
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Department of Agricultural &
Resource Economics, UCB

CUDARE Working Papers
(University of California, Berkeley)

Year  Paper 

Overharvesting the traditional fishery

with a captured regulator

Peter Berck Christopher Costello
University of California, Berkeley University of California, Berkeley

This paper is posted at the eScholarship Repository, University of California.

http://repositories.cdlib.org/are ucb/920

Copyright c©2000 by the authors.



Overharvesting the traditional fishery

with a captured regulator

Abstract

Rent dissipation in open access fisheries is a well studied problem (Gordon
1954; Homans and Wilen 1997). Regulation is seen as a possibly remedy to the
externality of entry, which eventually leads to zero profits and depressed stocks.
Despite regulation, drastic declines have occurred in many regulated fisheries
worldwide, prompting a discussion of economic, biological, and environmental
phenomena that may lead to declines. We explore one case when a regulator
permits overfishing in the context of a traditional fishery model. Influenced by
industry to reduce effort restrictions, regulators often rely on gear,season length,
and other efficiency restrictions to achieve management goals. Under standard
assumptions we find that when the regulator is “captured” by the members of
the industry, he unambiguously allows overfishing by reaching a lower stock and
higher effort than is socially optimal. This steady state has zero rents, but a
higher stock and higher effort than the open access steady state.
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Abstract

Rent dissipation in open access fisheries is a well studied problem
(Gordon 1954; Homans and Wilen 1997). Regulation is seen as a
possibly remedy to the externality of entry, which eventually leads to
zero profits and depressed stocks. Despite regulation, drastic declines
have occurred in many regulated fisheries worldwide, prompting a
discussion of economic, biological, and environmental phenomena that
may lead to declines. We explore one case when a regulator permits
overfishing in the context of a traditional fishery model. Influenced
by industry to reduce effort restrictions, regulators often rely on gear,
season length, and other efficiency restrictions to achieve management
goals. Under standard assumptions we find that when the regulator is
"captured" by the members of the industry, he unambiguQusly allows
overfishing by reaching a lower stock and higher effort than is socially
optimal. This steady state has zero rents, but a higher stock and
higher effort than the open access steady state.

Key Words: overfishing, open access, capture.
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Marine fisheries in the United States are regulated by eight regional fishery

management councils pursuant to the Magnuson-Stevens Fishery Conserva

tion and Management Act (1976, most recently amended 1996). The act

specifies that the fisheries are to be managed for maximum sustainable yield,

yet many populations have been reduced to well below this level, often leading

to complete fishery closures. The Northeast cod fishery provides a notorious

example of collapse. More recently catastrophic declines have been realized

for several Pacific salmon stocks, bluefish in the South Atlantic, abalone

and numerous groundfish in the Pacific, and many others l (Pacific Fishery

Management Council 2000).

Others have noted that the councils are made of of members of the indus-

try and very responsive to the needs of the industry, called "capture" in the

industrial organization literature (Karpoff 1987). One empirically observed

consequence of industry influence is the unwillingness of fishery managers to

regulate effort (Thompson Jr. 2000; Johnson and Libecap 1982), This paper

explores when, in the context of the traditional Schaeffer model, a captured

regulator will permit overfishing.

The layout of the paper is as follows. In the next section, we provide some

background information on the Magnuson Act and the Sustainable Fisheries

Act, which naturally lead into a discussion of the way many U.S. fisheries are

currently managed. In section 2 we introduce the model, where the fishery

1All eight management council websites contain current information of stocks, fishery
management plans, and regulations. Links can be found in the Pacific Fishery Management
Council Site, http://www.pcouncil.org
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regulator chooses fishing efficiency to maximize discounted returns while al

lowing unregulated entry and exit driven by profits. The result is derived in

section 2.1, and section 3 describes the steady state. The saddle point prop

erties of the steady state are demonstrated in section 3.1, and are followed

by a discussion of the non-equilibrium dynamics in section 3.2. Finally, in

section 4 we compare the solution to the familiar extremes of open access

and the sole owner, and find that the captured regulator allows overfishing

by ignoring a critical component of costs. In so doing, the captured regulator

reae-hes a steady state with completely dissipated rents, a lower stock, and

higher effort than chosen by the sole owner. The paper is concluded with a

brief illustrative example (section 5), and a discussion in section 6.

1.1 Background and Layout

The Magnuson-Stevens Fishery Conservation and Management Act (FCMA)

was originally passed in 1976, and was most recently amended by the 1996

Sustainable Fisheries Act (SFA). Perhaps the most striking accomplishment

of the FCMA was to establish exclusive economic zones which, for the U.S.,

established property rights within 200 miles of the coast. Partly a response to

declining fish stocks (from overfishing, inadequate conservation practices, and

habitat loss, as stated in the FCMA) 1 this represented an acknowledgement

of the role for management of marine fisheries.

Nearly half a century ago the deleterious consequences of open access fish

eries were identified (Gordon 1954). More recently Dupont (1990) and others

have focused attention towards causes of rent dissipation in restricted access

fisheries. Wilen (2000) surveys and evaluates the contribution of fisheries

4
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economists to management and policy since the seminal work of Gordon. He

finds that relevant efficiency-generating contributions have been made but

that property rights are still not sufficiently strict in many fisheries world

wide to reverse the effects of open access.

Of more direct relevance to this paper, some have focused specifically

on the inability of fishery regulators to efficiently offset the rent-dissipating

consequences of open access. Johnson and Libecap (1982) argue that gov

ernment regulators are unlikely to effectively control individual effort, and

conclude that fishers are likely to support regulations affecting fishing effi

ciency (season closures, gear restrictions, and minimum size limitations) and

are unlikely to support limited entry, taxes, and fishing quotas.

Karpoff (1987) considers the regulated fishery problem as a matter of

choosing season length and the capital per boat (catchability coefficient). His

static analysis shows that these two commonly employed policy instruments

have different distributional effects. In his view, the fishery regulator is

captured and uses the policy instruments to favor one group of fishers over

another. Free entry, with each vessel's catch decreasing, is seen as a political

outcome, while additional fishers are viewed as stimulating marc political

support.

Homans and Wilen (1997) focus exclusively on season length restrictions

and allow endogenous entry. Their model is motivated by the observation

that most fisheries are not purely open access, and are heavily influenced

by regulation. In an application to the North Pacific halibut fishery, they

predict a shorter fishing season, but a higher biomass, harvest, and capacity

under regulation than under pure open access.
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Our paper adopts the assumption of a regulator captured by members of

the industry (as in Karpoff). We model the captured regulator as a fishery

manager who is unable to restrict entry, and therefore chooses the politically

viable option of controlling parameters of fishing technology, or catchabil

ity (see Johnson and Libecap). Like Homans and Wilen, the model in this

paper facilitates making bioeconomic predictions across multiple regulatory

paradigms. We take open access as given (indeed Congress imposed a mora

torium on new IFQ programs until October, 2000). In a dynamic framework,

we explore the regulator's optimal choice of fishing efficiency to maximize the

discounted payoff to a representative fisher.

1.2 Fishery Management in the U.S.

In the U.s., most commercial fisheries are strictly managed. In addition

to creating economic zones, the Magnuson Act mandated the establishment

of eight regional management councils2 each charged with task of creating

fishery management plans for economically important fisheries within their

jurisdiction. Fishery management plans provide parameters which help guide

management such as optimum yield and harvest guidelines (see Pacific Fish

ery Management Council (2000) for excellent examples). Development of a

fishery management plan by one of the regional councils grants authority to

the U.S Secretary of Commerce to regulate as described in the plan. To take

effect, the plan must be adopted by the Secretary of Commerce.

Fishery management plans and proposed amendments must be presented

2Regional fishery management councils are Caribbean, Gulf, mid-Atlantic, New Eng
land, North Pacific, Pacific, South Atlantic, and Western Pacific.

6



.,.'.,

,
;...••.

'.

':
.~

:.:
<~

to the public (including industry representatives) for review and comment

prior to their adoption. Language in the Magnuson Act requires consider

ation of economic and social components of fishery management. Various

interests are included by design, and the typical management council com

position includes members representing commercial fishers, processors, and

recreational anglers. Institutional pressure imposed by fishing interests on

regulators have lead some to suggest that regional councils are captured by

fishing interests (Shelley, Atkinson, Dorsey, and Brooks 1996; Karpoff 1987).

In some cases management actions are heavily influenced by industry inter

ests. For example, fishermen's opposition to trip limits in the New England

cod, haddock, and yellowtail flounder fisheries was, in part, responsible for

the inability to enforce effort restrictions. In the early 1980's, effort controls

were eventually removed, and subsequently lead to significant increases in

fishing pressure on these stocks (Thompson Jr. 2000) .

Section 107 of the Sustainable Fisheries Act largely focuses on potential

management council member's conflicts of interest; suggesting the impor

tance of studying the influence of fishing interests in council policies. In

reference to the conflict of interest provisions in the SFA, President Clinton

voices concern that it "does not provide adequate protection against con

flicts of interest on the part of members of the fishery management councils"

(President of the United States 1996). This paper does not directly address

the mechanism allowing industry capture of the regulator, but takes capture

as a given. In this casc, a captured regulator is influenced to act in the

best interest of industry participants (by maximizing net present value to

them), but allows free entry. One popular mechanism fishery regulators use

7
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to regulate entry is the individual fishing quota (IFQ). However, the Sustain

able Fisheries Act established a four year moratorium on new IFQ programs

which ended in October, 2000.

Without the ability to regulate entry, the regulator achieves the legal re

quirements of the Magnuson Act and its amendments through manipulation

of parameters of the fishing technology, a common management practice in

the U.S. and abroad. Clearly this will lead to a second-best outcome, with

a lower payoff than could be achieved through effort restrictions. However

the effect on dynamics and steady state of effort and fish stock ate not ob

vious. This paper demonstrates that while the captured regulator's fishery

has higher stock and higher effort than the open access equilibrium, there are

zero rents, lower stock, and higher effort than the sole owner would optimally

choose.

2 Model

The model begins with the Schaeffer model of a fishery in continuous time.

Stock, X (t), grows at rate f(X) (which we do not have to assume is quadratic),

and is harvested at rate, h(t). All of these variables are functions of time,

though for notational simplicity we omit t. There are E boats and each boat

catches kX fish per unit time, so h = kEX, where k measures the proportion

of the stock harvested by each boat3. Results of this analysis are likely to

3The traditional bilinear form of harvest being proportional to the product of effort and
stock can be generalized, though in the interest of minimizing algebraic clutter, we adhere
to tradition. The simplest (and most benign) generalization is to allow It = kEcP(X) for
some function <fi(.) , though a complete generalization of h = h(k, E, X} would significantly
increase mathematical complexity (mostly because the objective would no longer be linear

8



continue to hold for more general functional forms for the harvest function,

though the analytics become significantly more involved. For illustrative

purposes, we adhere to the traditional bilinear form above where harvest is

proportional to the product of effort and stock. The growth of the stock is

therefore

As in the open access model, boats enter in proportion to current individual

profits (see Berck and Perloff (1984) for the much more complicated case

where entry is proportional to present value of profits). Price of fish p and

costs per unit time per boat c are both constant. The constant of propor

tionality is 8. The units of 0 are boats per dollar, representing the number

of boats that enter the fishery per dollar of profit instantaneously observed

in the fishery. Thus the rate of change of the effort in this fishery is:

x = f(X) - kEX.

E = b(pkX - c).

(1)

(2)

;:~
,',

','
;'.;_.
'.'

Implicit in this formulation is the assumption that boats currently partici

pating in the fishery spend the same amount of time fishing, and therefore

are homogeneous with respect to revenue and costs, Symmetric entry and

exit rates are adopted for modeling convenience. The regulator acts in the

interest of the representative fisher currently in the industry, and credibly

continues to behave this way throughout time. The decision of whether to

cnter the industry, however, is made solely on the basis of current profits, i.e,

potential entrants are myopic about profits.

in k), and would reduce tractability of results.
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In order to meet the goals of regulation, the fishery management agency

can close part or all of the fishery for part or all of the season. It can also

regulate the gear used, including the mesh size of the net, use of monofila

ment nets, spacing of hooks, horsepower of vessels, and so on. The policy

instrument is the efficiency of fishing, k, allowing entry and exit to occur un

regulated. Traditional models of fishery management take the "catchability

coefficient" k as exogenously given. Without regulation, we assume fishers

operate at the maximum efficiency allowed by their equipment, k. Here, we

abstract from the exact form of regulation and model the regulation as the

agency choosing k(t) E ['1£, k]. The captured agency maximizes the present

value of future profits to the representative fisher discounted at rate, r, as

follows:

max_ r~o e-rt(pkX - c)dt
k(t)E[!f,k] 10

subject to (1) and (2). Here k, E, and X may all vary through time.

The current value Hamiltonian for this problem is:

(3)

H(X,E,k,A,'Y) = (1 +0'Y)(pkX - c) + >.(J(X) - kEX). (4)

The associated costate equations defining the shadow value of fish stock (>.)

and the shadow value of effort ('Y) as functions of time are:

;y - q = >.kX

..\ .- r.A = ->.(f - kE) - (1 + o'Y)pk.

(5)

(6)

The captured regulator seeks to choose the time path of k which maximizes

10



the Hamiltonian. Since H is linear in k, a bang-bang solution is optimal,

where k or k is chosen until the convergent path is reached, at which time k

is set to be interior so that H k = O. Next, we describe the convergent path,

and associated interior choice of k.

2.1 The Exceptional Control

Now we use the costate equation for>.. and the state equation for E to solve

for

Since H is linear in k, this expression defines a ClUve in X, E space. We

solve (7) for 'Y as follows:

The exceptional control (where k is interior) is found by first finding where

the derivative of H with respect to k vanishes,

(7)

(9)

(8)

(10)

(11)

).E 1
~/=---

fJp <5

11

>.. rXE+j'E
=

>.. f'E+co

).rE >"c r
-----+-=0

p6 P 6

H k = pX(l + 6'Y) - >..EX = O.

'Y - T'Y = >"E + At _ r E>.. + :: = >..kX.
<5p 6p 6

and substitute into the costate equation for 'Y to get

and differentiate and solve to get



Substitutions for X and E and solving this expression for k* gives the explicit

closed-form solution

We substitute p(l + '15) = ~E (from Hk = 0) into the state equation for .\

to get

This equation gives the explicit solution for the exceptional control, k* as

a function of effort E and stock X at any time. A sufficient condition for

k* > 0 is f' 2: r. The curve in x, E space traced by the points where X,

E, and k*(X, E) are such that Hk = 0 is the convergent path about the

equilibrium for this system.

(12)

(13)

(14)

~ /
-- = f - r.>. .

f"XE+f'E ,
j'E + co = f - r.

k* = f'E(j' - r) + 2f'Oc - roc - ff"E
j'opX - f"E2X .

So, for an exceptional control,

;:;
'.'

.""

~

3 Steady State and Dynamics

There are two possible ways for this system to have a steady state as part of

an optimal program: either k is the exceptional control or it is an extreme

control. Let us begin with the possibility of a steady state with an exceptional

control.

Setting the time derivative of .>. equal to zero and substituting as before

from Hk = 0 yields f'(Xss ) = r. Since E must be zero in a steady state,

12



kss = x; . From X = 0, E ss = f(Xss)p. H k = 0 and '7 = 0 are two equations
P ss C

for ..\ and 'Y with solution

..\ _ pre
- c2o+J(X•• )pr (15)

(16)

Note that limHoo e-rt'Y = limHoo e-rt ..\ = O. This demonstrates that there is

a steady state solution for X, k, and E that satisfies the necessary conditions

and also satisfies the transversality condition (Michel 1982). For this to be

a steady state it must be that 1£ < kss < k and it is assumed that this is the

case.

Most fishery growth models assume 1(0) = O. In this model, this implies

that there is an X = 0 nullcline at X = O. This may give rise to an alternative

steady state at X = 0, E = 0 (since, when X = 0, E = -8c < 0). Thus, if

the prescribed k* (X, E) policy is followed, we will either end up at a stock

level of 0 or a stock level where f'(Xss ) = r. The optimal stock level is the

interior solution, but the feasibility of attaining that level is determined by

parameters of the model, as shown in the next section.

3.1 Near Equilibrium Dynamics

Phase plane analysis can be used to describe ,the dynamics of this system

in the vicinity of the steady state identified above. We will produce a two

dimensional plot of the state variables, E and X, with the optimal control,

k* implicitly defined. To facilitate this analysis, we make use of equation

(13), the equation which implicitly describes the optimal fishing efficiency,

13



k*. Rewritten, this equation is as follows:

f"XE + f'E = (J' - r) (I' E + cJ).

Using this "fundamental equation", we find ';f'; == ki;; and r;:; == k'X near the

steady state. We obtain the following result:

* f"EXk
kE = f'8.pX - 1"E2X

k* _ f"(c6 + E 2k) - f'8pk
x - X(J'6p - E21")

<0

< O.

(17)

(18)

....-

These equations hold at the steady state, where X = E = k = o.
The slopes of the E = 0 and X = 0 nullclines near the steady state are

given as follows:

.'
..'~ _ f'-E(kxX+k)

- X(kEE+k)

_ -(kxX+k)
- XkE

(19)

(20)

To sign these slopes, we need to determine the sign of kxX +k and X{kEE+

k). We obtain the following:

kxX +k _ f"(e6+E 2k)-f'lJpk+k(f'lip-E2 f") _ ["elJ
- f' lJp- E21" - j' (jp- E21"

_ k(XE2 f"+Xf'{jp-XE 21")
- f'6p- E'i j"

<0

> o.

(21)

(22)

This unambiguously gives the signs of the slopes of the nullclines near the

14



steady state as follows:

(23)

(24)

Thus, near the steady state the i = 0 nullcline slopes up while the E = °
nullcline slopes down.

In the vicinity of the steady state this system has four isosectofs (see Fig

ure 1). Let II be the isosector below E = 0 and above i = 0, and let 12, 13,

and 14 be the remaining isosectors (clockwise from 11, respectively). Then

isosectors II and 13 are terminal isosectors since once the stock/effort system

is in one of these sectors, it cannot escape (without further manipulation of

.'.
::
:-.
.~.?

'.
~-.:
','

k) .

Stability of the steady state is determined by computing the eigenvalues

of the Jacobian (matrix of first partial derivatives) evaluated at the steady

state. The Jacobian, A, is given by

~~] = [f' -E (kx X + k)
BE (aE 8p kxX + k)[

ax
A = a~

aE
ax

-X(kEE + k)] = [+ -].
8pXkE - -

(25)

The determinant of A is negative (IAI < 0), so there is one positive, and one

negative eigenvalue of this system. The steady state is therefore a saddle

point with a convergent path of dimension one in {X, E} space. The slope of

this convergent path is given by the eigenvector associated with the negative

eigenvalue. Directional arrows reveal that the slope of the convergent path

is positive. A picture of this system near the steady state is given in Figure

.;,

....
15
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1. In the figure, the convergent lies in sectors 12 and [4.

3.2 Non-Equilibrium Dynamics

Figure 1 demonstrates the optimal dynamics toward the steady state a!ong

the convergent path. But, what if the system starts out off of the one

dimensional convergent path (given by the dotted line in Figure I)? In

that case, k should be set to intersect the convergent path as rapidly as

possible. From equation (7) the slope of the Hamiltonian with respect to E

is negative. Thus, if we move up (left) of the convergent path, we maximize

the Hamiltonian by choosing the smallest possible control, k. On the other

hand, since the Hamiltonian is increasing in k below (right) of the convergent

path, we should choose the largest possible control, k to hit the convergent

path as quickly as possible.

When the regulator chooses an extreme control (I£. or k), the dynamics

are identical to those of the open access fishery. The dynamics are given by

the differential equations

x = f(X) - kEX

E = 8(pkX - c)

(26)

(27)

where k is a fixed catchability (either I£. or k in the captured regulator's case).

The steady state of this system is X = ...i;,. and E = Jill and the Jacobian
pk kX '

B, is given by

(28)

16
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X=o

x

'f

Figure 1: Nullclines for the captured fishery model in {X, E} space with
implicit optimal fishing efficiency, k' (X, E). This is a saddle point equi
librium where the convergent path is of dimension one with positive slope,
represented by the dotted line.
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The Jacobian B has a positive determinant. The trace of B is negative

provided tC: l > j'(X), guaranteeing an asymptotically stable steady state4 .

Comparative statics on the steady state reveal g < O. That is, in an
dk

open access fishery, an increase in fishing efficiency tends to decrease the

equilibrium fish stock.

The optimal policy for the captured fishery is qualitatively summarized

as follows: When effort is high and the stock is low (i.e. to the right of the

dotted line in figure 1), the regulator should set k = k. Alternatively, when

effort is low and the stock is high (to the left of the dotted line), the regulator

should set k = 1£. These actions move the system towards the dotted line

(through entry/exit and changes in stock size) as quickly as possible. Once

the convergent path is reached, an intermediate level of efficiency is set,

eventually driving the system to steady state. We now turn to a comparison

between the captured regulator (who controls fishing efficiency)and the sole

owner (who controls effort).

4 Captured Regulator Versus the Optimum

How does the captured regulator's fishery compare to the optimum? Over

fishing is judged relative to the optimal case of the sale owner who chooses

effort while enjoying the largest possible catchability, P. The sole owner

4The condition requires the average growth rate to exceed the marginal growth rate.
For example, the condition holds for the logistic growth function.

5Positive effort cost, C> 0, makes it more cost effective for the sale owner to achieve a
given harvest with high k and low E rather than achieving the same harvest with low k
and high E. If costs are negligible, either effort or fishing efficiency could be controlled.

18



solves

maxE(tlElli,E) Iooo e-rtE(pkX - c)

s.t. X = j(X) - kEX.

The steady state stock for the sole owner is given implicitly by

(29)

(30)

;.'

:.:

~.

(31)

where superscript S refers to the sale owner. Unlike the captured regulator

who chooses catchability (k) to maximize his Hamiltonian (which is linear

in k), the sale owner faces a Hamiltonian linear in her control, E, and must

therefore choose E, the highest level of effort possible, if X < Xfs and choose

E if X > X~:. When the stock gets to the point where X = X~:, the regulator

immediately adjusts E = E!s, and maintains the steady state at that level.

In steady state the sole owner chooses an effort level to satisfy the equality

in (31). Unlike the captured regulator, the sole owner accounts for the stock

effect on costs. As this effect increases (higher c), the optimal stock level

for the sole owner increases. Not so for the captured regulator, however.

The inequality in (31) holds because pkX > c. By the concavity of j(X)

we observe that the steady state value of stock for the captured regulator is

unambiguously smaller than that of the sale owner. The captured regulator

allows overfishing by ignoring the stock effect on costs. Without a stock

effect on costs (if c = 0) the two steady states are identical.

What about the steady state level of effort under the two scenarios?

A sufficient condition for the steady state level of effort for the captured

19



regulator to be larger than that of the sole owner is the following:

d ful
_x_ <0.
dx

(32)

That is, the stock grows at a slower percentage rate for higher stocks than for

lower stocks. This condition is satisfied by many growth functions, including

the logistic. Since X~ > X~, by (32) we have, f<;J.1 < t<;%a). We also
S.9 a3

know k > k;s' Thus, E~ < Efs. In the steady state, the captured regulator

allows greater effort, reduces the stock to a lower level, and impose lower

harvest efficiency than the sole owner. These relationships between steady

state values of X, E, and k under open access, the captured regulator, and

the sole owner are shown in the following table:

Variable Open Access Captured Fishery Sole Owner

X c f' (X) = r or x = p~. f'(X) = r - xC(~1~)c)pk

E f(X)p or fiX) J..gJE fiX)
c kX c kX

k k k < k· < Ii k
And XOA < XC < X5, and ES < E OA < E C where superscripts stand for

open access (OA), captured (C), and sole owner (8).

5 Example

To briefly illustrate the dynamics of this model, we develop an example based

on the familiar logistic growth model of a fishery. The growth rate in the

absence of harvest is

;'.

X
j(X) = gX(l - K)

20
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where 9 is the intrinsic growth rate and K is the carrying capacity of the

stock. The parameter choices are made for illustrative purposes and are not

intended to represent any particular fishery. Parameter values used in this

example are given in the table below.

Parameter Description Value

r discount rate 0.05

p price 30

c cost parameter 5

0 entry rate (per profit) .5

K carrying capacity 100

9 intrinsic growth rate .2

k maximum fishing efficiency ,007

If minimum fishing efficiency ,0033

E maximum effort for sole owner 55

E minimum effort for sole owner 5

Figure 2 depicts the dynamics of all three models given the above param

eter values, and two different starting points. The" good" starting state is

indicated by a circle, with high stock and low effort. The" bad" starting state

is indicated by a square and has low stock and high effort. The remainder

of this section compares the dynamics of each of model starting from each of

the two starting states.

As explained above, the sole owner has an objective which is linear in her

control, effort. If she finds herself in the {9b':J} state, she maximizes rents

by setting {~}, represented by the dotted lines in Figure 2. Following this
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strategy, the sale owner eventually reaches a stock/effort level given by thc

diamond in the figure, with high stock and low effort.

The consequences of open acccss arc casily seen by comparing the solely

owned fishery with the fishery owned by nobody (or everybody). With open

acccss, dynamics and thc eventual steady state dcpend upon the fishing ef

ficiency parameter, k, which is fixed. When k = k and the starting state is

bad, effort drops leading to an increase in the stock size, dynamics graphed

by the dashed path. One the other hand, if the starting state is good, and if

k = k, the dash-dot path is followed. For the parameter values chosen here,

both open access steady states (dcpending on which value of k was assumed)

have higher effort, and lower stock than the sole owner steady state. In fact,

this relationship holds true regardless of parameter values.

The final case to be graphically explored by Figure 2, is that of the cap

tured regulator. Recall that the optimal policy of the captured regulator is to

set k equal to k or k for some time, and then to adjust k to reach thc steady

state along the convergent path6
. In the figurc, if the captured regulator

starts in the good state, he optimally follows the dash-dot line by setting

k = k, following the dash-dot path, reducing the stock size, and increasing

the effort level until thc convergent path (solid line) is hit. Efficiency k is

then chosen at an interior level until the steady state (*) is reached. Simi

larly, starting in the bad state, k is set to its lowest value, allowing stock to

6The convergent path is found by numerically calculating the eigenvector associated
with the negative eigenvalue of the Jacobian evaluated at the steady state. Differential
equations for X and E along with the definition k·(X, E) are used to trace out the
convergent path from a small perturbation away from the steady state, along the obtained
eigenvector. Dynamics for the sole owner and open access fisheries are superimposed on
the same graph. All figures and numerical calculations are done in MATLAB.
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rebound, and causing exit in the industry, until the convergent path is hit.

Efficiency is then adjusted to reach the steady state.

One interesting observation about the captured regulator's management

in this example is that the effort is non-monotonic. That is, starting from the

"bad" state, the initially high effort is driven down below the steady state

level, and is eventually encouraged back up by slackening restrictions on k.

Starting from the" good" state, k is set so low that fishers enter the industry,

driving down stock. But they enter so fast that some are eventually driven

out by decreases in k along the convergent path .

6 Discussion

Recent declines in many managed fisheries worldwide raises questions about

the efficacy of management regimes. If fishery management agencies are heav

ily influenced by fishers, the agency is said to be "captured" by the members

of the industry. We model a captured regulator as one who is influenced

to allow free entry, but who chooses efficiency-related controls such as area

closures, gear restrictions, and season lengths to achieve management objec

tives. The regulator acts in the best interest of the representative fisher in

the industry. In the context of a common, simple fishery management model,

we explore when a captured fishery regulator will allow overharvesting. We

show that despite the regulator's goal of maximizing the net present value

of harvest, he unambiguously allows overfishing. Essentially the regulator

ignores stock effects on harvest costs, causing higher effort and lower stock

than are suggested by optimal management.
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Figure 2: Dynamics of all three models, starting from "good" (circle) and
"bad" (square) states. (1) Starting from either state, the sale owner chooses
either E = E or E = E, following the dotted graph to the sole owner steady
state given by the diamond. (2) In the open access model, an oscillatory route
is followed to steady state. Starting from the" good" state and if k = k, the
open access model moves according to the dash-dot graph. Starting from
the "bad" state and if k = !i;., the open access model moves according to
the dash graph. (3) Starting from the" good" state, the captured regulator
follows the path of the open access model with k = k until the convergent
path (solid line) is reached. Starting from the "bad" state, the captured
regulator follows the open access path with k = 1£ until the convergent path
is reached. Once the convergent path is reached, the captured regulator sets
intermediate levels of fishing efficiency, k, and moves along the convergent
path to the steady state (given by the *).
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