
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 1 

12th Congress of the European Association of Agricultural Economists – EAAE 2008 

Risk programming and sparse data: how to get more reliable results 

J. Brian Hardaker1, Gudbrand Lien2,3, Marcel A.P.M. van Asseldonk4,  
James W. Richardson5 and Agnar Hegrenes3  

 
1 School of Business, Economics and Public Policy, University of New England, Armidale, NSW 2351, Australia 

2 Lillehammer University College, Lillehammer, Norway 
,3 Norway and Norwegian Agricultural Economics Research Institute (NILF), Oslo, Norway 

4 Institute for Risk Management in Agriculture, Wageningen University, Wageningen, The Netherlands 
 5 Department of Agricultural Economics, Texas A&M University, College Station, Texas USA 

 
Abstract— Because relevant historical data for farms are 
inevitably sparse, most risk programming studies rely 
on few observations. We discuss how to use available 
information to derive an appropriate multivariate 
distribution function that can be sampled for a more 
complete representation of the possible risks in risk-
based models. For the particular example of a 
Norwegian mixed livestock and crop farm, the solution 
is shown to be unstable with few states, although the cost 
of picking a sub-optimal plan declines with increases in 
number of states by Latin Hypercube sampling.  
 

Keywords— Risk programming, states of nature, 
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I. INTRODUCTION  
 
Risk programming may be performed to support a 

decision by an individual farmer about what farm plan 
to follow next year [e.g. 1, 2], or it may be undertaken 
to evaluate a proposed innovation such as a new 
technology or a new policy instrument such as crop 
insurance [e.g., 3, 4].  

The form of risk programming models ranges from 
quadratic (E,V) risk programming to direct maximi-
zation of expected utility using nonlinear 
programming.  

A common feature of most risk programming 
studies is that the representation of the risk and 
dependency among per unit activity net revenues is 
based on 10 or fewer observations. The reason is that, 
in practice, the required historical data for a large 
number of years are not available for the farm being 
analysed, or, even when the records exist, the 
relevance of the older information is judged to be low. 

Quadratic (E,V) risk programming applications 
based on sparse data, have been used to look at the 
reliability of estimated optimal farm plans [e.g., 6] and 
the confidence regions in the mean-standard deviation 
space [e.g., 7]. All these studies demonstrate that 
sparse data reduce the reliability of the risk 
programming results. 

In this paper we use utility efficient programming 
(UEP) [8] to illustrate an approach aimed at improving 
reliability of results based on limited information in 
farm risk programming. The starting point is a sparse 
data set from which a multivariate probability function 
is specified by means of a multivariate kernel density 
estimation procedure. Then efficient sampling from 
that distribution is used to reduce the need to include 
large numbers of discrete states to get reliable 
solutions in a risk programming model. We 
demonstrate the approach using an example of a 
typical Norwegian mixed farm.  

 
II. THE UTILITY EFFICIENT PROGRAMMING 

MODEL USED 
 

The UEP model for the case farm was formulated 
as follows: 

[ ] ( )rz,pU=UEmax , r varied,  (1) 

subject to: 

bAx ≤  (2) 

f=IzLFxAPx+Cx −−  (3) 

0≥x  (4) 
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where: [ ]UE  is expected utility, p  is a vector of 

probabilities for states of nature, ( )rz,U  is a vector of 
utilities of net income where the utility function is 
defined for a measure of risk aversion, r, z  is a vector 
of net incomes for each state of nature S, A  is a matrix 
of technical coefficients, x  is a vector of activity 
levels, b  is a vector of resource stocks, C  is a matrix 
of gross margins, GMs, (without public payment 
schemes) for S states of nature, AP is a matrix of 
public payment schemes for S states of nature, LF  is 
a matrix of fodder costs for livestock activities for S 
states of nature, I  is an identity matrix, f  is a vector 
of fixed costs.  
 
A. Utility and certainty equivalent  
 

Because we assume that the farmer is risk-averse, 
we are restricted to using a concave form of the utility 

function with ( ) 0>zU ' , and ( ) 0<zU '' . We used the 
negative exponential function: 

( ) ( ){ }∑
=

×−−
S

s
ss zrp=]rz,E[U

1
exp1  (5) 

where r  is a non-negative parameter representing the 
coefficient of absolute risk aversion with respect to net 
income and we assume that all states of nature are 
equi-probable so that ps = 1/S. 

This function exhibits constant absolute risk 
aversion (CARA), which is a reasonable approxi-
mation to the real but unknown utility function for 
wealth for variations in transitory (annual) income [5]. 
For simplicity, we assume that the farmer’s relative 
risk aversion with respect to wealth rr(w) = 2, 
implying moderate risk aversion. However, we do not 
measure utility and risk aversion in terms of wealth, 
but in terms of transitory income (i.e., a bad or good 
result in one year has little effect on wealth and hence 
on income levels in subsequent years). Since we use a 
negative exponential utility function in terms of 
transitory income, z, we need a relationship between 

( )wrr  and r . Assuming asset integration we have [8]: 

( ) w/wr=r r  (6) 

The level of the farmer’s wealth (net assets), w, is 
assumed to be NOK (Norwegian kroner) 2 million, so 

a value of r  = 2/2 000 000 = 0.000 001 was used as 
the farmer’s degree of absolute risk aversion. 

We converted the expected utility of net income of 
any farm plan to an estimate of the certainty 
equivalent, CE, by taking the reverse of the utility 
function, i.e.:  

CE(z,r) = -ln{1 – E[U(z,r)]}/ r  (7) 

The estimates of CEs are readily interpreted because, 
unlike utility values, they are expressed in money 
terms. 
 
B. Activities and constraints 
 

The case farm was chosen to reflect the conditions 
of a typical lowland farm in Eastern Norway. The 
main activities in the UEP model of the case farm can 
be classified into (1) crop activities, (2) livestock 
activities: dairy cows and sheep, (3) concentrate feed 
activities, (4) hire labour and rent land activities, and 
(5) public payment schemes as of the year 2005 [9]. 

The main constraints were: (1) owned and rented 
land, (2) land use and rotational limits, (3) marketing 
limit, (4) milk quota, (5) labour, both seasonal 
constraints and constraints on hired labour, and (6) 
limits on subsidies.  

 
C. States of nature data  

 
To represent the uncertainty in activity GMs (i.e. 

matrix C in the UEP model), we needed some 
information on per unit GMs over a set of possible 
states of nature, ideally spanning states that the future 
might bring. The way we tackled the task of providing 
such states of nature information is described below. 

III. MAKING THE BEST USE OF THE DATA 

If the historical data to be used to represent risk in 
returns for a risk programming study are sparse, it 
would be desirable to bring more information into the 
process of specifying the states of nature matrix. 
Inevitably, there must be much subjectivity in this 
process and there will be scope for disagreement on 
how best to proceed. For example, historical data may 
need to be updated for changes in technology and in 
the value of money, requiring some 'detrending'. Yet 
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too much detrending may eliminate some of the 
‘noise’ that represents uncertainty about the future. 

There are often irregularities in sparse data due to 
sampling errors, and it may be useful to smooth out 
the irregularities by fitting distributions [10, 11]. 
Smoothing might be combined with the introduction 
of information or judgments about the upper and lower 
limits of each of the uncertain quantities of interest. 
For example, there may be plausible upper and lower 
bounds for crop yields. Sometimes it will be 
appropriate to add some assumptions about the 
appropriate functional form to describe the marginal 
distributions based on the characteristics of the 
random processes generating the data rather than 
simply on goodness of fit considerations.  

Similarly, in the face of sparse data, it makes sense 
to consider whether the data set could be expanded by 
using data from other sources. For example, data from 
neighbouring farms may perhaps be used to supple-
ment information from the farm being planned. If 
yields of crops are highly dependent on seasonal 
weather conditions, and if the relationship between 
weather data and yields can be effectively modelled, it 
might be possible to use a longer series of historical 
weather data to generate more ‘observations’ of yields, 
although the reliability of such an approach obviously 
is compromised if climatic change is occurring.  

The assumptions made should imply an improve-
ment in the modelling of the future risks to be faced, 
not the opposite. 

 
A. Preliminary processing 

 
By way of illustration, in obtaining data for the 

present paper we mainly used the method described by 
Hardaker et al. [5: 80-82] applied to similar data and a 
similar farm planning problem as described by Lien 
and Hardaker [4]. The data covered the years 1996 to 
2005, which is a relatively long sequence in the deri-
vation of a state of nature matrix for risk program-
ming, but is a small statistical sample.  

Historical data from Eastern Norway in the Norwe-
gian Farm Accountancy Survey were used to estimate 
the historical variation in activity GMs per unit within 
farms between years. The consumer price index was 
used to bring the individual activities to 2005-money 
values. From the farm-level, historical unbalanced 

panel data we derived a de-trended activity GM per 
unit matrix, representative for one single farm.  

Assuming that historical data are not fully relevant 
for the future, the derived data for the individual farm 
were combined with subjective judgements of an 
expert about the marginal distributions of the 
individual activity GMs. Each trend-adjusted marginal 
distribution was revised to match the subjectively 
assessed means and standard deviations. Thus, the 
reconstructed series has the subjectively elicited 
means and standard deviations while preserving the 
general shapes of the marginal distributions and the 
correlation and other stochastic dependencies 
embodied in the historical data.  

IV. DATA SMOOTHING AND DISTRIBUTION 
FITTING 

Because our data covered only 10 years, we decided 
that some smoothing of the marginal distributions for 
each activity was appropriate. There are several ways 
in which smoothing might be done; (i) by hand 
smoothing a cumulative density function (CDF) for 
each marginal distribution; (ii) by some curve fitting 
method applied to the CDFs; or, as in this study, by 
the multivariate kernel density estimation (MVKDE) 
procedure proposed by Richardson et al. [12].  

The procedure is a smoothed multivariate 
distribution extension of the multivariate empirical 
distribution estimate procedure described by 
Richardson et al. [13]. A kernel density estimation 
function is used to smooth the limited sample data of 
variables in a system individually, and then the 
dependencies present in the sample are used to model 
the system using a copula to join the marginal 
distributions into a multivariate one. Given a small 
sample, the choice of copula is more or less confined 
to the normal copula, based on correlations calculated 
from the adjusted sample data (in our case) or derived 
subjectively [e.g., 14].  

A. Simulating additional states of nature 

Once a smoothed multivariate distribution is 
defined, stochastic simulation may be used to generate 
as many states of nature as required for input into a 
modelling analysis such as risk programming. The 



 4 

12th Congress of the European Association of Agricultural Economists – EAAE 2008 

MVKDE method samples of any size to be drawn to 
provide a matrix of discrete states of GM outcomes. 
With a large enough sample, appropriately drawn, the 
smoothed distribution will effectively be recreated by 
the sampled drawings. 

We next considered ways to draw samples that are 
more representative of the smoothed distribution from 
which they come than are samples drawn purely at 
random. Hence, in addition to random Monte Carlo 
sampling, we also used Latin hypercube sampling, 
which is a modified form of stratified sampling that 
generates a distribution of plausible collections of 
parameter values from a given multidimensional 
distribution [15]. For both sampling methods, 
correlated vectors of per unit GMs were sampled from 
the derived multivariate distribution using the 
MVKDE procedure described above. 

 
B. Computations to evaluate simulated states of nature 

 
In order to compare the efficiency of the sampling 

methods we simulated states of nature matrices of 
various sizes using the two different sampling 
methods. Our purpose was to examine the stability of 
the solutions and to assess how many states were 
required, using the two sampling methods, to approach 
the presumed true optimum with reasonable certainty.  

To keep the computing task of the efficiency of 
alternative sampling sizes and methods within bounds, 
the programming model was solved with eight 
different numbers of states of nature, i.e. 5, 10, 15, 20, 
30, 50, 100, and 200, each with only eight replicates, 
all repeated for Monte Carlo and Latin hypercube 
sampling. 

For each risk programming solution obtained, we 
evaluated the CE of net income that could be expected 
ex ante from implementing that solution. Each 
evaluation was done using stochastic simulation with 
500 replicates, drawn from the same MVKDE 
smoothed distribution sampled with the Latin 
hypercube algorithm. Thus, the simulated CEs of net 
income reported in the results for each of the 8 × 8 × 2 
= 128 solutions obtained are generally different from 
those obtained from the UEP programming results 
because they are based on a large sample of possible 
GM realisations drawn from the assumed known 
distribution of possible states. 

V. RESULTS 

The ranges in activity levels across the eight 
replicates with Latin hypercube sampling are 
summarised in the columns labelled LH in Table 1. 
When these results are compared with the ranges in 
activity levels in columns labelled MC (Monte Carlo), 
the advantages of the more efficient sampling method 
are clear. With Latin hypercube sampling the ranges 
are mostly narrower compared with Monte Carlo 
sampling. The activity levels also become relatively 
more stable with smaller numbers of states with Latin 
hypercube sampling than with Monte Carlo sampling. 

Table 1 Ranges in levels of activities in solution farm plans 
between replicates with an increase in number of states of 

naturea 

No. states: 5  50  200 
Sampling: MCb LHb   MC LH   MC LH 

Barley ha-3 233.3 162.5  0.0 0.0  0.0 0.0 
Oats ha-3 233.3 188.7  115.0 10.2  187.0 7.3 
Wheat ha-3 

152.9 204.3  195.5 0.0  180.0 0.0 
Potatoes ha-3 

15.1 0.0  0.0 0.0  0.0 0.0 
Oilseed ha-3 

196.0 0.0  0.0 0.0  0.0 0.0 
Carrots ha-3 

29.3 15.3  12.9 3.6  6.9 2.6 
Grass seed ha-3 

0.0 0.0  0.0 0.0  0.0 0.0 
Dairy cows no. 13.2 7.9  10.6 1.6  6.4 1.1 
Sheep no. 75.0 75.0   61.3 16.4   75.0 0.0 
a The ranges are the max. level minus the min. for each activity for that number of states. 
b MC = Monte Carlo sampling: LH = Latin hypercube sampling. 

 
Moreover, a comparison of the results for CEs of 

net income in Fig. 1 shows that plans based on Latin 
hypercube sampling converge towards the presumed 
optimum value of CE with fewer states of nature than 
for those plans based on Monte Carlo sampling. 
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Fig. 1 Simulated results for CE of net income (NI), based on 
Latin hypercube sampling and the simulated mean CE based 
on Monte Carlo sampling for simulated numbers of states of 

nature between 5 and 200 
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The highest recorded CE of net income was 
NOK 239 402, which may be said to be the strict 
optimum if one accepts that the chosen smoothening 
procedure appropriately reflects the future risk. Fig. 1 
shows that, at least for the model used here, it would 
be necessary to have a considerably larger number of 
states than are typically available from historical data 
to be reasonably sure that the solution is not 
appreciably suboptimal. 

 
VI. DISCUSSION AND CONCLUSIONS 

 
Although this analysis of the number of states of 

nature in risk programming models was based on one 
specific model with one particular data set, it is 
reasonable to argue that the findings will be broadly 
applicable. Our results imply that analysts undertaking 
risk programming studies need to be aware of bias 
from small samples. They need to give much more 
thought than seems to have been the case in the past to 
estimating multivariate probability functions that 
provide good descriptions of the risk to be faced in the 
planning period. It is likely that these descriptions will 
continue to be partly based on historical data, but there 
is a clear need to use other information and judgments 
to improve the relevance of the results. We have 
suggested some steps that might be taken in this 
direction and hope to see more discussion to improve 
the range of possible approaches. 

Once an acceptable multivariate probability function 
of activity net revenues is obtained, efficient sampling 
from that distribution, for example by Latin hypercube 
sampling, as demonstrated in the paper, can reduce the 
need to include prodigiously large numbers of discrete 
states to get reliable solutions to risk programming 
models. 
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