following 
set of derivative properties: 
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which allow us to define a set of output supply, input 
demand and land allocation equations that can be 
estimated on farm-level data. Since this model 
estimates simultaneously both supply and land 
allocation decisions, crop yields become endogenously 
defined. 

B. Empirical specification 

For a parametric specification of (1), we rely on the 
normalized quadratic function, a flexible functional 
form largely applied to the estimation of agricultural 
profit functions. This functional form has a Hessian of 
constants, so the curvature properties can hold 
globally. Moreover, it allows negative profits, which 
cannot be managed when logarithmic transformations 
are used. Choosing e

mp  as the numeraire, the 
normalized quadratic profit function takes the 
following general form:  

 qAqqa ′+′+= 0aπ  (3) 
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a0, the vector a and the matrix A are parameters to be 
estimated. 

Using the derivative property in (2), output supply, 
input demand and land allocation equations can be 
written as: 

2nmn1j
1nmnmni

qs

2nmn1j
1mn1nh

qx

2nmn1j
n1i

qy

p

p

j
jijii

pj
jhjhh

pj
jijii

+++=

−+++=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+++=
−++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

+++=
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

∑

∑

∑

,...,
,...,

,...,
,...,

,...,
,...,

γγ

ββ

αα

 (4) 



 

12th Congress of the European Association of Agricultural Economists – EAAE 2008 

3

where α ’s, β ’s, and γ ’s are appropriate elements of 
the above vector a and matrix A. 

Due to the specification of the vector q , the 
homogeneity property is maintained within the 
empirical model. Moreover, the standard symmetry 
and reciprocity properties can be imposed with the 
following parametric restrictions: jiij αα = , hjhj ββ =  
and jiij γγ = . 

III. DATA 

The data used for the present study are taken from 
the EU FADN database for the period 1994-2003 (ten 
years) and refer to the sample of Italian specialised 
arable crop farms. As mentioned in the introduction, 
the database is an unbalanced panel of 14,288 
individuals observed in the above 10 years period, for 
a total of 34,140 observations2.  

The database provides most of the variables needed 
to estimate the model: crop productions, output prices, 
land allocations, area payments, family labour, hired 
labour (number of hours and hourly wages), variable 
input costs by category (seeds, fertilisers, chemicals, 
water …) and quasi-fixed input stock values (buildings 
and machinery). Variable input prices are not provided 
by the FADN; thus, price indexes for Italy have been 
taken from the official Eurostat statistics. The same 
has been done for deflating capital values, since 
Eurostat provides also time series of rental price 
indexes for capital goods. 

The initial FADN dataset is very disaggregated, 
especially in terms of number of outputs and number 
of variable inputs; thus, to make the estimation 
feasible, some aggregation has been introduced. We 
have considered five output categories (durum wheat, 
maize, oilseeds, other cereals, and other arable crops) 
with their respective land allocations, where the first 

                                                 
2 The sample we have used was obtained after the elimination 
of those farms that presented some “severe outliers” in the 
key variables needed for the estimation. All farms showing 
output prices and crop yields falling out of the range defined 
by the sample mean and two standard deviations were 
eliminated. The general idea of this procedure is to 
eliminate those observations that are likely to come from 
some errors in plugging in the basic data. 

four represent those crops for which the CAP arable 
crop regime guaranteed different levels of area 
payments. We have also considered two variable 
inputs (crop inputs and other variable inputs), one 
fixed input (total land) and one quasi-fixed inputs 
(aggregate of capital and family labour). The price of 
“other inputs” is our numeraire in the normalised 
quadratic specification. The aggregates have been 
generated as Laspeyres indexes, while short run profit 
has been computed as the sum of total gross sales and 
total area payments minus total variable costs. 

Since output prices are unknown at the time land 
allocation decisions are made, an assumption on how 
price expectations are formed is needed. We have 
adopted the well-known “adaptive expectation” 
hypothesis, following the approach proposed by 
Chavas and Holt (1990), which implies a correction of 
lagged prices3. Clearly, since our panel is incomplete, 
individual (farm) lagged prices cannot be used to 
construct the series of expected prices. Thus, for each 
crop, yearly regional average prices have been 
computed and used to model the mechanism of price 
expectations4. 

IV. ECONOMETRIC TECHNIQUES 

A. Censoring 

As mentioned in the introduction, the estimation of 
supply and land allocation equations implies the 
adoption of an appropriate technique to account for 
censoring, since not every farm produces every crop 
each year. In order to obtain suitable results for policy 
analysis, this problem has to be addressed adopting a 
methodology that uses all the available observations, 
in order to preserve the representativeness of the 
FADN sample. For this reason, we used the two-step 
estimation procedure proposed by Shonkwiler and 

                                                 
3 This correction is based on the assumption that, in each 
period, farmers update their “naive” expectations (lagged 
prices) based on the past history of the observed differences 
between actual prices and “naive” expected prices. 
4 To avoid the problem of eliminating entire years to model 
lagged prices, we have used national crop prices taken from 
Eurostat to model expectations in the first years of our 
sample. 
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Yen (1999). Thus, the system of equations in (4) is 
estimated in the following form: 

( ) ( ) ( )∗∗ += iitiiitiiitit Θf ηhψqηh ,,, ρΦν  (5) 

where hit is a vector of variables which explains the 
binary choice of producing/non producing crop i  and 

*
iη  are first-stage probit estimates of the corresponding 

parameters; itν  is any of the dependent variable and 
( )⋅if  is any of the equations of the system in (4); iψ  is 

the subset of the normalized quadratic parameters to 
be estimated that enter equation ( )⋅if ; )(⋅Φ  and )(⋅Θ  
are the univariate standard normal cumulative 
distribution and probability density functions, 
respectively, both computed over probit results, while 

iρ  is an extra parameter to be estimated. 
The five probit models (one for each output) are 

estimated using as explanatory variables the level of 
three quasi-fixed inputs (family labour, buildings and 
machinery) and one set of dummy variables 
representing different regions/altitudes5. Thus, in each 
probit model we estimated 10 parameters. 

B. Panel data estimation 

The panel data estimation relies on the error 
component model (ECM), which is the most 
frequently used approach to analyse panel data in 
econometrics. Since the panel is incomplete, standard 
estimation methods cannot be applied (see, e.g., 
Wansbeek and Kapteyn (1989), Baltagi et al. (2001), 
Davis (2002) and Boumahdi et al. (2004)). 

At first, we have estimated our model using the 
standard single equation one-way fixed effect (FE) and 
one-way random effect (RE) models, for which 
estimation commands exist in the most common 
econometric softwares. As it is well known, one-way 
FE and RE models assume that differences across 
individuals can be captured by means of an individual 
specific intercept term. The FE approach considers 

                                                 
5 Other pertinent variables to be included in probit 
estimation would be soil quality or demographic 
characteristics of the farmer (age, education, …), but 
unfortunately these variables are not included in the FADN 
database. 

this term as a fixed parameter, while the RE approach 
considers it as a random disturbance6. 

In addition, we have estimated a set of two-way RE 
and FE models, which explore simultaneously both 
differences across individuals and differences over 
time for each individual. The econometric software we 
use (TSP version 5.0) offers the possibility of 
estimating the Maximum Likelihood (ML) two-way 
RE model, but we have decided to build our own GLS 
estimator in order to compute the two-way Hausman 
test (see Baltagi (2005)).  

Note that, when adopting a two-way ECM 
approach, it is legitimate to consider only the 
individuals which appear at least twice, since 
individuals appearing only once do not add any useful 
information (Wansbeek and Kapteyn (1989)). Thus, 
after this elimination, our final sample is an 
unbalanced panel of 7,526 individuals observed in 10 
years, for a total of 27,378 observations. In order to 
compare the results, we have used this reduced 
database also for one-way FE and RE estimation. 

Single equation two-way ECM 

The single equation two-way ECM estimation 
technique for unbalanced panel has been introduced by 
Wansbeek and Kapteyn (1989) and our estimator has 
been built following their procedure. 

Our unbalanced panel is characterized by a total of 
n observations, by F farms, indexed by F1i ,...,= , and 
by T periods, indexed by T1t ,...,= . Let Ti denote the 
number of times the farm i  is observed and Ft the 
number of farms observed in period t. Hence 

nFT
t

t
i

i ==∑∑ . 

Let tD  be the FFt × matrix obtained from IF by 
omitting the rows corresponding to farms not observed 

                                                 
6 The one-way FE is the most common approach adopted in 
agricultural economic studies employing panel data 
estimation techniques (see, e.g., Oude Lansink and 
Peerlings (1996), Oude Lansink (1999), Sckokai and Anton, 
(2005)). Other studies adopt ad hoc simplified approaches, 
that do not explore specifically the panel structure of the 
data (see, e.g., Moro and Sckokai (1999), Sckokai and Moro 
(2006), Serra et al. (2005) and Serra et al. (2006)). 
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in period t. With ( )′′′=
×

T1
Fn
1 DDΔ ...  and ( )Ft

Tn
2 diag ιDΔ =

×
 

we can define 11
FF
F ΔΔΔ ′≡
×

, 22
TT
T ΔΔΔ ′≡
×

 and 12
FT

TF ΔΔΔ ′≡
×

 

and we can consider ⎟
⎠
⎞

⎜
⎝
⎛≡

×× TnFn
1 2ΔΔΔ ,  which gives the 

dummy-variable structure for the unbalanced panel 
model. 

In the two-way FE model we consider the following 
matrices: 

( ) [ ]( ) [ ]

( ) [ ] 2122TF
1

F122TF
1

FTFT

2121n21
1

F1nTF
1

F12

ΔQΔΔΔΔΔΔΔΔΔΔΔΔQ
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Δ

ΔΔ

′=⋅′=′−⋅′=′−≡

=⋅−=⋅′−=′−≡
−−

−−

 (6) 

and hence the projection matrix onto the null-space of 
Δ  is: 

 [ ] ( ) [ ] [ ] [ ]122111
1

F1n ΔΔΔΔ QΔQΔQQΔQΔΔΔΔIQ ′−=′−′−= −−−  (7) 

and therefore the within estimator is: 

 [ ]( ) [ ]( )yQXXQXβ ΔΔ
′′= −1WT  (8) 

In the two-way RE model (GLS) the covariance 
matrix of the composite error ittiitu ενμ ++=  is: 

( ) 22
2

11
2

n
2E ΔΔΔΔIuuΩ ′+′+=′= νμε σσσ  (9) 

With F2

2
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ε

σ
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defining: 
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Δ
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−

−

1
F1n1

TF
1

FTFT
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 (10) 

Wansbeek and Kapteyn (1989) show that: 

 [ ] [ ] [ ]( )
111 222

1 1
Δ

-
ΔΔ QΔQΔQQΩ

~~~~ ′−=−

εσ
 (11) 

and then the GLS estimator is: 

 ( ) ( )yΩXXΩXβ 111GLS −−− ′′=  (12) 

We derive Quadratic Estimations (QUEs) for 2
εσ , 

2
μσ  and 2

νσ  by using the FE residuals, averaged over 
farms or averaged over periods. Since we are 
considering a constant term, with the FE residuals 

WTXβye −≡  and with eeeEf −=⋅= n  we equate: 
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to their expected values: 

 

( ) ( )
( ) ( )

( )
( ) ( )

( )2
2

2
1

22

2
0TT

2
2

2
1

22

2
0FF

2
n

Fn
1kkFqE

nT
1kkTqE

k1FTnqE

νμνμ

ε

νμνμ

ε

ε

σλσλσσ
σ

σλσλσσ
σ
σ

⋅+⋅−⋅+⋅+
+⋅−−+=

⋅+⋅−⋅+⋅+
+⋅−−+=

⋅−+−−=

 (14) 

with [ ]( ){ }XΔΔΔXXQX Δ 2
1-

T2
1

F trk ′′′= − , 

[ ]( ){ }XΔΔΔXXQX Δ 1
1-

F1
1

T trk ′′′= −  and 

[ ]( )
n

k n
1

n
0

ιXXQXXι Δ ′′′
=
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 and with 

n
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n

F

1i
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∑
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ιΔΔιλ  and 
n

F
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T
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t
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∑
==

′′
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ιΔΔιλ . 

If 0
x
uE

it

it ≠⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 then the estimator GLSβ  becomes 

biased and inconsistent for β . Hausman (1978) 
suggests comparing GLSβ  and WTβ  both of which are 

consistent under the null hypothesis H₀: 0
x
uE

it

it =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

but which will have different probability limits if H₀ is 
not true. Baltagi (2005) asserts that the standard 
Hausman test performs correctly also in the two-way 
ECM. Therefore we compute: 

WTGLS
1 ββq

~~
−=  (15) 

where GLSβ~  and WTβ~  are the vectors of the estimated 
parameters without the constant term and the Hausman 
test statistic is given by: 

[ ]( ) ( )( ) 1

11
1

1
2

11m qXΩXXQXq Δ

−−
−

−

′−′=
~~~~' εσ  (16) 

where X~  is the matrix of the regressors without the 
constant term. Under H₀ the test 1m  is asymptotically 
distributed as 2

k~
χ  where k~  denotes the dimension of 

the vector β~ . 
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Two-way SUR system 

The most appropriate way of estimating the model 
in (4) is by a system of equation estimation technique, 
which in this specific case must be a Seemingly 
Unrelated Regression (SUR) technique, which allows 
to impose cross equations restrictions. Once again, 
standard econometric softwares do not provide 
automatic commands to estimate two-way SUR 
systems, since estimating such system implies the 
adoption of a specific procedure for inverting the 
variance-covariance matrix of the residuals 1−Ω . This 
procedure has been recently proposed by Biørn (2004) 
for the estimation of a one-way SUR system. Based on 
this framework, we have derived the corresponding 
estimator for the two-way SUR system. 

Let consider a system of M equations, indexed by 
m=1,…,M. The farms are observed in at least two 
periods and at most T periods. Let pF~  denote the 
number of farms observed in p periods, with p=2,…,T. 
Hence FF

p
p =∑ ~  and npF

p
p =∑ ~ . We assume that 

the farms are observed in T-1 groups such that the 2F~  
farms observed twice come first, the 3F~  farms 
observed three times come second, etc. Hence with 

∑
=

=
p

2k
kp FC ~  being the cumulated number of farms 

observed up to p times, the index sets of the farm 
observed p times can be written as 

{ }p1pp C1CI ,...,+= −  where p=2,…,T and 0C1 =  (note 
that Ip may be considered as a pseudo-balanced panel 
with p observations of each farm). 

With km being the number of regressors for equation 
m, the total number of regressors for the system is 

∑
=

=
M

1m
mSUR kk . Stacking the M equations for the 

observation ( )ti,  we have: 

1M
it

1SURkSURkM
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t
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i

1SURkSURkM
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1M
it

×××××××××

+=+++= uβXενμβXy  (17) 

where ( )Mitit1it diag xxX ...=  and ( )′′′= M1diag βββ ... . 

With ( )′= Mii1i μμμ ... , ( )′= Mtt1t ννν ...  and 

( )′= Mittt1it εεε ... , we assume: 
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Hence 
1M
t
×
μ , 

1M
t
×
ν  and 

1M
it
×
ε  have zero expectations and 

covariance matrices 
MM×
μΣ , 

MM×
νΣ  and 

MM×
εΣ . It follows that 
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T1T322 C1,...,C,...,C1,...,C,C1,...,i ++= −  with 
FCT = ). 

We define the matrix ( )
TMpM
pi

×

Δ  indicating in which 

period t the farm i  is observed. For example with T=4 
if the farm i  is observed in t=2 and in t=4 we have 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

× M

M

TMpM
pi ι000

00ι0
Δ . Hence with 

′
⎟
⎠
⎞

⎜
⎝
⎛ ′′=

××× M1
T

M1
11TM

ννν ...  for the farm pIi∈  we can define 

( ) ( ) 1TMTMpM
pi

1pM
pi ×

××

= νΔν  and we can write the model: 

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

MMpp
p

MMpp
p

MMpp
p

MMpp
p

pMpM
p

1pM
pi

1SURkSURkpM
pi

1pM
pi

1pM
pi

1M
i

1p
p

1SURkSURkpM
pi

1pM
pi

p
××××

×××××

××××××××××

++⊗++⊗=

=⊗++⊗=

+=++⎟
⎠
⎞

⎜
⎝
⎛ ⊗+=

μνενε

μνε

ΣΣΣJΣΣE

ΣJΣΣIΩ

uβXενμιβXy

 (19) 

Since pE  and pJ  are symmetric and idempotent and 
have orthogonal columns we have: 

 ( ) ( )
MM

1

pp
p

MM

1

pp
p

pMpM

1-
p p

×

−

××

−

××

++⊗++⊗= μνενε ΣΣΣJΣΣEΩ  (20) 
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Then we can consider the GLS problem for β  when 

μΣ , νΣ  and εΣ  are known, i.e. the problem of 
minimizing: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )∑∑

∑∑∑∑

= ∈ ×

−

×

= ∈ ×

−

×= ∈

−

⎥⎦
⎤

⎢⎣
⎡ ++⊗′+

+⎥⎦
⎤

⎢⎣
⎡ +⊗′=′

T

2p pIi
pi

MM

1

pp
ppi

T

2p pIi
pi

MM

1

pp
ppi

T

2p pIi
pi

1
ppi

p uΣΣΣJu

uΣΣEuuΩu

μνε

νε

 (21) 

If we apply GLS on the observations for the farms 
observed p times we obtain: 

( ) ( ) ( ) ( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++⊗′+

++⊗′

×

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++⊗′+

++⊗′

=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′=

∑
∑
∑
∑

∑∑

∈ ××

−

×

∈ ××

−

×

−

∈ ××

−

×

∈ ××

−

×

∈ ××

−

×

−

∈ ××

−

××

pIi 1pMpMpM

1

p
pM

pIi 1pMpMpM

1

p
pM

1

pIi SURkpMpMpM

1

p
pM

pIi SURkpMpMpM

1

p
pM

pIi 1pM

1
p

pM

1

pIi SURkpM

1
p

pM1SURk

GLS
p

p

p

pi
SURk

pi

pi
SURk

pi

pi
SURk

pi

pi
SURk

pi

pi
pMpMSURk

pipi
pMpMSURk

pi

yΣΣΣJX

yΣΣEX

XΣΣΣJX

XΣΣEX

yΩXXΩXβ

μνε

νε

μνε

νε

 (22) 

while the full GLS estimator is: 

( ) ( ) ( ) ( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )

( ) ( )[ ] ( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++⊗′+

++⊗′

×

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++⊗′+

++⊗′

=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′=

∑∑

∑∑

∑∑

∑∑

∑∑∑∑

= ∈ ××

−

×

= ∈ ××

−

×

−

= ∈ ××

−

×

= ∈ ××

−

×

= ∈ ××

−

×

−

= ∈ ××

−

××

T

2p pIi 1pMpMpM

1

p
pM

T

2p pIi 1pMpMpM

1

p
pM

1

T

2p pIi SURkpMpMpM

1

p
pM

T

2p pIi SURkpMpMpM

1

p
pM

T

2p pIi 1pM

1
p

pM

1
T

2p pIi SURkpM

1
p

pM1SURk

p

p

pi
SURk

pi

pi
SURk

pi

pi
SURk

pi

pi
SURk

pi

pi
pMpMSURk

pipi
pMpMSURk

pi
GLS

yΣΣΣJX

yΣΣEX

XΣΣΣJX

XΣΣEX

yΩXXΩXβ

μνε

νε

μνε

νε

 (23) 

We can estimate the covariance matrices μΣ , νΣ  
and εΣ  by following either the within-between 
procedure suggested by Biørn (2004) – corrected for 
the two-way model – or the QUE procedure suggested 
by Wansbeek and Kapteyn (1989) – corrected for the 
SUR. 

The first method considers the FE residuals 
WT

it
1M

it Xβye −≡
×

 for the farm i  in period t. If we 

define eef −= itit , the MM ×  matrices of within 
farms, between farms and between times 

(co)variations in the f ’s of the different equations 
are: 

( )( )
( )( )
( )( )∑

∑
∑∑

= ×××

= ×××

= = ×××

′
−−=

′
−−=

′
−−−−=

T

1t M1
t

1M
tt

MM

T
f

F

1i M1
i

1M
ii

MM

C
f

F

1i

T

1t M1
tiit

1M
tiit

MM
f

F

T

ffffB

ffffB

ffffffW

 (24) 

Since the iμ ’s, the tν ’s and itε ’s are independent we 
can write: 

⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛=

⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞⎜

⎝
⎛=

×××

×××

××

MM

T

MM

T

MM

T
f

MM

C

MM

C

MM

C
f

MMMM
f

EE

EE

E

εν

εμ

ε

BBB

BBB

WW

 (25) 

where 

εεεεεεεεB

ννννννννB

εεεεεεεεB

μμμμμμμμB

εεεεεεW

′−′=′−′=

′−′=′−′=

′−′=′−′=

′−′=′−′=

′−′−′=

∑∑∑
∑∑∑
∑∑∑
∑∑∑
∑∑∑∑

===×

===×

===×

===×

=== =×

nFFF

nFFF

nTTT

nTTT

FT

T

1t
ttt

T

1i
t

T

1t
ttt

MM

T

T

1t
ttt

T

1t
t

T

1t
ttt

MM

C

F

1i
iii

F

1i
i

F

1i
iii

MM

C

F

1i
iii

F

1i
i

F

1i
iii

MM

C
μ

T

1i
ttt

F

1i
iii

F

1i

iT

1t
itit

MM

ε

ν

ε

ε

 

Since ( ) ενμ ΣΣΣuu tt'ii'tt'ii'tiit δδδδE ++=′ '' , 
( ) μΣμμ ii'ii δE =′' , ( ) νΣνν tt'tt δE =′'  and 
( ) εΣεε tt'ii'tiit δδE =′ ''  it follows that: 

( )

( )

( )
MMMM

T

MM

T

1t

2
t

MM

T

MMMM

C

MM

F

1i

2
i

MM

C
μ

MMMM

1TE

n

F
nE

1FE

n

T
nE

TFnE

××

×

=

×

××

×

=

×

××

⋅−=⎟
⎠
⎞⎜

⎝
⎛

⋅

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−=⎟
⎠
⎞⎜

⎝
⎛

⋅−=⎟
⎠
⎞⎜

⎝
⎛

⋅

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−=⎟
⎠
⎞

⎜
⎝
⎛

⋅−−=⎟
⎠
⎞⎜

⎝
⎛

∑

∑

εε

νν

εε

μ

εε

ΣB

ΣB

ΣB

ΣB

ΣW

 (26) 

Hence we can conclude that: 
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( )

( )

n

F
n

1T
n

T
n

1F
n-F-T

T

1t

2
t

T
f

MM

F

1i

2
i

C
f

MM

f

MM

∑

∑

=

×

=

×

×

−

⋅−−
=

−

⋅−−
=

=

ε

ν

ε

μ

ε

ΣB
Σ

ΣB
Σ

W
Σ

ˆ
ˆ

ˆ
ˆ

ˆ

 (27) 

The second method considers the FE residuals 
WT
mm

1n
m Xβye −≡
×

 for the equation m=1,…,M. If we 

define mmmn
1n
m eeeEf −=⋅=
×

 we can obtain QUE for 

2
εmj
σ , 2

μmj
σ  and 2

νmj
σ  by equating: 

[ ]

1n
m

1-
F

n1
jmjT

1n
m

1-
T

n1
jmjF

1n
m

n1
jmjn

q

q

q

××

××

××

′′≡

′′≡

′≡

fΔΔΔf

fΔΔΔf

fQf

11

22

Δ

 (28) 

to their expected values: 
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 2

mj2
2

mj1
2

mjmj0mjTmjT

2

mj2
2

mj1
2

mjmj0mjFmjF

2

mjmjjmmjn

Fn1kkFqE
nT1kkTqE

kkk1FTnqE

νμε

νμε

ε

σλσλσ
σλσλσ

σ

⋅−+⋅−+⋅−−+=
⋅−+⋅−+⋅−−+=

⋅+−−+−−=
 (29) 

with 

[ ]( ) [ ]( ) [ ]( ) [ ]( ){ }
[ ]( ) [ ]( ) [ ]( ) ( ){ }
[ ]( ) [ ]( ) [ ]( ) ( ){ }

[ ]( ) [ ] [ ]( )
n

k

trk
trk

trk

nj

1

jΔjjm

1

mmmn

mj0

m1
1

F1j

1

jjjm

1

mmmjT

m2
1

T2j

1

jjjm

1

mmmjF

mj

1

jjjm

1

mmmj

ιXXXXQXXQXXι
XΔΔΔXXQXXQXXQX
XΔΔΔXXQXXQXXQX

XQXXQXXQXXQX

ΔΔ

ΔΔΔ

ΔΔΔ

ΔΔΔΔ

′′′′′
=

′′′′′≡

′′′′′≡

′′′′≡

−−

−−−

−−−

−−

Q

 

Since jmmj kk = , 
jmmj FF kk = , 

jmmj TT kk =  and 
jmmj 00 kk =  

obviously we have 22
jmmj εε σσ = , 2

jm
2
mj μμ σσ =  and 

22
jmmj νν σσ = . 

V. RESULTS 

In Table 1 we report the estimated parameters for 
the durum wheat supply equation, one of the most 
important arable crop in Italy (for space reasons, we 
cannot report all the estimated parameters). As one can 
easily appreciate, the adoption of different estimation 
techniques implies obtaining quite different results, 

both in terms of absolute value of the estimated 
parameters and in terms of their statistical 
significance7. 

For example, the own price-response of durum 
wheat (the p1 row in Table 1) is significant only in the 
one-way FE and RE models and in the two-way SUR 
system, while in other models is not statistically 
significant. Moreover, among significant parameters, 
we observe quite a strong variability, since the two-
way SUR system estimates a parameter that is 
approximately 50% higher than those estimated with 
single equation techniques. The same happens for the 
other key parameter of the own area payment effect 
(the b1 row in the same table). Here all models provide 
positive and significant parameters, but their absolute 
value is strongly different among models.  
Nevertheless the two-way SUR provides the highest 
value. 

In Table 2 we can appreciate how the SUR 
technique allows the cross equations restrictions 

jiij αα =  and jiij γγ = . 
In Table 3 we provide own-price and own-payment 

elasticities for both the supply and land allocation 
equations of our model, the key parameters that are 
used for policy simulations. Once again, results turn 
out to be quite different across models. For example, 
limiting our attention to those elasticities significantly 
different from 0, we have that the own payment 
elasticity for oilseeds supply (rows y3 in the table) and 
the own price elasticity for maize land allocation (row 
s2 in table) are much higher in the case of the two-way 
SUR system as compared to all the other models. 

VI. CONCLUDING REMARKS 

In recent years, a number of agricultural economics 
papers have been published drawing relevant policy 
implications from the estimation of arable crop 
supply/acreage equations carried out on farm-level data. 

                                                 
7 In Tables 1, 2 and 3 we adopt the following convention: y 
= output supply, p = output price, x = input demand, w = 
input price, s = land allocation, b = area payment, 1 = 
Durum wheat, 2 = Maize, 3 = Oilseeds, 4 = Other Cereals, 5 
= Other output, Ts  = total land, c = set-aside percentage and 
z = quasi-fixed input (aggregate of capital and family 
labour). 
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However, these papers have often adopted a simplified 
approach in taking into account the complex 
econometric issues implied by the use of these data, 
which are typically unbalanced panels. In fact, the use 
of these data implies the adoption of proper panel-data 
techniques, which have been recently developed in the 
econometric literature and that have still to be 
incorporated as automatic commands in the standard 
econometric softwares. 

In light of these considerations, the present paper re-
examines the analyses proposed for Italy by Moro and 
Sckokai (1999), adopting a more suitable econometric 
approach. Thus, we model the CAP arable crop regime 
using FADN data for Italy in order to analyse supply 
and acreage response to policy parameters. Our 
empirical application has mainly illustrative purposes, 
since the main objective of the paper is to underline the  
different results obtained adopting different panel data 
techniques. 

In terms of econometric approach, the paper relies 
on the Error Component Model, both in its one-way 
version (i.e. considering only the individual specific 
effect) and in its two-way version (i.e. considering 
both the individual and the time specific effects). 
Since the estimated model is a set of simultaneous 

equations, the corresponding regressions have been 
estimated both as single equations and as a SUR 
system of equations. In adopting this last technique, 
we have extended the one-way SUR technique 
proposed by Bjorn (2004) to the two-way case. 

The preliminary results of our work confirm our 
initial expectations, since the adoption of different 
estimation techniques implies obtaining quite different 
results, both in terms of absolute value of the 
estimated parameters and in terms of their statistical 
significance. This seems to suggest that the adoption 
of proper panel-data techniques is likely to be very 
important in order to obtain reliable estimates of some 
key policy parameters, like the output price and area 
payment elasticities estimated in our model. 

However, in this research a further step is needed, 
since at this stage we are not able to select, through an 
appropriate test, among our alternative econometric 
specifications. In fact, as noted by Wooldridge (2001), 
in presence of heteroscedasticity the standard 
Hausman test does not perform correctly. Since 
heteroscedasticity is very common in farm-level data, 
and it is present also in our sample, our two-way 
estimators must be modified in order to account for 
heteroscedastic error terms. 
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Table 1 Durum wheat supply estimated parameters under different panel-data techniques 

 FE 
one-way 

FE 
two-way 

RE 
one-way 
(GLS) 

RE 
one-way 

(ML) 

RE 
two-way 
(GLS) 

RE 
two-way 

(ML) 

SURWB 
two-way 
(GLS) 

SUR QUE 
two-way 
(GLS) 

cons   113.6480*** 
(3.4729) 

113.1820*** 
(3.6027) 

110.6890*** 
(4.0557) 

112.8970*** 
(3.6489) 

-19.7823*** 
(1.6353) 

-21.3672*** 
(1.5650) 

1p  0.7387** 
(0.3162) 

-0.3754 
(.3816) 

0.6600** 
(0.3048) 

0.6598** 
(0.3078) 

-0.2437 
(0.3651) 

-0.2403 
(0.3668) 

1.0514*** 
(0.2914) 

1.2239*** 
(0.2867) 

2p  0.5820*** 
(0.1807) 

0.9533*** 
(0.1868) 

0.4366** 
(0.1687) 

0.4411** 
(0.1707) 

0.7858*** 
(0.1769) 

0.7726*** 
(0.1756) 

0.1928 
(0.1557) 

-0.1637 
(0.1522) 

3p  -0.6987*** 
(0.1676) 

-0.7061*** 
(0.1685) 

-0.3362** 
(0.1550) 

-0.3569** 
(0.1570) 

-0.4291*** 
(0.1591) 

-0.3529** 
(0.1573) 

-0.3675*** 
(0.1230) 

0.1111 
(0.1214) 

4p  -1.3836*** 
(0.1441) 

-1.3270*** 
(0.1447) 

-1.2426*** 
(0.1300) 

-1.2476*** 
(0.1318) 

-1.2118*** 
(0.1341) 

-1.1916*** 
(0.1319) 

-1.1539*** 
(0.1130) 

-1.6945*** 
(0.1094) 

5p  -0.1466 
(0.1329) 

-0.3742** 
(0.1678) 

-0.4464*** 
(0.1265) 

-0.4294*** 
(0.1279) 

-0.6008*** 
(0.1579) 

-0.6780*** 
(0.1584) 

-0.6019*** 
(0.1184) 

-0.7146*** 
(0.1156) 

w  -4.4451*** 
(1.267) 

-2.4421* 
(1.3965) 

-7.6837*** 
(1.2187) 

-7.4735*** 
(1.2322) 

-4.9683*** 
(1.3469) 

-5.6935*** 
(1.3493) 

-8.1235*** 
(1.1586) 

-7.5284*** 
(1.1354) 

1b  0.4052*** 
(0.0934) 

0.4515*** 
(0.0942) 

1.0263*** 
(0 .0856) 

0.9928*** 
(0.0872) 

0.9040*** 
(0.0883) 

1.0248*** 
(0.0875) 

1.1202*** 
(0.0817) 

1.1404*** 
(0.0800) 

2b  -0.0491 
(0.0569) 

-0.0499 
(0.0604) 

-0.0537 
(0 .0536) 

-0.0531 
(0.0542) 

-0.0679 
(0.0574) 

-0.0747 
(0.0571) 

-0.1387*** 
(0.0424) 

-0.1365*** 
(0.0419) 

3b  -0.0536 
(0.0342) 

0.0845 
(0.0402) 

-0.0996*** 
(0 .0330) 

-0.0975*** 
(0.0334) 

0.0459 
(0.0385) 

0.0434 
(0.0390) 

-0.0879*** 
(0.0293) 

-0.1143*** 
(0.0290) 

4b  0.0434 
(0.1952) 

-0.0280 
(0.2028) 

-0.2085 
(0.1717) 

-0.2052 
(0.1742) 

-0.2749 
(0.1830) 

-0.2899 
(0.1793) 

0.4492*** 
(0.1015) 

0.4068*** 
(0.1004) 

Ts  0.5398*** 
(0.0125) 

0.5369*** 
(0.0125) 

0.4174*** 
(0.0073) 

0.4203*** 
(0.0076) 

0.4312*** 
(0.0081) 

0.4190*** 
(0.0076) 

0.4457*** 
(0.0069) 

0.4309*** 
(0.0068) 

c  -37.0379*** 
(2.4832) 

-37.3892*** 
(2.4926) 

-23.6270*** 
(2.2858) 

-24.4107*** 
(2.3250) 

-27.4723*** 
(2.3467) 

-24.6105*** 
(2.3273) 

-28.4253*** 
(2.1697) 

-27.7734*** 
(2.1130) 

z  0.0011*** 
(0.0003) 

0.0011*** 
(0.0003) 

0.0017*** 
(0.0002) 

0.0016*** 
(0.0002) 

0.0013*** 
(0.0003) 

0.0016*** 
(0.0002) 

0.0021*** 
(0.0002) 

-0.0002 
(0.0002) 

Standard errors in brackets. *** 1% significance, **5% significance, *10% significance 
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Table 2 Estimated parameters under two-way SUR QUE (GLS) 
 Dependent Variables 
 1y  2y  3y  4y  5y  w  

1s  2s  3s  4s  

cons  -21.3672*** 
(1.5650) 

-41.8531*** 
(4.5059) 

22.3254*** 
(5.3982) 

-53.5738 
(0) 

-363.5020*** 
(38.2655) 

-19.1745*** 
(2.7951) 

4.81388*** 
(0.1986) 

-0.1441 
(0.1317) 

0.3524*** 
(0.0967) 

0.5997*** 
(0.1563) 

1p  1.2239*** 
(0.2866)     -1.0193 

(0.7681) 
0.0110 

(0.0543) 
-0.0116 

(0 .0204) 
-0.0359 
(0.0301) 

-0.2858 
(0) 

2p  -0.1637 
(0.1522) 

1.6954*** 
(.3906)    0.7794* 

(0.4575) 
-0.0451 
(0.0317) 

0 .0854*** 
(0.0200) 

-0.0678*** 
(0 .0207) 

0.0644*** 
(0.0155) 

3p  0.1111 
(0.1214) 

-0.9397*** 
(0.1240) 

5.3231*** 
(0.1023)   0.5690 

(0.3724) 
-0.1364*** 
(0.0240) 

-0.1588*** 
(0.0109) 

1.3750*** 
(0.0184) 

-0.1840 
(0) 

4p  -1.6945*** 
(0.1094) 

0.4467*** 
(0.1549) 

-1.5350*** 
(0.0781) 

5.4384*** 
(0.1317)  1.4904*** 

(0.3311) 
-0.3613*** 
(0.0223) 

-0.0685*** 
(0.0104) 

-0.2250*** 
(0.0145) 

0.8912*** 
(0.0133) 

5p  -0.7146*** 
(0.1156) 

0.5256** 
(0.2488) 

-0.2004** 
(0.0936) 

-0.0158 
(0.1242) 

-3.1651*** 
(1.0924) 

0.0277 
(0.3308) 

-0.0705*** 
(0.0222) 

0.0001 
(0.0138) 

-0.0178 
(0.0158) 

0 .0428*** 
(0 .0150) 

w  -7.5284*** 
(1.1354) 

-3.9609** 
(1.9462) 

2.0045*** 
(0.7617) 

-1.9126* 
(0.9835) 

0.2082 
(6.8105) 

-5.9019* 
(3.2356) 

-0.0731 
(0.2236) 

0.0568 
(0.1183) 

0.2691** 
(0.1308) 

0.0634*** 
(0.0112) 

1b  1.1404*** 
(0.0800) 

1.3579*** 
(0.1699) 

-0.1391*** 
(0.0467) 

0.1322 
(0.0876) 

2.8923*** 
(0.7058) 

0.0676 
(0.2317) 

0.1233*** 
(0.0165)    

2b  -0.1365*** 
(0.0419) 

0.1276 
(0.1411) 

-0.0816** 
(0.0331) 

-0.1496*** 
(0.0515) 

-1.4348*** 
(0.4673) 

0.0334 
(0.1475) 

-0.0018 
(0.0074) 

0.0231*** 
(0.0067)   

3b  -0.1143*** 
(0.0290) 

0.1124 
(0.0712) 

0.0788*** 
(0.0272) 

0.0353 
(0.0330) 

0.3742 
(0.3027) 

-0.1765** 
(0.0882) 

-0.0303*** 
(0.0054) 

-0.0012 
(0.0036) 

0.0059 
(0.0043)  

4b  0.4068*** 
(0.1004) 

-2.8680*** 
(0.2481) 

0.3155*** 
(0.0658) 

0.0027 
(0.1524) 

2.7314*** 
(0.9696) 

-1.9420*** 
(0.3752) 

0.0073 
(0.0103) 

-0.0043 
(0.0061) 

-0.0008 
(0.0040) 

-0.0932*** 
(0.0177) 

Ts  0.4309*** 
(0.0068) 

0.3151*** 
(0 .0146) 

0.2189*** 
(0.0034) 

0.4903*** 
(0.0088) 

2.8609*** 
(0.0385) 

-1.8111*** 
(0.0197) 

0.0896*** 
(0.0013) 

0.0373*** 
(0.0009) 

0.0550*** 
(0.0008) 

0.0646*** 
(0.0010) 

c  -27.7734*** 
(2.1130) 

37.0367*** 
(5.1371) 

-7.5390*** 
(1.7587) 

-7.0541*** 
(2.3491) 

-59.9017*** 
(19.4647) 

46.2878*** 
(6.0859) 

-8.0540*** 
(0.4262) 

1.3302*** 
(0.2800) 

-1.9134*** 
(0.2974) 

-1.0590*** 
(0.2889) 

z  -0.0002 
(0.0002) 

0.0181*** 
(0.0005) 

-0.0026*** 
(0.0001) 

-0.0010*** 
(0.0002) 

0.0178*** 
(0.0017) 

-0.0216 
(0.0006) 

0.0001*** 
(0.00004) 

0.0009*** 
(0.00003) 

-0.0003*** 
(0.00002) 

-0.0001** 
(0.00003) 

Standard errors in brackets. *** 1% significance, **5% significance, *10% significance 
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Table 3 Estimated own-price and own-payment elasticities under different panel-data techniques 

  FE 
one-way 

FE 
two-way 

RE 
one-way 
(GLS) 

RE 
one-way 

(ML) 

RE 
two-way 
(GLS) 

RE 
two-way 

(ML) 

SURWB 
two-way 
(GLS) 

SUR QUE 
two-way 
(GLS) 

1y  1p  0.1206** -0.0613 0.1077** 0.1077** -0.0398 -0.0392 0.1716*** 0.1998*** 
 1b  0.1571*** 0.1751*** 0.3980*** 0.3850*** 0.3506*** 0.3974*** 0.4344*** 0.4422*** 
          
2y  2p  0.0280 0.0650 0.0650 0.0650 0.0766* 0.0848* -0.0795* 0.1736*** 
 2b  0.0599** -0.0259 0.0886*** 0.0886*** 0.0053 0.0219 0.0739*** 0.0254 
          
3y  3p  0.7875*** 0.7712*** 0.8775*** 0.8607*** 0.8633*** 0.8459*** 0.8554*** 0.7351*** 
 3b  -0.0027 0.0161 0.0561 0.0486 0.0777 0.0349 0.0764 0.1460*** 
          
4y  4p  0.5797*** 0.5806*** 0.5774*** 0.5765*** 0.5753*** 0.5767*** 0.5837*** 0.5738*** 
 4b  -0.0624 -0.0773 0.0942* 0.0649 0.0494 0.0524 -0.2021*** 0.0009 
          
1s  1p  -0.0353 -0.0449 -0.0158 -0.0179 -0.0227 -0.0209 -0.0068 0.0055 
 1b  0.0275 0.0328 0.2242*** 0.1979*** 0.1956*** 0.2012*** 0.1663*** 0.1467*** 
          
2s  2p  0.0372 0.0298 0.0584** 0.0574 0.0472* 0.0482** -0.0079 0.0896*** 
 2b  0.0333** -0.0188 0.0435*** 0.0430*** 0.0037 0.0016 0.0694*** 0.0471*** 
          
3s  3p  0.4598*** 0.4478*** 0.5129*** 0.5039*** 0.5026*** 0.4925*** 0.5137*** 0.4850*** 
 3b  0.0483** 0.0242 0.0494*** 0.0503** 0.0369 0.0164 0.0334 0.0281 
          
4s  4p  0.3719*** 0.3713*** 0.3886*** 0.3831*** 0.3786*** 0.3819*** 0.4080*** 0.4187*** 
 4b  -0.0623** -0.0728** -0.0040 -0.0004 -0.0145 -0.0105 -0.1602*** -0.1371*** 

*** 1% significance, **5% significance, *10% significance
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