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Abstract— Because relevant historical data for farms are Quadratic (E,V) risk programming applications
inevitably sparse, most risk programming studies rgl  based on sparse data, have been used to look at the
on few observations. We discuss how to use availabl reliability of estimated optimal farm plans [e.6],and
information to derive an appropriate multivariate  he confidence regions in the mean-standard dewiati
distribution function that can be sampled for a moe space [e.g., 7]. All these studies demonstrate that

complete representation of the possible risks in sk- L .
basepd modgls. For the parti(F:)uIar example of a sparse data reduce the reliability of the risk
programming results.

Norwegian mixed livestock and crop farm, the solutin

is shown to be unstable with few states, althoughé cost In this paper we use utility efficient programming
of picking a sub-optimal plan declines with increass in  (UEP) [8] to illustrate an approach aimed at imjmgv
number of states by Latin Hypercube sampling. reliability of results based on limited information

farm risk programming. The starting point is a spar
Keywords— Risk programming, states of nature, data set from which a multivariate probability ftino
sparse data is specified by means of a multivariate kernel dgns
estimation procedure. Then efficient sampling from
| INTRODUCTION that distribution is used to reduce the need ttude
large numbers of discrete states to get reliable

Risk programming may be performed to support golutions in a risk programming model. We
decision by an individual farmer about what farrarpl demonstrate the approach using an example of a
to follow next year [e.g. 1, 2], or it may be ur@éen typical Norwegian mixed farm.
to evaluate a proposed innovation such as a new

technology or a new policy instrument such as crop Il. THE UTILITY EEFICIENT PROGRAMMING

insurance [e.g., 3, 4].
The form of risk programming models ranges from MODEL USED

quadratic (E,V) risk programming to direct maximi-
zation of expected utility wusing nonlinear
programming.

A common feature of most risk programming maxE[U]: pU(z,r),rvaried, (1)
studies is that the representation of the risk ana
dependency among per unit activity net revenues fbject to:

The UEP model for the case farm was formulated
as follows:

based on 10 or fewer observations. The reasorais th Ax<b )
in practice, the required historical data for agéar
number of years are not available for the farm dpeinCx+ APx—LFx—1lz= f 3

analysed, or, even when the records exist, the
relevance of the older information is judged tdde. x20 (4)
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where: E[U] is expected utility, p is a vector of a value ofr = 2/2 000 000 = 0.000 001 was used as

probabilities for states of natutU(zr) is a vector of the farmer’s degree of absolute risk aversion.
utilities of net income where the utility functias We converted the expected utility of net income of

defined for a measure of risk aversionz is a vector any. farm plan to an estimate of the certainty
of net incomes for each state of nat8r A is a matrix ]S:uqnuclgglnenité _CE' by taking the reverse of the ytilit
of technical coefficients X is a vector of activity T

levels, b is a vector of resource stoclC is a matrix CE@r) =-In{l —E[U@@nI}/r ()

of gross margins, GMs, (without public paymentThe estimates of CEs are readily interpreted begaus
schemes) foIS states of nature AP is a matrix of unlike utility values, they are expressed in money
public payment schemes f8rstates of natureLF is terms.

a matrix of fodder costs for livestock activities S

states of natur¢| is an identity matrix f is a vector B. Activities and constraints

of fixed costs. .
The case farm was chosen to reflect the conditions

A. Utility and certainty equivalent of a typical lowland farm in Eastern Norway. The
main activities in the UEP model of the case faem c

Because we assume that the farmer is risk-averd® classified into (1) crop activities, (2) livesko
we are restricted to using a concave form of tileyut activities: dairy cows and sheep, (3) concentragsl f

. . - " activities, (4) hire labour and rent land acti\sti@nd
function with U (Z)> 0, andU (Z)< 0. We used the (5) public payment schemes as of the year 2005 [9].

negative exponential function: The main constraints were: (1) owned and rented
s land, (2) land use and rotational limits, (3) mairkg
E[U(zr)] = SZ_llps{l‘eXp(‘ers)} (5) limit, (4) milk quota, (5) labour, both seasonal

constraints and constraints on hired labour, and (6
wherer is a non-negative parameter representing thiamits on subsidies.
coefficient of absolute risk aversion with respechet
income and we assume that all states of nature afe States of nature data
equi-probable so that = 1/S.

This function exhibits constant absolute risk To represent the uncertainty in activity GMs (i.e.
aversion (CARA), which is a reasonable approximatrix C in the UEP model), we needed some
mation to the real but unknown utility function for information on per unit GMs over a set of possible
wealth for variations in transitory (annual) incofd§  states of nature, ideally spanning states thafutuze
For simplicity, we assume that the farmer’s rekativ might bring. The way we tackled the task of prowgli
risk aversion with respect to wealth(w) = 2, such states of nature information is describedvielo
implying moderate risk aversion. However, we do not
measure utility and risk aversion in terms of wealt
but in terms of transitory income (i.e., a bad oodj

result in one year has little effect on wealth aedce If the historical data to be used to represent irisk

on income levels in subsequent years). Since WRUS&.t s for a risk programming study are sparse, it

negative exponential utility function in terms Ofwould be desirable to bring more information irte t

r,(w) andr . Assuming asset integration we have [8]: Inevitably, there must be much subjectivity in this
process and there will be scope for disagreement on

r=r (W)/ w (6) how best to proceed. For example, historical daag m
The level of the farmer’s wealth (net assets)js need to be updated for changes in technology and in

assumed to be NOK (Norwegian kroner) 2 million, s¢he value of money, requiring some ‘detrendingt Ye

[ll. MAKING THE BEST USE OF THE DATA
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too much detrending may eliminate some of the@anel data we derived a de-trended activity GM per
‘noise’ that represents uncertainty about the &itur unit matrix, representative for one single farm.

There are often irregularities in sparse data due t Assuming that historical data are not fully reletvan
sampling errors, and it may be useful to smooth odor the future, the derived data for the individéaim
the irregularities by fitting distributions [10, L1 were combined with subjective judgements of an
Smoothing might be combined with the introductionexpert about the marginal distributions of the
of information or judgments about the upper anddow individual activity GMs. Each trend-adjusted maggin
limits of each of the uncertain quantities of iet&r distribution was revised to match the subjectively
For example, there may be plausible upper and loweaissessed means and standard deviations. Thus, the
bounds for crop yields. Sometimes it will bereconstructed series has the subjectively elicited
appropriate to add some assumptions about theeans and standard deviations while preserving the
appropriate functional form to describe the marginageneral shapes of the marginal distributions ared th
distributions based on the characteristics of theorrelation and other stochastic dependencies
random processes generating the data rather theambodied in the historical data.
simply on goodness of fit considerations.

Similarly, in the face of sparse data, it makesseen
to consider whether the data set could be expabged
using data from other sources. For example, data fr
neighbouring farms may perhaps be used to supple-
ment information from the farm being planned. If
yields of crops are highly dependent on season
weather conditions, and if the relationship betwee
weather data and yields can be effectively modglted
might be possible to use a longer series of histbri
weather data to generate more ‘observations’ dflyje
although the reliability of such an approach obslgu
is compromised if climatic change is occurring.

The assumptions made should imply an improv
ment in the modelling of the future risks to beefdc di
not the opposite.

IV. DATA SMOOTHING AND DISTRIBUTION
FITTING

Because our data covered only 10 years, we decided
tt?at some smoothing of the marginal distributions f
@ach activity was appropriate. There are severgswa
th which smoothing might be done; (i) by hand
smoothing a cumulative density function (CDF) for
each marginal distribution; (i) by some curveifigt
method applied to the CDFs; or, as in this study, b
the multivariate kernel density estimation (MVKDE)
e|c_)rocedure proposed by Richardson ef1#].

The procedure is a smoothed multivariate
stribution extension of the multivariate empitica
distribution estimate procedure described by
Richardson et al[13]. A kernel density estimation
function is used to smooth the limited sample ddta
variables in a system individually, and then the

ependencies present in the sample are used td mode
e system using a copula to join the marginal
distributions into a multivariate one. Given a smal
ample, the choice of copula is more or less cedfin
o the normal copula, based on correlations caiedla
from the adjusted sample data (in our case) owveeri
subjectively [e.g., 14].

A. Preliminary processing

By way of illustration, in obtaining data for the
present paper we mainly used the method descriped
Hardaker et al[5: 80-82] applied to similar data and a
similar farm planning problem as described by Lie
and Hardaker [4]. The data covered the years 1896
2005, which is a relatively long sequence in the-de
vation of a state of nature matrix for risk program
ming, but is a small statistical sample.

Historical data from Eastern Norway in the Norwe-p Simulating additional states of nature
gian Farm Accountancy Survey were used to estimate
the historical variation in activity GMs per uniittin Once a smoothed multivariate distribution is
farms between years. The consumer price index Wagfined, stochastic simulation may be used to geeer
used to bring the individual activities to 2005-ragn as many states of nature as required for input ato
values. From the farm-level, historical Unbalance%ode”ing ana|ysis such as risk programming_ The
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MVKDE method samples of any size to be drawn to V. RESULTS

provide a matrix of discrete states of GM outcomes.

With a large enough sample, appropriately drawe, th The ranges in activity levels across the eight

smoothed distribution will effectively be recreateyl replicates with Latin hypercube sampling are

the sampled drawings. summarised in the columns labelled LH in Table 1.
We next considered ways to draw samples that ak¥hen these results are compared with the ranges in

more representative of the smoothed distributiomfr activity levels in columns labelled MC (Monte C3rlo

which they come than are samples drawn purely #@ihe advantages of the more efficient sampling nebtho

random. Hence, in addition to random Monte Carlare clear. With Latin hypercube sampling the ranges

sampling, we also used Latin hypercube samplingare mostly narrower compared with Monte Carlo

which is a modified form of stratified sampling tha sampling. The activity levels also become relagivel

generates a distribution of plausible collectiorfs omore stable with smaller numbers of states withn_at

parameter values from a given multidimensionahypercube sampling than with Monte Carlo sampling

distribution [15]. For both sampling methods,

correlated vectors of per unit GMs were samplethfro Table 1 Ranges in levels of activities in solutfarm plans

the derived multivariate distribution using the between replicates with an increase in numberatéstof

MVKDE procedure described above. naturé
No. states: 5 50 200
. . = Samplingg MC  LH? MC LH MC LH
B.Computations to evaluate simulated states of natureg_ 2333 1625 00 00 00 oo
Oats h% 233.3 188.7 115.0 10.2 187.0 7.3
P H Wheat ha 1529 204.3 195.5 0.0 180.0 0.0
In order to compare the efficiency of the sar_npllng bomtoes  ha® 151 00 o0 00 00 00
methods we simulated states of nature matrices Ofiseed ha® 1960 0.0 00 00 00 00
. . . . . 3
various sizes using the two different sampling caros ha 293 153 129 36 69 26
. .. Grassseed ha 0.0 0.0 00 0.0 0.0 0.0
methods. Our purpose was to examine the stability Opairycows no. 132 7.9 106 16 64 11
the solutions and to assess how many states wefiheep no. 750 75.0 61.3 164 750 00

2The ranges are the max. level minus the min. foh eativity for that number of states.

required, using the two sampling methods, to apgroa
the presumed true optimum with reasonable certainty
To keep the computing task of the efficiency of Moreover, a comparison of the results for CEs of
alternative sampling sizes and methods within beundnéet income in Fig. 1 shows that plans based omLati
the programming model was solved with eightypercube sampling converge towards the presumed
different numbers of states of nature, i.e. 5,18),20, optimum value of CE with fewer states of naturentha
30, 50, 100, and 200, each with only eight reptisat for those plans based on Monte Carlo sampling.
all repeated for Monte Carlo and Latin hypercube

® MC = Monte Carlo sampling: LH = Latin hypercubergaing.

sampling. N ,
For each risk programming solution obtained, we o s | e Ex .\
evaluated the CE of net income that could be ergect ¥ oan G CEs with Latin hypercube sampling
lean CEs with Monte

N

w

o
L

Carlo sampling for

ex ante from implementing that solution. Each
evaluation was done using stochastic simulatiom wit
500 replicates, drawn from the same MVKDE
smoothed distribution sampled with the Latin ,
hypercube algorithm. Thus, the simulated CEs of ne o 2 50 7 100 125 1% 15 200
income reported in the results for each of the&x 2 Number of states of nature

=128 solutions obtained are generally differentrfr

those obtained from the UEP programming resultb tin hypercube sampling and the simulated meah&fed
because they are based on a large sample of Fmss'oﬁ Monte Carlo sampling for simulated numbers afest of

G_M _rea_disations Qrawn from the assumed known nature between 5 and 200
distribution of possible states.

CE of NI (1000 NOK
N
N
a
|

Eig. 1 Simulated results for CE of net income (MBsed on
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The highest recorded CE of net income wa$. Dorward A (1999) A risk programming approach for
NOK 239 402, which may be said to be the strict

optimum if one accepts that the chosen smootheni

procedure appropriately reflects the future risky. &
shows that, at least for the model used here, itldavo

k4

be necessary to have a considerably larger nuniber o

states than are typically available from historidata

5.
to be reasonably sure that the solution is not
appreciably suboptimal.

6.

VI. DISCUSSION AND CONCLUSIONS
7.

Although this analysis of the number of states of

nature in risk programming models was based on o

specific model with one particular data set, it is
reasonable to argue that the findings will be bipad o

applicable. Our results imply that analysts undent

risk programming studies need to be aware of bias

from small samples. They need to give much moreo.

thought than seems to have been the case in théopas

estimating multivariate probability functions thatll.

provide good descriptions of the risk to be facethie
planning period. It is likely that these descripsowill
continue to be partly based on historical datatere
is a clear need to use other information and judgsne

12. Richardson JW,

to improve the relevance of the results. We have
suggested some steps that might be taken in this
direction and hope to see more discussion to imgrov

the range of possible approaches.

Once an acceptable multivariate probability functio

of activity net revenues is obtained, efficient péng
from that distribution, for example by Latin hypebe

sampling, as demonstrated in the paper, can ratlece

need to include prodigiously large numbers of diser

13.

14. Fackler PL (1991) Modeling

states to get reliable solutions to risk prograngmin

models.
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