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[. Introduction

In previous studies of inefficiency using stochastic frontier models, Caudill,
Ford and Gropper (1995) noted that measures of inefficiency are based on
residuals derived from the estimation of a stochastic frontier. They observed
that residuals are sensitive to specification errors, particularly in stochastic
frontier models, and that this sensitivity will be passed on to the inefficiency
measures. To correct for this, they suggested that one should consider testing
for and, if present, correcting for heteroscedasticity in the one-sided error
term. Hadri (1999) argued that we might expect the two-sided error term to
be affected by heteroscedasticity as well, and that if this likely eventuality is
ignored, it will lead to inconsistent maximum likelihood (ML) estimators.
Consequently, the usual tests will be no longer valid. Hence, in order to obtain
correct estimators and conduct valid tests one must test for heteroscedasticity
in both error terms and, if indicated, appropriate correction should be taken
in the estimation procedure. In Hadri (1999), heteroscedastic frontier cost
functions were estimated using cross-sectional data.

In this paper, we extend the Hadri (1999) correction for heteroscedasticity
to stochastic production frontiers and to panel data, including unbalanced
panel data. We consider one homoscedastic and three heteroscedastic
specifications namely, heteroscedasticity in the one-sided term,
heteroscedasticity in the symmetrical term and heteroscedasticity in both error
terms. Using panel data on cereal farms, we find that the usual measures used
in stochastic production frontiers are significantly sensitive to the extended
correction for heteroscedasticity.

The paper is organised as follows. The theoretical models are presented in
section 2. In section 3 the models are applied to a set of panel data on 102
mainly cereal farms in England for the harvest years 1982-1987. Section 4
concludes the paper.

[l. Theoretical Models

Before introducing the heteroscedastic stochastic production frontier
models, we briefly present the basic model used in the literature to describe a
frontier production function. Greene (1993) provides a recent survey of this
literature. The basic model can be written as follows:
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yit:><itB+V\{_V, (1)

where y, denotes the logarithm of the production forithesample farm
(i=1,.. N)inthetth time period (t=1, ...T,); X, is a (1 xk) vector of the
logarithm of the inputs associated with ile sample farm in thé&h time
period (the first element would be one when an intercept term is incly@led);
is a k x 1) vector of unknown parameters to be estimateds a two-sided
error term withE [w,] = 0 for alli andt andE [w; w;] = 0 for alli andj, i #]
and for allt andl; var (v, ) = o2;v, is a non-negative one-sided error term
with E[v,] >0,E[v, v,] =0 for alli andj, i#] and for allt andl; and
var(v,) = gZ2.Furthermore, it is assumed thaandv are uncorrelated. The
one-sided disturbanaereflects the fact that each firm’s production must lie
on or below its frontier. Such a term represents factors under the firm’s control.
The two-sided error term represents factors outside the firm’s control.
Weinstein (1964) derived the density functionvef + v, under the
assumption that, is half-normal andav, is normal. It is then easy to obtain
the density function of their difference that takes the form:

f(g,)=(10)f (€ 10)1-F (g l0)), -w<g <+, )
whereg, =w - v, 0?= g2 + @, A= 0,/ g,andf" () andF" () are
respectively the standard normal density and distribution functions.

The advantage of stochastic frontier estimation is that it permits the
estimation of firm-specific inefficiency. The most widely used measure of
firm-specific inefficiency, suggested by Jondrow, Lovell, Materov and Schmidt
(1982), is based on the conditional expected valwegifene,, and is given
by:

Elv. |e]1=0.[-¢ A o+ f(g Al o) F(g A o), ©)
whereo, =0,0,/0.

In what follows, we derive the log-likelihood functions. The corresponding
first partial derivatives for the three possible cases, heteroscedasticity in the
one-sided, two-sided and both error terms, are given in the Appendix. These
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derivations are used among other things to evaluate log-likelihood ratios for
testing purposes.

Following Hadri (1999) we assume the following multiplicative
heteroscedasticity for the one-sided error term.

O, =exp, a), (4)

whereZ is a vector of nonstochastic explanatory variables related to
characteristics of firm management anig a vector of unknown parameters.
Z is assumed to include an intercept term. The standard deviation of the two-
sided error term is also written in exponential form sodhat expf, ). The
density function corresponding to model HV, where only the one-sided error
term is assumed heteroscedastic, is given by:
f(8)= @101 (6 19)A-F () & /G ) -m<g, <+ 5)
whereg? = g2 + d,,A, =0, /0, andf"(.) andF" (.) are as defined previously.
The loglikelihood function is
N T
log L(B.a.y,)= ZZ log (f, (¢, ))- (6)
=1 t=

As argued earlier, in the cross-section dimension the two-sided error is
likely to be affected by size-related heteroscedasticity. The misspecification
resulting from not incorporating heteroscedasticity in the ML estimation of
our frontier can cause parameter estimators to be inconsistent as well as
invalidating standard techniques of inference (White, 1982). In order to
incorporate heteroscedasticity in the two-sided error term we specify
g, = exp ¥, 1), whereY, is a vector of nonstochastic explanatory variables
related generally to characteristics of firm size pigla vector of unknown
parametersy, is assumed to include an intercept term. The standard deviation
of the one-sided error term, assumed here to be homoscedastic, is now
g, = exp@,). The density function is still as in (5) but nexf =0, +0?,and
A, =0,/ g, We call this model HW.

The most likely correct specification is the one where the two error terms
are assumed to be concurrently heteroscedastic. This specification gives model
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HVW. Equation (5) is still appropriate but now we havg=o’, +0_,and
A =0,/ a0, whereg, =expl,)) ando, = exp ¢, a).

The first partial derivatives are needed when maximizing the likelihood
function using the algorithm proposed by Berndt, Hall, Hall and Hausman

(1974).
[ll. Empirical Applications

A set of panel data on 102 English farms, classified as ‘mainly cereal’
under the nationally organised Farm Business Survey, was used for the years
1982-1987 to estimate five stochastic frontier production functions. Data on
output and input are collected only in value and cost terms, and are here
deflated by the appropriate price index to proxy output and inputs. The
characteristics of the data are summarised in Table 1. One feature of the sample
is variability. In all variables, the standard deviation is large compared to the
mean. Another feature is size dispersion; a farm that is one standard deviation
above the mean is more than 9 times larger than a farm that is one standard
deviation below the mean.

Table 1. Characteristics of the Sample Variables

Mean Std. deviation  Skewness Kurtosis

Cereal output (C) 209.366 168.028 1.896 5.433
Cereal area (CA) 133.88 97.700 2.106 8.445
Crop protection (CP) 11.166 10.784 2.251 6.976
Seeds (CC) 7.014 6.415 2.917 13.869
Fertiliser (FC) 15.694 12.754 2.114 7.143

Labour (Lab) 22.133 17.047 2.184 6.827

Land (LPC) 21.425 16.923 1.821 4.281

Machinery, energy, &

miscel. inputs (MEO) 35.967 28.827 2.447 9.314

Note: Cereal area in hectares; all other variables are in thousand Sterling Pounds at 1985
prices.
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We estimated five stochastic frontier production functions using GQOPT/
PC version 6.01 routines for the optimisation of our likelihood functions.
Model HO is the usual homoscedastic stochastic frontier production defined

by
C. =B, +Blag +B,MEQ +B,CG + B, CA+ B, LPC+ B, FC+  (7)
B7CFi>t + Bat"' W~ ¥

All the variables are in logarithms. C represents the total value of cereals
output; Lab represents the total cost of labour; MEO represents the total cost
of machinery, energy and miscellaneous items; CC represents the total cost
of seeds; CA represents area under cereals; LPC represents land and property
charges; FC represents total cost of fertilizer; CP represents total cost of crop
protection productg;indicates the year of observation; am@ndv are the
random variables whose distributional properties are defined in the previous
sections.

The value of output and inputs were deflated by the appropriate price
index. The year of observation is included in the model to account for
technological change (Hicksian neutral) even though the time period
considered is short.

Model HO, defined by equation (g, = expf,) ando, = exp(@,), contains
nine B parameters and two additional parameters associated with the
distributions of thev andv random variables. The two error terms are clearly
assumed to be homoscedastic.

In model HV we assume thatis heteroscedastic amdhomoscedastic.

The model is defined by equation (@), = expf,), and

o, =exp@, +a,Lah +a,MEQ +a,CA+a,FG +a,9 (8)

For Model HW we assume thatis heteroscedastic amthomoscedastic.
Model HW is defined by equation (&, = exp(,) and

O, =€Xply, +y,Lah +y,MEQ +y,CA+y,FC +y 9 9)

Finally, in model HVW we assume that both disturbance terms are
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heteroscedastic. The model is defined by equations (7), (8) and (9). The
maximume-likelihood estimates of each model are reported in Table 2.

Table 2. Estimation Results

Model Model Model Model Model
HO HV HW HVW HVWR
Constant 3.736 3.730 3.770 3.791 3.999
(19.28) (13.08) (18.78) (11.85) (20.23)
Lab 0.002 0.027 0.003 0.029 0.030
(0.323) (2.888) (0.711) (3.769) (4.167)
MEO 0.250 0.272 0.237 0.283 0.256
(9.083) (6.248) (8.509) (5.295) (6.516)
CcC 0.125 0.120 0.099 0.116 0.116
(5.128) (4.727) (4.064) (4.913) (4.948)
CA 0.277 0.128 0.283 0.149 0.182
(5.921) (2.733) (5.706) (2.184) (3.226)
LPC 0.076 0.116 0.092 0.125 0.127
(2.268) (3.220) (2.659) (3.597) (3.774)
FC 0.135 0.096 0.123 0.063 0.052
(3.990) (1.883) (3.629) (1.232) (1.111)
CP 0.172 0.193 0.198 0.193 0.192
(10.80) (11.07) (10.09) (13.71) (14.19)
T -0.033 -0.027 -0.032 -0.025 -0.024

(-6.926)  (-2.947)  (-3.087)  (-3.087)  (-3.373)

0-V
Constant -1.472 -1.779 -1.516 -1.771
(-15.24)  (-0.885)  (-15.58)  (-0.890)
Lab 0.297 0.280 0.258
(1.853) (2.013)  (2.235)
MEO 0.315 0.425 0.218

(0.836) (1.261)  (1.037)
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Table 2. (Continued) Estimation Results

Model Model Model Model Model
HO HV HW HVW HVWR
CA -1.099 -0.971 -0.611
(-1.302) (-1.899) (-2.253)
FC -0.148 -0.299 -0.415
(-0.491) (-1.002) (-1.651)
T 0.071 0.066 0.074
(1.323) (1.184) (1.739)
O-W
Constant -2.050 -1.878 -2.529 -2.379 -2.843
(-21.97) (-15.06) (-1.869) (-1.873) (-3.345)
Lab 0.245 0.065 0.065
(1.802) (1.500) (1.431)
MEO 0.026 -0.365 -0.319
(0.154) (-1.788) (-1.847)
CA -0.602 0.029
(-1.996) (0.111)
FC 0.052 0.355 0.372
(0.237) (1.416) (2.103)
T 0.036 0.015
(1.909) (0.461)
Log likelihood 297.58 308.89 308.27 314.85 314.21
LR value 33.54 11.92 13.16 1.28

Note: t-values in parentheses.

Likelihood ratio statistics were used to test hypotheses. All the tests were
carried out using the 5% significance level. Model HVW nests all the other
models. Using general to specific methodology (see Abadir et al (1999) and
Abadir and Hadri (2000) on the importance of general to specific
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methodology), we started by testing the hypothesis of a homoscedastic
vV(H, a,=a,=a,= a,= a,= 0, against the alternative that at least one
parameter is different from zero). We obtained a likelihood ratio of 13.16
indicating the rejection of the null hypothesis. We then tested the hypothesis
of a homoscedastiw (H,: y,=y,= y,= y,= \,=0, against the alternative that

at least one parameter is different from zero). The likelihood ratio reached a
value of 11.92 indicating the rejection of the null hypothesis. Next, we tested
the joint hypothesis thatandw are homoscedastic. This hypothesis is also
rejected on the basis of a likelihood ratio of 33.54. Therefore, HVW is
statistically the preferred model as far as testing for heteroscedasticity is
concerned.

This result shows the necessity of testing for heteroscedasticity in both error
terms and making the appropriate corrections. By allowing both error terms to
be heteroscedastic, model HVW is correcting for the corresponding double
heteroscedasticity. Now, model HVW can be reduced further by noticing that
all the parameters in the production function are significant, while three
parameters associated with the error terms appear to be insignificant, namely
a, Y, andy,. To test the joint hypothesis Ha =y, =y, = 0, we estimated a
restricted model called model HYWR. Its parameter estimates are shown in
Table 2. We obtained a likelihood ratio of 1.28 leading to the acceptance of the
restrictions.

Table 3 shows some descriptive statistics of efficiencies estimated from
the five models. While the maxima are similar, there is a clear difference
between the minima of the two doubly heteroscedastic models (HVW and
HVWR) and the other three specifications. The means of models HVYW and
HVWR are equal, and the standard deviations and skewness are very close.
We notice that model HV is the closest to model HVW and dissimilar from
model HO and model HW. This suggests that heteroscedasticity is stronger
in the one-sided term.

Table 4 confirms this last result where we find a very high correlation
between model HV and model HVW efficiencies. Table 4 displays correlations
and rank correlations between efficiencies estimated from the five models.
The ranking is clearly affected by the specification used. Hence, accounting
correctly for heteroscedasticity has a significant effect not only on estimation
and on testing but on ranking farm efficiencies as well.
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Table 3. Summary Statistics for Efficiencies

Model Minimum Maximum Mean St. dev Skewness
HO 0.49 0.96 0.83 0.081 -1.06
HV 0.47 0.98 0.88 0.082 -2.02
HW 0.49 0.97 0.84 0.077 -1.01
HVW 0.41 0.98 0.86 0.090 -1.91
HVWR 0.42 0.98 0.86 0.095 -1.81

Table 4. Correlation between Efficiencies

Pearson and Spearman

Correlation coefficient . .
rank correlation coefficient

Model HV HW  HVW HVWR HV HW  HVW HVWR

HO 0.68 0.97 0.72 0.74 0.43 0.88 0.51 0.53

HV 0.55 0.98 0.98 0.44 0.90 0.85
HW 0.60 0.62 0.52 0.55
HVW 0.99 0.92

In our selected model HYWR, it is clear that neither size (CA) nor time
have any effect on the variance of the double-sided error t@rnfr¢r the
inefficiency termv, the parameters associated with Labour and MEO are
positive (0.258 and 0.218 respectively), suggesting that larger farms in terms
of labour and machinery cost tend to have more variability in efficiency.
Typically, an increase by 100% in labour tends to increase the variance of the
inefficiency error term by around 5%, and an increase of 100% in machinery,
energy and other costs (MEO) tends to increase the variance by around 4%.
We can deduce from this that farms with higher expenditure on labour,
machinery, energy, and other costs tend to be different in terms of efficiency
than farms with lower expenditure on these items. Similarly, farms with lower
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levels of expenditure on labour and MEO tend to have a smaller variance,
which means that they are similar to each other in terms of efficiency than
farms with higher levels of expenditure.

By contrast, land area (CA) and fertilizer cost (FC) have negative
parameters in the variance of the inefficiency term. This means that these two
variables tend to dampen variability in efficiency. The time parameter is small
but significant, indicating that time has a slight positive effect on the
inefficiency variance.

The parameter estimates for model HYWR have the expected sign and
are all positive except for the time variable. Although the parameter associated
with time is very small (-0.024), it is nevertheless significant. The elasticity
for MEO, cost of seeds, cereal area, land and property charges, and crop
protection costs are relatively important, with values of 0.25, 0.11, 0.18, 0.12,
and 0.19 respectively. The elasticities for labour and fertilizer costs are less
important with values of 0.03 and 0.05 respectively. The return to scale
parameter is 0.931, which indicates roughly constant returns to scale. The
estimated technical efficiencies for the 102 farms are available from the
authors.

IV. Conclusion

This paper extends the Hadri (1999) correction for heteroscedasticy to
stochastic production frontiers and to panel data. It demonstrates that
heteroscedasticity within an estimation can have a significant effect on results.
The models developed in this paper demonstrate that the correction for
heteroscedasticity is essential in order to obtain valid estimates, tests and
correct measures of efficiency.

Appendix

The first partial derivatives of the log-likelihood function where only the
one-sided term is assumed heteroscedastic:
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The first partial derivatives of the log-likelihood function where only the
two-sided term is assumed heteroscedastic:
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The first partial derivatives of the log-likelihood function where both
disturbance terms are assumed heteroscedastic:
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where z zE Z Z-Ti is used here instead df in order to allow for the

possibility of unbalanced data.
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