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Abstract— The objective of this paper is to present an 
evolution of PMP model suitable to estimate the revenue 
function and to provide price elasticity due to the 
variation of subsidies at farm level, especially if they are 
decoupled. This problem arises when individual data of 
farm households in a given region, coming from FADN, 
are used for implement PMP models finalized to policy 
analysis. This paper presents the theoretical background 
of the proposed innovations and empirical evidence on 
the basis of a sample of farms included in FADN 
database in Italy. 

Keywords— Positive mathematical programming, 
Demand function, Agricultural policies evaluation. 

I. INTRODUCTION  

Many papers on PMP applications have considered 
the PMP methodology suitable for analysing one 
“single” farm or farm typology. In this case, the 
approach is called the “standard” approach that 
considers the cost matrix with elements only in the 
diagonal according to the very early applications of 
Positive Mathematical Programming (Howitt, 1995) 
and Positive Quadratic Programming (Paris and 
Arfini, 1995). 

The adoption of PMP for one single farm, using 
such a stylized cost matrix, was updated in the 1998 
(Paris and Howitt) and in the 2000 (Paris and Arfini) 
where many farms of the same sample are considered, 
and the micro information’s collected from those 
farms is used in order to define a stochastic model 
with frontier farm (Paris and Arfini, 2000). This 
approach solves the “self selection” problem for each 
farmer of the sample: how to reproduce exactly the 
observed land use on the basis of the economic 
convenience faced by each farmer.  

The adoption of the whole sample, in comparison of 
one single farm, gives the researchers several 
advantages: a) the possibility to consider all the 

activities present at farm level; b) to know the variable 
cost for all the activities present in the sample; c) to 
give the possibility to all the farms of the sample to 
diversify their land use according the economic 
convenience of the crops even if they are not 
considered in the observed situation.  

The estimation a full, positive semidefinite  cost 
matrix was made possible by adopting the Cholesky 
decomposition using two different approaches: the 
Maximum Entropy or the Least Square Estimator 
(Howitt and Paris, 1998).  The introduction of an 
econometric estimation of the total variable cost 
matrix for all the farms considered in the sample, no 
matter how large (Howitt and Paris, 1998; Paris and 
Arfini, 2000), has open a new frontier of research 
where Mathematical programming is integrated with 
econometrics. More precisely, its role is to provide 
estimation starting from the output of mathematical 
programming models or from the same inputs 
available for both the methodologies, with the final 
results to increase the level of analysis of the 
integrated methodology (Heckelei, 2005).  

The possibility of using many farms of a given 
cross section sample in mathematical model, 
integrated by econometric estimation, has open to new 
side of research as the estimation of the revenue 
function (or demand function) is able to provide price 
elasticities due to the variation of subsidies (in 
typology and quantity) at farm level, especially if they 
are decoupled.  

The objective of this paper is to present a new 
quantitative approach based on PMP, for evaluating 
the effect of CAP on the agricultural supply dynamics 
and on the market price modifications, when cross 
section data are used.  This new model is designed for 
responding to specific demand of policy makers on the 
issues related to the impact of CAP measures with 
respect to land allocation, production levels, price 
variations and farm revenue modifications.  
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This work is articulated as follows: the first section 
focuses on the estimation of the PMP approach 
proposed in this paper, where the calibration of the 
model is obtained considering also the information 
about the farm level demand functions for agricultural 
products that characterizes the given group of farms; 
the second section concerns an application of the 
model on a group of farms collected from the IACS 
database and integrated by FADN information; and the 
last section concludes with some remarks.   

II. REVENUE AND COST FUNCTIONS IN PMP 
MODEL  

The PMP approach presented by Howitt and Paris 
(1995, 1998) presents an objective function that 
maximizes, at the last PMP stage, a farm gross margin 
that takes into account the explicit variable accounting 
costs of the inputs used inside the production process, 
but also the part of variable costs that is connected 
with the farmers’ knowledge about their own farm 
system. In this perspective, the maximized gross 
margin can be considered the “economic” gross 
margin, instead of the accounting definition of this 
term.  

However, all PMP models developed according 
with the above statement explore the supply side of the 
agricultural sector while avoiding to implement an 
evaluation of the demand side, by measuring the 
effects on the output market prices. Indeed, the 
literature about the PMP models application seems to 
indicate that such class of models are just developed 
for investigating the supply side of the agricultural 
sector, delegating the demand issues side to well-
posed problems solved by econometric techniques. 

Starting from the above considerations, the 
methodology proposed in this paper considers the 
problem of estimating the farm level demand functions 
associated with a group of farms selected for a policy 
scenarios evaluation inside a PMP framework. More 
specifically, the approach is articulated in four phases: 
1) cross-section estimation of farm level demand 
functions using individual data; 2) recovering of the 
differential marginal costs that lead farmers to choose 
the observed production plan, considering inside the 
objective function a non-linear revenue function; 3) 
estimation of a quadratic cost function; 4) calibration 

of the base observed situation (the observed 
production plan) maximizing an objective function 
composed of the non-linear revenue function 
estimated in the first phase and the non-linear cost 
function derived in the third phase.  

 

A. Phase I - Estimation of farm level demand functions 

    We consider an agricultural region with many 
entrepreneurs who face a set of aggregate farm-level 
demand functions for their commodities.  

These demand functions assume the following 
linear form: 

    p d x� � D    (1) 
or, in a sample formulation 

              
pn, j � d j � D j , j 'xn, j � vn, j

j '�1

J '

�
       

where p, d and x are vectors with dimensions (Jx1) 
and D a matrix with dimension (JxJ); p, d and x are the 
vectors of agricultural product prices, the vector of 
intercepts of demand function and the vector of 
production quantities, respectively; D is a symmetric 
positive semidefinite matrix of quantity slopes. J 
(j=1,…,J) is the number of agricultural processes.  

Economic theory assumes that market prices paid to 
producers vary in relation with the aggregated demand 
function. Under this assumption, a set of demand 
functions can be estimated on the basis of a sample of 
N farms. The term ,n jv  in (1) represents the deviation 

of the n-th farm from the regional j-th demand 
function. If the sample of farms concerns a given 
geographical region or a sector, it is possible to 
estimate a set of demand functions for the agricultural 
products of such a region or a sector. The objective is 
thus to obtain the set of demand functions (1) using 
the information of a sample of individual farms.  

The relevant information required for estimating 
(1), consists of prices paid for selling the farm 
products at the farm level and of output quantities 
introduced into market. Both types of  information are 
generally available inside the most used agricultural 
database, as FADN. The methods of estimation vary 
from generalized least squares, to maximum 
likelihood, to maximum entropy (ME), etc. In this 
work, we choose the maximum entropy approach to 
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estimate a well-posed problem. Furthermore, the 
choice of ME1 is related  to our empirical experience 
demonstrating that a maximum entropy estimator 
seems to obtain parameters that provide very realistic 
results in a simulation phase2. 

The estimation carried out in the present section 
consists in recovering the demand functions (1) 
governing the output markets of  a sample of 50 farms. 
The first group of parameters to estimate belongs to 
the intercept d , while the second group is related to 
the matrix D. According to the generalized maximum 
entropy theory of Golan, Judge and Miller, each 
parameter to recover is equal to the product between a 
set of probabilities and a set of support values. The 
objective of the problem is to identify the probability 
distribution that maximizes the maximum entropy 
function. The support values are chosen by the 
researcher3.  

Thus, the intercept can be written as: 

    
P

j j,p j,p
p=1

d zd pd��   (2) 

where, ,j pzd is the vector of support values, while 

,j ppd is the vector of the p (p=1,...,P) probabilities. 

We assume that the matrix D  is symmetric, positive 
semidefinite. The simplest and most efficient way to 
respect those properties is to decompose the matrix D 
in three components according to the Cholesky 
factorization method (Paris and Howitt, 1998). On the 

                                                        
1. After the publishing of the famous book of Golan, Judge and 

Miller (1996), the maximum entropy approach has known a new 
interest among agricultural economists. The idea is to use a 
physical concept applied to communication technology by 
Shannon (1948) and in economics by Jaynes (1957) in order to 
derive parameters when the information is poor and where the 
traditional econometric techniques prefer not to intervene. For a 
complete review of maximum entropy theory see Fang et al. 
(1998). For a detailed discussion about the maximum entropy 
estimator applied to economics see the book of Golan, Judge 
and Miller (1996), the paper of Paris and Howitt (1998), 
Heckelei and Britz (2000), Lansink (1998), Léon et alt. (1999), 
Lence and Miller (1998). 

2. The results achieved applying the ME estimator confirm the 
important role of this estimator in other fields of the applied 
sciences (Paris and Howitt, 1998; Shannon, 1948). 

3. One of the main criticism addressed to the maximum entropy 
methods concerns the choice of support values that are 
submitted to the subjective decision of the researcher (Lansink, 
1997).  

basis of this method the matrix D is divided in three 
matrices as follows: 

    'D = LHL     (3) 
where, D  is equal to the product among a unit 

lower triangular matrix L, a non-negative diagonal 
matrix H and the transposed of L. The decomposition 
guarantee in every cases to obtain a symmetric, 
positive and semidefinite matrix. This same 
decomposition can be rewritten in a more compact 
form, so that: 

   ' '� �D LHL RR    (4) 
where the matrix 1/ 2�R LH . 
In order to estimate the parameters of L and H, it is 

required to specify a suitable set of support values to 
associate to an unknown probability distribution, as 
presented in the following equations: 

  
, ' , ', , ',

1

'
P

j j j j p j j p
p

L Zl Pl j j
�

� � ��   (5) 

  , ' , ', , ',
1

'
P

j j j j p j j p
p

H Zh Ph j j
�

� � ��  (6) 

Equation (5) states the relation about the unitary 
triangular matrix , 'j jL and the product between the 

matrix of support values , ',j j pZl  and the matrix of 

probability distribution , ',j j pPl . The matrix L is a 

triangular matrix with unitary values on the diagonal 
and null values above the diagonal. In equation (6), the 
matrix , 'j jH  is equal to the product of the support 

values , ',j j pZh  and the unknown matrix of probability 

distribution , ',j j pPh . H is a non-negative diagonal 

matrix with null values outside the diagonal. 
Keeping into account the statements above, the 

maximum entropy problem that recovers the demand 
function (1) starting from a cross-section panel of 
individual farms is presented below: 

( )

'

, , , ', , ',
1 1 1 '1 1

'

, ', , ', , , , ,
1 '1 1 1 1 1

max ( )

log log

log log

p

J P J J P

j p j p j j p j j p
j p j j p

J J P N J P

j j p j j p n j p n j p
j j p n j p

Hd p

pd pd Pl Pl

Ph Ph pe pe

� � � � �

� � � � � �

�

� �

� �

�� ���

��� ���

�

(7) 

Subject to: 
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, , , , ,

1

'

, , , ' , ' ,
1 1 '1

,

P

n j n j p n j p
p

P K J

j p j p j j k j n k
p k j

pr ze pe

zd pd R R x n j

�

� � �

� �

� � ��

�

� ��
(8) 

  

, ' , , , ,
1 1

1/ 2

, , , ,
1 1

, '

K P

j j j k pp j k pp
k p

K P

j k pp j k pp
k p

R Zl Pl

Zd Pd j j

� �

� �

�

� �

� �
	 

� �

� �
	 

� �

��

��
 (9) 

  , , , ,
1 1

0 ,
N P

n j p n j p
n p

ze pe j
� �

� ���   (10) 

  

,
1

, ',
1

, ',
1

, ,
1

1 ,

1 , '

1 , '

1 ,

P

j p
p

P

j j p
p

P

j j p
p

P

n j p
p

pd j

Pl j j

Pd j j

pe n j

�

�

�

�

� �

� � �

� � �

� � �


�
�
�
�
�
�
�
�
�
�
��

�

�

�

�

  (11) 

The entropic objective function of problem (7) is 
maximized with respect to the unknown probability 
distributions associated with the support values 
identified by the researcher. Equation (8) states that 
the observed prices ,n jpr  are equal to unique demand 

function plus a farm deviation, , , , ,n j p n j pze pe , that 

measures the distances between n-th observed farm 
price and the common/regional demand function. 
Equation (9) performs the Cholesky’s decomposition 
rule established inside the relation (4). The constraint 
(10) concerns the summation to zero of the farm 
deviations and the set of constraints (11) state the 
adding-up relations for the probability distributions. 
This problem estimates the demand functions of the 
agricultural market generating the output prices of 
each farm.  

B. Phase  II - Recovering of differential marginal costs 

The second phase of PMP is devoted to estimating 
the marginal costs borne by farmers in their input 

allocation process. When information about 
accounting variable costs is available, the estimation 
deals with the differential amount leading to a true 
economic marginal cost. 

The novelty of the proposed PMP approach consists 
in defining an objective function that depends on the 
set of farm level demand functions estimated in phase 
I. 

This revenue functions is derived integrating the 
demand function with respect the output levels, so: 

    � �
0

1
'

2

x

dxd x dx x x� � �� D D  (12)    

The maximization problem of this phase II is 
usually improperly called as PMP calibration phase. In 
reality, this stage needs for calibrating the base 
situation through the differential marginal costs hidden 
inside the observed production quantities. The 
objective of this phase is to maximize a non-linear 
gross margin function subject to typical farm structural 
constraints (i.e. land) and to calibrating constraints that 
force the model to reproduce the observed production 
plan. In algebraic terms, the problem for the n-th farm 
is written as follows:   

 

0

'

, , , , , ' , ' , ,
1 '1

max ( )

1ˆ ˆˆ
2

x

J J

n j n j j n j n j j j n j n j n j
j j

GM x

v x d x x D x c x
� �

�

� � ���
(13) 

subject to: 

    , , , , ,
1

,
J

n j i n j n i n i
j

A x b i y
�

� � � �� ��  (14)

    , , ,,n j n j n jx x j� � � � �� �� �  (15)

    , ,0 ,n j n jx j � �� � � ��   (16)

 where ˆ jv  is the deviation of each farm process 

from the demand function estimated on the sample of 
farms. The vectors of deviations is obtained by the 
previous phase as: 

    ,, , n jn j n jv ze pe�   (17) 

njc  is the explicit accounting variable cost 

associated with each output unit at n-th farm level; 
while , ,n j iA  and ,n ib  are respectively the matrix of 

technology, that is the matrix with the coefficients of 
input use for obtaining one unit of product, and the 
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vector of input farm capacity  i (i.e. land  acreage), for 

i=1,…,I.  The coefficients ˆ
jd  and , '

ˆ
j jD  are the 

estimates of the corresponding parameters obtained in 
phase I. 

Problem (13)-(16) is optimized when the difference 
between total revenue and total variable cost is 
maximized with respect the level of output x. The 
solution of this problem is known before solving it, 
because the calibrating constraint (15) imposes that 
each variable x cannot exceed the observed level of 
those outputs x  plus a terms very small � 4. The 
tautological problem (13)-(16) leads to obtain the dual 
information linked to the calibrating constraint (15), 
that is j� .  j�  is the differential costs to add to the 

accounting marginal costs jc  in order to obtain a total 

marginal cost needed for estimating the non-linear cost 
function of the third phase. 

C. Phase  III - Non-linear cost function estimation 

The objective of the third phase is to estimate the 
farm cost function starting from the vector of marginal 
costs estimated in phase II using the shadow prices 
associated with the calibration constraints.  The 
chosen functional form of the cost function is:  

  
1

( ) ( ) x '
2

C x � c x � x x� � � � Q   (18) 

where �  and c  are, respectively, the vector of the 
dual values identified in the previous phase and the 
vector of the farm accounting costs, x  is the vector of 
the known production levels and Q  the matrix of the 
non-linear cost function. �  is the vector of intercepts 
for the marginal cost associated to farms processes. In 
(18) the elements for matrix Q  are still unknown and 
must be obtained through suitable estimation methods. 
In the literature (see Paris et al., 2000) estimation of 
cost function through application of the principle 
maximum entropy is preferred. On the basis of these 
concepts and the arrangement given by Paris and 
Howitt (1998), the parameters of vector ����  and matrix 

                                                        
4. The meaning of � is to avoid the linear dependency between the 

structural constraint and calibrating constraint. For a deeper 
explanation about the role of e see Howitt (1995), Paris and 
Howitt (1998) and Gohin and Chantreuil (2000). 

Q  can be recovered by maximizing the probability 
distribution associated with an interval of specified 
support values. The non linear program of maximum 
entropy is presented here in the form derived by 
Cholesky’s decomposition according to which the 
matrix ' '� �Q �W� TT , where ����  is a triangular 

matrix, W a diagonal matrix and 1/ 2�T W����  . The 
problem can then be solved by maximizing a 
probability distribution for which we know the 
expected value, which corresponds to the marginal 
cost ( )c����� determined in the second phase. The 
objective function of the problem of maximum 
entropy is thus presented as follows:  

( )

'

, , , ', , ',
1 1 1 '1 1

'

, ', , ', , , , ,
1 '1 1 1 1 1

max ( )

log log

log log

p

J P J J P

j p j p j j p j j p
j p j j p

J J P N J P

j j p j j p n j p n j p
j j p n j p

Hc p

p p P P

Pw Pw pu pu

� � � � �

� � � � � �

�

� �

� �

�� ���

��� ���

�

� � � �

        (19) 
where ,j pp�  are the unknown probability 

distributions of the intercepts of the cost function, 

, ',j j pp�  and , ',j j ppw  are the probability of the 

distribution associated with elements of the triangular 
matrix ����  and of the diagonal matrix W respectively. 

, ,n j ppu  are elements of the probability of errors. The 

objective function (19) is maximized considering the 
information about the process marginal costs at farm 
level, as follows:   

For 0x   at farm level: 

� �

, , , ,
1

'

, , ' , , , ,
'1 1 1

,

P

n j n j j p j p
p

J K P

j k k j k n j p n j w
j k p

c p z

T T x pu zu n j

�

� � �

� �

� � � �

�

 !
� "
� #

�

� � �

� � �

(20) 

 
For x not activated at farm level: 

 

� �

, , , ,
1

'

, , ' , , , ,
'1 1 1

,

P

n j n j j p j p
p

J K P

j k k j k n j p n j w
j k p

c p z

T T x pu zu n j

�

� � �

� �

� � � �

�

 !
� "
� #

�

� � �

� � �
(21)

 The equations (20-21) state that the total marginal 
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cost ( ) ( )( )� c$ $�  is equal/less or equal to a new 

marginal cost function common for all the farms 
sample plus a farm error. ( )$T  is an element of the 

matrix T obtained through Cholesky’s decomposition. 
In fact:   

� � � �1/ 2

, ' , ', . ', , ', , ',
'1 1 1

J P P

j j j j w j j w j j p j j p
j p p

T p z pw zw
� � �

�
 !
� "
� #

� � �� � (22) 

The relations inserted in (22) clarify the role of the 
support values in the process of estimating the cost 
matrix. The components ( )z

�
�  and ( )zw

�
 are the 

appropriately selected support values (Paris and 
Howitt, 1998). Associated with the distribution of 
probability, ( )p

�
�  and  ( )zw

�
, they define the elements 

of the triangular matrix ����  and of the diagonal matrix 
W. It must be pointed out that the matrix Q is unique 
and is derived from the marginal costs. 

In order to impose that the distribution of deviations 
is normal, the following adding-up equation is 
considered: 

    0
N P

n,j,p n,j,p
n=1 p=1

pu zu  , j� ���   (23) 

All the probability distributions referred to above 
must meet the following condition:  

    

( )1

( )1

( )1

( )1

1

1

1

1

P

p

P

p

P

p

P

p

p

p

pw

pu

$�

$�

$�

$�

�

�

�

�


�
�
�
�
�
�
��

�

�

�

�

�

�
   (24) 

Problem (19)-(24) provides the probability 
distribution values for the elements of the triangular 
matrix ���� , the diagonal matrix W and for the vector of 
the residual marginal variable costs for each farm in 
the sample. The cost function specified according to 
the above method preserves the technical information 
regarding the calibration constraints.  

D. Phase  IV - Calibrating observed situation 

Finally, after having estimated the revenue and cost 
functions, we can develop a problem very similar to 
those in the second phase of the procedure, where a 

new cost function is inserted and the calibrating 
constraints are not considered. The problem can be 
build as follows: 

  % &
% &

1

'

, , , , , ' , '
1 '1

'

, , , , , ' , '
1 '1

max ( )

1
ˆ

2

1 ˆˆ
2

ˆˆ

ˆ

x

J J

n j n j j n j n j j j n j
j j

J J

n j n j j n j n j j j n j
j j

GM x

x v x x x

x x x Q x

v D

u

� �

� �

�

� �

� � �

��

�� �

(25) 

subject to: 

  , , , , ,
1

,
J

n j i n j n i n i
j

A x b i y
�

� � � �� ��   (26) 

  , ,0 ,n j n jx j� � � �� ��    (27)

 The error terms ˆ jv  and ˆ ju  are derived from the 

first and third phase of the procedure respectively, and 
they are specific to each farm. In other terms, they 
measure the distance between the prices and the costs 
observed at n-th farm level and the prices and costs 
estimated for the region considered by the analyst. 

Inside the objective function (25) the new quadratic 
cost function takes the place of the calibrating 
constraints, establishing the economic bound for the 
activity allocation choice. In other terms, the latent 
decision variables revealed in the second phase enter 
inside the objective function (25) providing an 
economic calibrating constraint instead of a technical 
constraint such as the equation  (26). The gross margin 
maximized in (25) is less than the gross margin 
specified in (23), 0 1GM GM' , because the 1GM  
also integrates the dual values associated to the farm 
activities. For this reason, we can say that the 
objective function (25) should be considered an 
economic profit in the sense of the economic theory. 

The problem (25)-(27) permits to exactly reproduce 
the base situation without specific calibrating 
constraints. Furthermore, applying policy scenario 
simulations, the non-linear revenue function provide 
information on the likely variation in agricultural 
product prices in relation with changes in production 
levels.   
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III. EMPIRICAL EVIDENCES 

The methodology presented in the previous sections 
is applied to a sample of farms belonging to the 
Emilia-Romagna region. The sample is composed by 
50 farms placed in the provinces of Parma, Reggio-
Emilia, Modena and Bologna and it is extracted from 
the IACS database. The IACS information, concerning 
the crop area of each farm, is completed with 
information deriving from Italian FADN. More 
specifically, the information concerning the yields, 
prices and specific variable costs are obtained by the 
national FADN5. 2003 is the reference year. The 
sample presents a production set of ten crops: cereal 
mix, alfa-alfa, sugarbeet, durum wheat, fodder crops, 
maize, barley, silage, soya and soft wheat. 

 
Table 1 Characteristics of the sample 

Main information  
Number of farms 50 
Incidence of cerelas (in %) 64.5 
Incidence of oilseeds (in %) 4.9 
Incidence of fodder crops (in %) 19.4 
Incidence of sugarbeet (in %) 11.2 
Revenue by ha (in euros) 2,001 
Variable costs by ha (in euros) 1,466 
 
The aim of the analysis is to estimate the 

entrepreneurs’ response of a single farm payment 
introduced by the EU regulation 1782/2003. More in 
detail, the integrated PMP approach is applied to a 
policy scenario that concerns the total decoupling of 
the COP crops. The reform of sugarbeet support 
system is not considered.  

The reconstruction of the revenue and cost 
functions provides the PMP methodology with the 
ability to analyze the supply and demand sides of the 
given farm sample. The first aspect concerns the 
changes in land allocation operated by the farms in 
relation with the decoupling scenario. Table 2 presents 
the variation of each crop after the decoupling 
implementation. The separation between payments 
and quantity of agricultural products seems to lead 
farms to abandon part of the cereal acreage for 
investing in fodder crops, oilseeds and sugarbeet.  

                                                        
5. For further details on the method of merging IACS with FADN 

database, see Arfini et al. (2005). 

The variation in land use has consequences on the 
production levels and, thus, on market prices. This 
PMP approach is capable of capturing the price signals 
in relation to the output variations. This is the second 
relevant aspect of the model: the simulation can 
provide variations about market prices of each 
product. From table 2, it is possible to note the 
negative variation in the hectares of cereals that leads 
to an increase in market prices for such products. For 
example, maize -decreases its acreage by about 15% -, 
while its price –rises by 19%. Similarly, - fodder crops 
see a strong increasing in the number of hectares 
(+48%), while prices foresee a dramatical decrease (-
40%).    

 
Table 2 PMP simulation results – Land allocation and 

Prices 
Land use Prices 

Activities† Baseline 
(ha) 

Scenario 
(Var. %) 

Baseline 
(euros/ton) 

Scenario 
(var. %) 

SoftWheat 503.9 -16.5 145.4 +8.2 
Durum Wheat 10.1 -26.2 204.5 +4.5 
Maize 386.3 -14.8 149.6 +18.9 
Barley 130.1 -24.5 131.9 +9.6 
Cereals Mix 49.6 -34.8 144.1 +4.5 
Silage 58.2 -9.9 40.2 +11.4 
Soya 86.5 +11.5 231.7 -7.2 
Alfalfa 338.4 +0.5 100.9 -9.9 
Other fodder 3.7 +48.4 12.4 -39.9 
Sugarbeet 197.7 +6.5 43.1 -10.0 

† The model considers also the possibility to activate 
agricultural area submitted to good practices. The model 
results indicates that around 10% of the agricultural area 
would be dedicated to such non-productive activity. 

 
The new production plan due to a decoupling 

scenario has effects on the main farm economic 
variables. Table 3 presents a situation where the 
decrease in revenues and costs leads to improve the 
farm gross margin (+2%). This is due to a much more 
intensive reduction of the variable costs (-8.8%) that 
the farm revenues (-5,9%). The farm strategy within 
decoupling seems addressed to minimize as much as 
possible the production costs. 
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Table 3 PMP simulation results – Main economic variables 

Economic variables Baseline 
(euros/ha) 

Scenario 
(var. %) 

Revenues (gsp+subs.) 2,001 -5.9 
Costs 1,466 -8.8 
Gross Margin 536 +2.1 

 
The responses of the model in term of quantities, 

prices  and their changes depend in large part on the 
estimated matrices Q̂  and D̂  (see Appendix), that 
integrate the information about the degree of 
substitution and complementarity among activities.  

IV. CONCLUSIONS 

The paper presents an evolution of the PMP 
methodology that can be considered as a 
generalization of the traditional methodology proposed 
by Howitt and Paris in 1998. Indeed, the model is able 
to derive both the demand function that characterizes 
the agricultural market products and the cost function 
kept in account by farmers during the production plan 
definition. The unknown parameters of the revenue 
and cost functions are recovered by adopting the 
maximum entropy approach. The last calibration phase 
maximizes the difference between the farm revenue 
and cost functions derived by a procedure articulated 
on four phases.  

The results achieved by using the PMP model in 
assessing policy scenarios can give responses on the 
supply side, providing the likely modification of the 
land use and the production level, and on the demand 
side, providing information about the dynamics of 
prices. The model can respond to policy maker’s needs 
providing in a unique evaluation tool, the information 
about the demand and supply reactions in relation with 
changes in agricultural policy measures.  

The proposed model estimates the observed 
situation and provides predictions using economic, 
strategic and structural information available in the 
FADN sample. The calibration and the simulations 
phases are both carried out with respect to the single 
farm, keeping into account the specific allocation 
behaviour of each farm and using it for estimating the 
likely effects of policy measures.  
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APPENDIX 

REVENUE AND COST FUNCTION MATRICES 

 

Demand function matrix D̂  
Cereals 

Mix
Fodder 
Crops

Sugarbeet
Durum 
Wheat

Alfalfa Maize Barley Silage Soya
Soft 

Wheat
Cereals Mix 0.7296 0.0378 0.0002 0.0791 0.1206 -0.0742 -0.0402 -0.0028 -0.2774 -0.0195
FodderCrops 0.1171 0.0098 -0.0157 0.0228 -0.0592 -0.0325 -0.0165 0.014 -0.0151

Sugarbeet 0.0199 0.0014 -0.0004 -0.0167 0.011 -0.0039 -0.0126 -0.0158
DurumWheat 2.0305 -0.0244 0.0034 -0.0251 -0.017 -0.1762 0.0032

Alfalfa 1.7535 0.0114 -0.0423 -0.0516 -0.1563 -0.0155
Maize 0.2615 0.0302 -0.0013 -0.0442 -0.075
Barley 0.7192 0.0079 -0.0107 -0.1155
Silage 0.0961 0.0289 0.0028
Soya 1.4435 -0.0061

SoftWheat 0.2184

J'

J

 
 
 

Cost function matrix Q̂  

Cereals
Fodder 
Crops

Sugarbeet
Durum 
Wheat

Alfalfa Maize Barley Silage Soya
Soft 

Wheat
Cereals 0.0526 4.87E-05 -0.0006 4.96E-06 -5.85E-06 -0.0001 2.74E-08 -0.0002 -4.21E-05 -2.59E-06

FodderCrops 0.0043 -5.57E-07 -4.94E-09 -6.00E-09 -6.16E-08 4.21E-09 -1.60E-07 -4.26E-08 -4.15E-09
Sugarbeet 0.0006 5.44E-08 6.44E-08 7.87E-08 -3.00E-10 1.93E-06 4.63E-07 -2.85E-08

DurumWheat 0.5185 0.0543 -0.0034 0.0282 0.0028 0.0105 0.0012
Alfalfa 0.0287 -0.0004 0.003 0.0003 0.0011 0.0001
Maize 0.0072 -0.0002 -1.84E-05 -0.0001 -7.91E-06
Barley 0.0309 0.0002 0.0006 0.0001
Silage 0.0025 0.0001 6.37E-06
Soya 0.1042 -0.0029

SoftWheat 0.0074

J'

J

 


