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MANAGERIAL REPUTATION AND THE “ENDGAME”
1. INTRODUCTION

A typical basketball game is characterized by an ever-widening divergence in tactics
as the game approaches its conclusion (in an attempt to avoid turnovers and deny
their opponents the time required to close the lead). The team that is leading tends to
play cautiously and slow down the game’s pace, even under the pressure of the “shot
cloek.” The trailing team invariably adopts the antithesis of the leading team’s
approach. The endgame tactics of trailing teams are dominated by fast breaks and
desperate attempts for three-point baskets.

It is our belief that the incentives often facing managers concerned with
enhancing or protecting their reputations are analogous to those faced in basketball’s
endgame. A manager is “ahead” when his performance to date has enhanced his
reputation. Such a manager can be expected to avoid taking risks that may endanger
his reputation even if these risks are well justified from the owners’ perspective. A
manager is “behind,” however, when performance to date has eroded his reputation.
Such a manager must restore his reputation or face dismissal. Such managers are
likely to take excessive risks in hope of salvaging their reputations. After all, the
money being gambled with belongs to someone else and, if nothing is done,
unemployment is unavoidable. Hence, there is little to lose.

This paper presents a model in which managers of varying abilities choose
strategies for their companies while companies only decide whether or not to retain a
manager. A strategy determines the mean and variance of the company’s
performance. Better managers have meore strategies to choose from than do less
capable managers. One possible Bayes-perfect equilibrium is that the less capable
managers deliberately choose high-variance strategies, exactly like the trailing

basketball team.



Endgame reputational incentives have implications for the firm’s capital
structure as well. Distortions of the firm’s choices regarding risks and return may
raise the cost of debt capital providing an additional constraint on the firm’s attempts
to attain an optimal debt/equity ratio. In situations where bankruptcy costs are high, it
is even conceivable that the incentive for poor managers to take excessive risks may
lead to complete extinction of certain classes of firms which, absent the moral hazard
of endgame incentives, would have played a productive role in society.

In this paper, we will present a model that induces equilibrium manager
behavior similar to that seen in basketball’s endgame. We believe that the conditions
required to induce such equilibria are often observed in the real world. Managers who
are candidates for endgame-type behavior are likely to wc;rk for firms where direct
observation of managers is costly leading owners to infer both manager abilities and
decisions based on observation of easily identified benchmarks, such as earnings,
sales, or free cash flow. Such conditions are common in firms where (1) ownership is
sufficiently dispersed that the costs of monitoring manager decision making is
prohibitive for any single or small group of shareholders or (2) the firm is sufficiently
small that it has not attracted any objective analytical following among financial firms
(obviously, analytical reports published by the firm’s underwriters, who have an
interest in maintaining good relations with firm managements, are not likely to be
objective). Publicly-owned firms that share these characteristics are well represented
on all the major stock exchanges.

A vivid illustration of endgame behavior among managers (in this case,
portfolio managers) is furnished by the tale of a hapless Chilean copper trader.
Working the graveyard shift, the trader incorrectly entered a trade and lost a few
million dollars for Chile’s national copper firm. Desiring to cover up his embarrassing
error, the trader proceeded to engage in a series of futures speculations using the

firm’s money. The trader’s original aim was to make good the initial loss before he
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was reprimanded. After a series of additional losses, the trader’s objective became to
make good the losses before he was dismissed. As losses mounted even further, the
objective became to make good the losses before being arrested. As this process
developed, the level of risk taken by the trader grew ever larger. His losses were
finally noticed, and the trader was arrested but only after he had managed to lose
$200 million (living proof that individuals can, indeed, have a noticeable impact on
national accounts).

Given other recent financial debacles (Barings, Sumitomo), it appears that the
monitoring of manager decision making is particularly costly in financial trading and
that endgame behavior is rampant in financial firms. Empirical evidence that portfolio
managers alter the risk/return characteristics of their investments in order to affect
their reputations (as measured by the flow of money into funds that they manage) is
provided in Chevalier and Ellison (1995) and Falkenstein (1996).

There are seven sections in this paper. In section 2, we briefly review the
research conducted so far on the importance of managerial reputation in influencing
firm decision making. In section 3, we define the basic parameters of a labor market
and delineate formal mathematical conditions for Bayesian-perfect equilibria in that
market. In section 4, we present a class of graphically and algebraically tractable
examples. In section 5, we identify and characterize the classes of strategy sets that
are consistent with the equilibrium. We demonstrate that equilibria exist which may
lead some or all managers to choose inefficient mean/variance combinations (in which
mean return has been sacrificed to increase variance). In section 6, we consider the
welfare implications of changes in the distribution and quality level of managers. We
conclude the paper by summarizing and analyzing our results and by discussing the

implications of endgame-type behavior for mechanism design.



2. LITERATURE REVIEW

Since the subject was first introduced in Fama (1980), there has been a
growing appreciation of the influence of reputational effects in dictating the behavior of
agents. Holmstrom (1982) first discussed the possibility that the managers of firms,
fearing that they would be revealed as inferior, could choose to forgo investment
projects that owners would have found desirable. Holmstrom suggested that
reputational effects could thus be used as a justification for the widely accepted belief
that large firms were managed too conservatively. Holmstrom and Ricart i Costa
(1986) extended Holmstrom’s presentation, further emphasizing the tendency of
managers to avoid desirable investments that could exéose them to undesirable
reputational effects. In addition, they suggested contractual mechanisms that
alleviated the misalignment of owner and manager risk preferences. Contractual and
informational issues related to this framework were further developed in Ricart i Costa
(1989). Gibbons and Murphy (1992) test the form of managerial incentives with a
sample of chief executive officers.

An extreme form of managerial conservatism is the herding behavior described
in Sharfstein and Stein (1990). In their formulation, portfolio managers converged on
identical strategies in order to assure that they could do no worse than average.
While doing better than average carried rewards, these were outweighed by the costs
of underperformance. Hence, all managers mimicked each other in order to assure that
they would not be average. While herding is clearly a conservative strategy, it does
not imply that clients are always exposed to less than optimal levels of risk. One of
the portfolio mangers quoted by Scharfstein and Stein recounts that he was well
aware of the stock market’s excessive risk in September of 1907 but would not lower

his exposure since no one else was doing so.



Huddart (1996) presented a reputational portfolio management model that
induced all types of portfolio managers to take excessive risks. In Huddart’s model,
one investment security’s risk/return profile stochastically dominated the other. There
were two portfolio managers. One was better informed than the other and, if he
demonstrated this during the first period, he would be rewarded during the second
period. The informed portfolio manager would receive a private signal regarding the
inferior security that could make it more attractive. If the information was sufficiently
favorable, he would overweight the inferior security. Although all managers chose
their portfolios simultaneously, the uninformed manager’s need to maximize his
chance of appearing to be the informed manager would lead him to overweight the
inferior security as well even though his information did ﬂot justify such a decision.
Meanwhile, the informed manager’s desire to maximize his chance of appearing to be
informed would lead him to overweight the inferior security to an extent greater than
that justified by the superior information that he possessed.

Our model is closest to Zwiebel (1995). He also addressed managerial
conservatism, presenting a model in which managers had two alternative investment
projects to choose from. One project return profile stochastically dominated the other,
but the inferior project’s outcome more clearly signaled the manager’s true level of
ability. In Zwiebel’s formulation, average managers preferred the inferior investment
that clearly signaled that they were average, exceptionally capable managers chose
the superior investment since they were confident that their abilities would be
recognized anyway, and poor managers chose the superior investment since they
counted on the noisier signal to, perhaps, mask their true level of ability.

Our model differs from Zwiebel in permitting both managers and firms a wider
range of options while restricting the number of types of agents to two. We do not
consider optimal incentive contracts. With the expended choices, the firm and

managers are players in a game whose equilibrium concept is Bayes-perfect. In this
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expanded framework, there are many more types of equilibria than in Zwiebel,
including the intentional choice by less capable managers of strategies that lead to
excessive variance in the firm’s performance. Thus, the model presented below can

generate both reckless and conservative behavior in equilibrium.
3. A GENERAL TWO-PERIOD MODEL

In this model, an owner hires a manager, observes the manager’s performance
in the first of two periods, and then decides whether to retain or replace the manager
prior to the second period. Managers may either be good or bad. The owner knows
the population frequency of both types of manager, but has no way of telling whether a
given manager is good or bad. Therefore, she hires a Iﬁanager at random. The
manager that has been hired takes an action, o, which, along with a random process,
determines an outcome, Y, for the first period. The owner, who benefits from the
ou;icome Y, infers from the realized value of Y the likelihood that the manager is good.
Based on this inference, the owner decides whether to retain the manager for a second
period or fire him and hire a new manager at random for the second period. The set of
realizations of Y that lead the ownertt»o replace the manager is known as C—the
critical region for the owner’s test of the manager’s abilities. The set of realizations of
Y that lead the owner to retain the manager is known as C. A graphic depiction of

the flow of events in this model is presented in Figure 1.

3.1. The Nature and Behavior of Managers
A manager hired by the owner will always receive a one-period contract with a
fixed and nonnegotiable payment. Managers will always prefer being employed by the
owner to their next best alternative employment. As a result, the manager hired by
the owner prior to the first period will make choices that maximize his chance of

keeping his job for a second period.



Managers are not identical but are divided into two types (good, G, and bad,
B) that differ in their ability to generate Y; Y is a random variable with likelihood
function l(ﬁ/, i, o), where p is the mean of Y and ¢ is Y’s standard deviation.
Mean [ is a function of the manager’s type as well as of the value of 6. Managers
will be able to unobservably choose the value of ¢. For now, p and ¢ will be sufficient
statistics to characterize Y (later in this paper, we introduce the assumption that Y is
distributed normally).

A manager of type i’s ability to generate Y is limited to combinations bounded
by a continuous and differentiable mean/variance frontier §;(6). The frontier is
comprised of three segments: an “efficient” segment (where du/dc > 0), an
“inefficient” segment (where dpi/do < 0), and a transition point (where dp/do = 0 and
M is at its maximum). Both | and ¢ must always be greater than or equal to zero.

Inefficient mean/variance combinations are generally ignored in the
economics/finance literature, since it is assumed that no one will ever desire to choose
such a combination. As we show below, there may, indeed, be situations in which
inefficient combinations may be chosen by managers.

The mean/variance frontier of a good manager strictly dominates that of a bad
manager. A graphic representation of mean/variance frontiers attainable by good and
bad managers is shown in Figure 2.

For a given owner’s critical region, the manager will choose the mean/variance
combination that maximizes his chance of retention. Let l(ylig(0), ¢) and [(ylpug(c),
o) be the likelihood functions for Y given the manager’s type and choice of 6. Since C
is the critical region, the optimal choices of o for both types of manager, 6g* and ogp¥*,
will be given by the values of ¢ that minimize the probability of a realization of Y

inside of C (i.e., that minimizes the probability of being fired):



(3.12) 6g* = argmin | (ylpg(o), o) dy
ye C

(3.1b) op* = argmin fl(yluB(o), o) dy.
ye C

The managers’ choices of variance, og* and og*, are the best replies to the owner’s
choice of C.

The manager hired by the owner for the second period will not be concerned
with keeping his job for a third period, since there are only two periods in the model.
For simplicity, we will assume that the manager hired by the owner for the second
period, unable to alter his own prospects, makes choices that maximize the owner’s
expected utility. This assumption may be relaxed. As long as good managers always
make second-period choices that give the owner greater expected utility than the

choices made by bad managers, the basic results of this paper are not affected.

3.2. The Behavior of the Owner
For a given pair of managers’ choices for variance, 6g* and 6g*, the owner will
choose a set, C, that maximizes her expected utility over both periods. Since the
owner chooses a manager at random for the first period, first-period expected utility

must equal

(32)  Pg-| u(y) lyhgo6™), o6 dy + Py - | u(y) ylp(og®), op*) dy,

where u(y) is the owner’s utility given outcome y, P is the probability that a manager
chosen at random is good, and Py (which equals 1 — Pg) is the probability that a
manager is bad.

Let the utility that the owner expects to enjoy in the second period if the

manager is type (G) be EU(YIG) while EU(YIB) is the utility that she expects to
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enjoy if the manager is type (B). Let Pig equal the owner’s Bayesian posterior belief
that the manager is good following observation of the manager’s first-period
performance. Let P;g (which equals 1 — P;g5) equal the owner’s Bayesian posterior
belief that the manager is bad. The cost of replacing the manager with a new manager
for the second period is R. The manager will be retained if, following observation of
the manager’s performance in the first period, the owner’s expected utility in the
second period with retention less the cost of replacement is greater than or equal to

the expected utility of replacement, that is, if

(3.3a) (P1g) EU(YIG) + (P;p) EU(YIB) > (Pg) EU(YIG) + (Pg) EU(YIB) + R.
Using Pg+Pg=1land Pig+Pig =1,

(3.3b) PG - Pg > R/EU(YIG) — EU(YIB)).

The manager is retained when P.1(} is large enough to make the left-hand side of
(3.3b) larger than the right-hand side. Let 6 equal Pg/Pg, and let 8; equal P{g/Pyp.
Since P is an increasing function of 0, there is also a unique value for theta, 6*,
such that the manager should be retained if 8; > 6*. If R = 0, then the decision rule
simplifies to Pyg — PG > 0 and the criterion for retention can only (and will always) be
met as long as 81 > 6. As long as R = 0, the owner’s decision rule must be to
choose a region, C, for which 6 > 83 when y is outside of C. For convenience, we will
assume for the rest of the paper that R = 0.!

The critical region that maximizes the owner’s expected utility given the
manager’s first-period choice of variance will be known as C*. To identify C*, the best

reply critical region, recall that, by Bayes’ rule,

(3.4) 6,/6¢ =



When R = 0, the values of Y for which the ratio of likelihood functions given manager
choices of variance is greater than or equal to one are within C*. The owner’s best

reply to 6g* and og* will be
r

Iyl *
Cc* ={y|el<eo_(_¥_ll_cic(}—))

I{y 1np(op+))

3.3. Equilibrium

A set of strategies {C*, og*, og*} will combine to form a Bayesian Nash
equilibrium if, given the owner’s choice of C*, managers of either type will have a best
response of o;* and, given the managers’ choices of ¢;* and the owner’s beliefs
regarding the likelihood that the chosen manager is of a particular type, the owner will
have a best response of C*.2

For the case where R = 0, the set of values of y for which 8 < 8 is the critical
region, C*, of the test for manager retention. When y € C¥*, the owner will fire the
manager. Given C*, managers of each type will choose the level of variance, 6*, that
maximizes their chance of attaining a realization of Y outside of C*. Given the
managers’ choices for variance, the ratio of likelihood functions,
Iylug(og™)/(ylpg(og*)), must equal one at the boundaries of C*. If these
conditions are met, the strategies result in a Bayesian-perfect equilibrium.

Assuming that R = 0 and Y is normally distributed, we can exploit the fact that
Iylpug(og™)/(ylnug(cg*)) = 1 at the boundaries of C* in order to determine the
nature of the critical region. Referring to Figures 3a and 3b, which depict the
probability distribution functions of two managers, we see that the ratio of likelihood
functions is equal to one at the points where the two functions intersect. In Figure 3a,
og* = og*. When two normal distributions have the same level of variance and
different means, there will be only one realization of Y for which the ratio of likelihood

functions is equal to one. This value of Y will be half way between the two
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distributions’ means. In this case, C has a single boundary, y*. Realizations of Y
less than y* result in replacement of the manager. All realizations of Y greater than
or equal to y* result in retention of the manager. The critical region C will be the open
interval [—eo, y*) while C will be the open interval [y*, ]. In this case, Hg must be
inside of C while iy is inside of C.

If two normal distributions have different levels of variance, there will be two
realizations of Y for which the ratio of likelihood functions equals one, regardless of
the distributions’ means. In Figure 3b, if 6G* > og*, then realizations of Y between
the two points where the ratio equals one will be part of the critical region. Hence, C*
will be the open interval (y*, y**). The bad manager’s choice of mean, pig, must be
inside of C. If og* < op¥, then realizations of Y between the two points where the
ratio equals one will not be part of the critical region and C * will be the closed
interval [y*, y**]. In this case, pg must be inside of C.

The special case is which R = 0 has some other interesting properties. When
there are no replacement costs, neither the true distribution of managers nor the
owner’s utility function plays any role in determining equilibrium. The owner’s
decision rule is to retain the manager as long as 0, > 83. By Bayes’ rule, this will be
the case only (and always) at points where the ratio of likelihood functions is greater
than or equal to one. The true distribution of managers is not an argument in the
likelihood functions of either type of manager. Hence, the true distribution of
managers cannot affect the managers’ choices of 6* or the owner’s choices of y* and
Y,

To see why this special case is unaffected by changes in the owner’s utility
function, remember that the owner, though concerned with expected utility, is only able
to observe realized utility. The likelithood that a manager of a given type produces a
particular level of realized utility is identical to the probability that the manager

produces the value of Y associated with that level of utility. Hence, the values of Y
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for which ratio of likelihood functions is greater than or equal to one are the same as
the values of u(y) for which the ratio is greater than or equal to one. As a result, the
owner will choose the same values for y* and y** (and the managers will respond by

choosing the same values for 6*) regardless of the owner’s utility function.
4. A CLASS OF TRACTABLE EXAMPLES

When Y is normally distributed and the mean/variance frontier is of the
quadratic type shown in (4.1a) and (4.1b), the manager retention problem can be
solved analytically and graphically. Let the mean/variance frontier of a good manager

be

(4.1a) LG = bog — 02 b>1,
and let the frontier of a bad manager be

(4.1b) llg = Op — Og2.

Neither manager will be allowed to set both it and 6 equal to zero.3 Figure 4 shows
these frontiers for the case b = 2.

Assume that the critical region C is an interval of the form [, y*]. Later, it
will be demonstrated that this is, indeed, true for this class of examples. Given his
choice of mean and variance, a manager would have performance Y, normally
distributed with mean p and variance ¢2. Letting ®(-) be the standard normal
cumulative density function (CDF), the likelihood of performance y* or less is given by
®(z), where z = (y* - w/o.

The manager will choose the value of ¢ that minimizes the probability of his
being fired. The probability of being fired is ®. Since @ is a monotonic increasing

transformation of z, choosing ¢ to minimize @ is the same as choosing ¢ to minimize
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z. Substituting the values for the managers’ means given by (4.1a) and (4.1b), the

managers’ choice problems are given by (4.2a) and (4.2b):

(4.2a) OG* = argmin (y* - bog + 6G2)/og
w.I.t. Og

(4.2b) op* = argmin (y* ~ op + 6p2)/Gy.
w.r.t. Cp

Setting the derivatives of (4.2a) and (4.2b) equal to zero and solving for o*, we find
that both types of managers’ optimal choice is to set 6* equal to (y*)1/2. As a result,
ng* = b(y*)V2 — y*, and ug* = (y*)!2 — y*. Since both managers choose the same
value for ¢*, there is, indeed, only one value of Y, y*, where the ratio of likelihood
functions is equal to one and the critical region is of the form [~oo, y*).

The managers’ decision-making process can readily be represented graphically
in mean/variance space. In Figure 4, several of the managers’ indifference curves are
shown. Managers are interested in choosing the mean/variance combination that
achieves the lowest value of z. Managers will be indifferent.to all combinations of y
and © that produce the same value of z leading to linear indifference curves of the

following form:
(4.3) = —zC + y*.

All of the indifference curves converge at the point where [t = y* and 6 = 0. At this
point, z is undefined. From this point, the indifference curves fan out. The indifference
curve to the left of y* along the | axis represents the locus of mean/variance
combinations that have a zero probability of surpassing y*. The indifference curve

starting at y* and moving to the right along the | axis represents the locus of
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mean/variance combinations which assure that y* will be equaled or surpassed. The
indifference curve that rises vertically from y*, labeled I,, represents all mean/variance
combinations that have a 50 percent chance of surpassing y*. Indifference curves
grow more preferable as they fan from left to right, so a manager will choose the
combination on his mean/variance frontier tangent to the indifference curve that is
most to the right.

Given the managers’ choices for ¢*, it is not difficult to identify the owner’s
choice of y*. Recalling that we have assumed that replacement costs are equal to
zero, we know from (3.4) that y* must be at the point where [g/lg = 1. The derivative
of @, ¢, is the normal distribution’s probability density function (PDF). The I will
equal ¢ evaluated at ng*(og*) and og* while lg will equaf ¢ evaluated at pg*(og*)
and og*. Setting the normal likelihood functions for both types of managers equal to

one another, substituting (y*)1/2 for ¢*, and simplifying, we get the equation for y*:
(4.4) [b(y*)1/2 - 2y*]2 = [(y*)1/2 - 2y*]2.

Solving (4.4) for y*, we find that y* = (b + 1)2/16 and 6* = (b + 1)/4. Substituting this
value of 6* into (4.1a) and (4.1b), wé find that the mean for a bad manager is (2b —
b2 + 3)/16 while the mean for a good manager is (6b — b2 + 7)/16. Evaluated at b = 2,
the probability that a good manager will be retained is .81 while the probability that a
bad manager will be retained is .19.

Referring back to Figure 4, we see a graphic representation of the equilibrium.
Each manager chooses the (|1, 6) combination where their mean/variance frontier is
tangent to the best attainable indifference curve. For a bad manager, this is I} while it
is I3 for a good manager. Both types of managers have chosen the same level of
variance, but good managers have a higher mean than bad managers. Good managers
are on the efficient portion of their mean/variance frontiers while bad managers are on

the inefficient portion of their mean/variance frontiers.
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5. POTENTIAL EQUILIBRIA

When we assume that Y is normally distributed and R = 0, it is possible to
identify classes of strategy sets consistent with the equilibrium developed in
section 3. In this section, we demonstrate through a process of elimination that any
strategy set consistent with equilibrium must fall into one of three broad groups of
strategy set classes. One of these groups includes the equilibrium presented in
section 4. To show that equilibria from the remaining groups are possible, we present

an example from each.

5.1. Elimination of Strategy Sets Inconsistent with Equilibrium

In order to eliminate strategy sets inconsistent with equilibrium, we exploit
four lemmas. To facilitate the explanation of these lemmas, recall that, for any given
value of J less than the maximum value attainable by the manager, there are two (H,
o) combinations on the managers mean/variance frontier. One of these combinations
is a low-variance choice on the efficient side of the frontier while the other is a high-
variance choice on the inefficient side of the frontier. Since the manager may choose
(1, ©) combinations inside of the area bounded by the ¢ axis and the frontier, the
manager can choose, for a given value of |, any level of variance between the high-
and low-variance values on the manager’s frontier. For a given value of L, all values
of 6 between and including these two values are said to be feasible. By the same
reasoning, for a given value of G, all values of |1 between zero and the maximum

attainable value of L given ¢ are said to be feasible.

LEMMA 1: As o decreases, the probability mass near {t increases, which
increases the probability of y lying between y* and y** that bracket the mean. The

Appendix inctudes a formal proof of this fact about normals.
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LEMMA 2: For a given value of &, the probability of falling between y* and y**
is maximized when W(o) = L = (y* + y**)/2. dQ/du is positive for 4 < @ and
negative for i > L. This is a property of the noﬁnal distribution. See Appendix.

In terms of the rejection region C, the lemma implies that, if C is the open
interval (y*, y**), then managers will choose a mean as far from [i as possible. If C
is the closed interval [y*, y**], then managers will choose a mean as close to [T as
possible.

It can easily be shown that Lemma 2 remains true as y** approaches e« and/or

y* approaches —eo. Proof of this has been omitted.

LEMMA 3: If pg = g, then pg and pg are equal to L. Again, this is a

property of the normal distribution. See Appendix.

LEMMA 4: Consider the case in which 6 < 6. It is a property of normals, as
shown in the Appendix, that, as g increases (LG constant), [t will decrease.

Consider the case in which 65 < og. If dfi/dpipg is negative for all values of iy
between y* and y**, then Lemma 4 is true. To see why this is the case, consider a
situation in which plg > pp and d[t/djLp is negative. As Ly increases and converges
on lig, B must be decreasing in value, but Lemma 3 assures that, when g = ug, p
will be equal to them. Hence, as ng converges on [Lg from below, [L converges on Ug
from above. This implies that pg is between [I and pg when pg > pg. Similar
reasoning assures that |l is between [t and pug when pg < pp.

By exploiting the lemmas presented above, we can prove five theorems that
demonstrate that most Bayesian combinations of good and bad manager strategies
cannot form part of a strategy set consistent with a Bayesian-perfect equilibrium.
Theorem 1 eliminates all possible strategy sets in which managers of either type

choose mean/variance combinations that do not lie on their mean/variance frontiers.
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THEOREM [: In equilibrium, managers must choose mean/variance

combinations that lie on their mean/variance frontiers.

PROOF: Manager choices of i and ¢ that do not lie on the manager’s
mean/variance frontier may either be on the ¢ axis (where | is equal to zero and o is
between the lowest and highest values possible when gt = 0) or interior to the region
bounded by the mean/variance frontier and the ¢ axis.

First, consider interior choices. Regardless of the nature of the equilibrium,
either C or C or both will be intervals. If C (C) is a closed (open) interval then, by
Lemma 2, managers will always choose the feasible value of |, given his choice of o,
that is as close to (far from) [L as possible. There are six possible cases:

1-2. f T <0and C (C) is a closed (open) interval, then the manager will
choose the lowest (highest) feasible value of p. This choice is on the ¢ axis
(mean/variance frontier).

3-4. If [t is greater than or equal to the highest feasible level of | given the
manager’s choice of 6 and C (C) is a closed (open) interval, then the manager will
choose the highest (lowest) feasible value of (. This choice is on the mean/variance
frontier (G axis).

5. If It is between zero and the highest feasible level of | given the manager’s
choice of 6 and C is a closed interval, then the manager will choose a mean of I. By
Lemma 1, the manager will then choose the lowest feasible value of ¢ given his choice
of . This choice is on the efficient portion of the manager’s mean/variance frontier.

6. If |t is between zero and the highest feasible level of p given the manager’s
choice of ¢ and C is the open interval then, by Lemma 2, the manager will choose a
value of |t as far from P as possible. This choice is either on the mean/variance

frontier or the ¢ axis.
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Now consider manager choices of (L, 6) combinations on the ¢ axis but not on
the mean/variance frontier. There are four possible cases:

1. If [ is greater than zero and C is a closed interval, then by Lemma 2, the
manager will choose a value of |t closer to [ than zero. This choice cannot be on the
O axis.

2. If [ is less than or equal to zero and C is a closed interval, then the
manager will set @ equal to zero. If, however, managers of both types choose the
same mean then, by Lemma 3, their choice of mean is equal to {I. Since the manager,
regardless of type, chooses zero as his mean, [I = 0 and the manager’s chosen mean
is inside of C. By Lemma 1, the manager will then choose the lowest feasible value
of 6. This choice is on the efficient portion of the mean/variarce frontier.

3. If [t is less than or equal to one-half of the maximum feasible value of p
given the manager’s choice of ¢ and C is an open interval then, by Lemma 2, the
managers will choose the highest feasible value of [L. This choice is on the manager’s
mean/variance frontier.

4. If T is greater than one-half of the maximum feasible value of p given the
manager’s choice of ¢ and C is an open interval, then the manager will set a mean of
zero. Since managers, regardless of type, choose zero as their mean, Lemma 3
assures that L = O and the manager’s chosen mean is inside of C. By Lemma 1, the
manager will then choose the highest feasible value of ¢ consistent with a mean of
zero. This choice is on the inefficient portion of the manager’s mean/variance frontier.

As has been shown, no manager choice of a (i, 6) combination not lying on
their mean/variance frontier can be consistent with an equilibrium of the type outlined

in section 3. ¢

Theorem | proves that a manager must choose a (i, 6) combination lying on

his mean/variance frontier if his choice is to be part of an equilibrium strategy set.
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Remaining combinations of manager strategies can be characterized by
three properties: (1) is WG greater than, less than, or equal to pup; (2) is 6 greater
than, less than, or equal to Gg; and (3) on what portion of the mean/variance frontier
are the (), 6) combinations chosen by the managers. There are no less than 81
possible combinations of properties 1-3. These combinations are shown in Table L

Most of the classes of strategy sets listed in Table I cannot form part of an
equilibrium of the type described in section 3. A number of the combinations are ruled
out by assumptions that we have made regarding the nature of the managers’
mean/variance frontiers. For example, there can be no equilibrium in which both
managers choose the (|, ) combination at their transition points [where (dp)/(do) =
0], while ug < ug since the mean/variance frontiers of good managers strictly
dominate those of bad managers, assuring that g > pp at the transition points.
Combinations ruled out by assumptions that we have made regarding the structure of
the mean/variance frontiers are denoted by the symbol “A” in Table I

We will now prove four additional theorems that eliminate many of the
potential equilibria remaining in Table I. Combinations eliminated by the various
theorems are denoted by the letter “T” followed by a number identifying the theorem
that was applied to disqualify it. The remaining combinations are denoted by the letter

“P” for possible Bayesian-perfect equilibria.

THEOREM 2: There can be no equilibrium in which C is defined by a single
value ~ y*, and good (bad) managers choose combinations on the inefficient (efficient)

portion of their mean/varianee frontiers.

PROOF: If C is defined by a single value, jLg will always be outside of C while
ug is always within C. By Lemma 1, the level of variance consistent with [ that
maximizes the probability of a realization outside of € for a good manager is the

lowest available. This cannot be on the inefficient portion of the good managers’
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mean/variance frontier. By the same reasoning, the level of variance consistent with
Wp that minimizes the probability of a realization inside of C for a bad manager is the
highest available. This cannot be on the efficient side of a bad manager’s

mean/variance frontier. ¢

THEOREM 3: There can be no equilibrium strategy set in which 6g < 6 (0g >
op) and good (bad) managers choose combinations on the inefficient (efficient) portion

of their mean/variance frontiers.

PROOF: If 6 <« Op, then lig is between y* and y** and is outside of C. By
Lemma 1, good managers should choose the lowest value for ¢ consistent with pg.
This choice cannot be on the inefficient portion of the good managers’ mean/variance
frontier.

If oG > Op, then Ly is between y* and y** and is inside of C. By Lemma 1,
bad managers should choose the highest value for ¢ consistent with pty. This choice

cannot be on the efficient portion of the bad managers’ mean/variance frontier. ¢
THEOREM 4: There can be no equilibrium strategy set in which pg < pg.

PROOF: If ug < ug and 6g < O, recall from section 3 that C is the closed
interval [y*, y**] and y* < ug < y**. If up is greater than y** then, by Lemma 2, the
bad manager would prefer to lower his choice of mean. He is, of course, able to do so
since managers can always choose any (i, ) combination within the area bounded by
the ¢ axis and their mean/variance frontiers. If lg is less than or equal to y** then, by
Lemma 4, g is between [{ and . By Lemma 2, bad managers should prefer to
lower their choice of mean at least to L from lg.

If ug < ug and oG > op, then C is the open interval (y*, y**) and y* < g <
y**. If ug is less than y* then, by Lemma 2, the bad manager would prefer to lower

his choice of mean. If pug is greater than or equal to y* then, by Lemma 4, pg is

-20-



between [I and . By Lemma 2, bad managers should prefer to choose i rather

than pg. ¢

THEOREM 5: There can be no equilibrium strategy set in which good managers
are on the efficient portion of their mean/variance frontiers while bad managers are on

the inefficient portion of their mean/variance frontiers, |l = L5, and 6 < Og.

PROOF: Since Gg < Gy, both managers’ mean will be inside of C. By Lemma
1, bad managers will choose the lowest feasible level of variance given their choices of
mean. This choice cannot be on the inefficient portion of their mean/variance frontiers.
0

Of the 81 possible combinations in Table I, 24 of them remain as possible
Bayesian-perfect equilibria. On inspection, these combinations fall into three
categories. These categories are:

(A) 6g <Op, Ug > g, no managers on the inefficient portion of their
mean/variance frontiers.

(B) 6g > 6, lg = g, no bad manager on the efficient portion of his
mean/variance frontier.

(C) 6 < OB, Lg > U, no bad (good) managers on the efficient (inefficient)
portion of their mean/variance frontiers.

The equilibrium presented in section 4 is an example of a type (C) equilibrium.
Recall that, in the example of section 4, both managers set the same level of variance
and g > 4g. The good manager’s (i, o) choice is on the efficient portion of his
mean/variance frontier while the bad manager’s choice is on the inefficient portion of
his frontier.

Generating examples of type (A) and type (B) equilibria, in which og # o5, is

difficult to do algebraically. Using a computer algorithm, we are able to demonstrate
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the existence of equilibrium strategy sets of these types. These examples are
presented graphically in Figures 6a and 6b.
As an example of a type (A) equilibrium, consider a situation in which the

mean/variance frontiers of our managers are defined by

(5.1a) Hg = 2(0g - 6G2)

(5.1b) Up =0g — GBz‘

The owner sets C = (.114, .483). Given their mean/variance frontiers, the choices of
variance that will minimize the probability of a realization of Y inside of C are to set
Og = .128 and o = .181. As a result of these choices, [l = .223 and pg = .148. The
probability that a good manager gets rehired is .782 while the probability of a bad
manager getting rehired is .543. The ratio of likelihood functions, L, for the
distributions chosen by the managers is equal to one at the points .114 and .484,
completing the equilibrium. The equilibrium is, indeed, of type (A) since both
managers’ (L, 0) choices are on the efficient portion of their mean/variance frontiers,
the good manager has chosen a lower level of variance than the bad manager, and
UG > Hg-

As an example of a type (B) equilibrium, consider a situation in which the
mean/variance frontiers of our managers are defined by (4.1a) and (4.1b). The owner
chooses € = (-1.36, 1.36). Both managers maximize their probability of being outside
of C by choosing their maximum attainable variance — 0g = 2 and 6g = 1. Both
managers’ mean is zero. The probability that a good manager gets rehired is .496
while the probability of a bad manager getting rehired is .174. The likelihood ratio L is
equal to one at the points —1.36 and 1.36, completing the equilibrium. The equilibrium

1s, indeed, of type (B) since both managers’ (|, ©) choices are on the inefficient
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portion of their mean/variance frontiers, the good manager has chosen a higher level of

variance than the bad manager, and ug = pp.
6. SOME WELFARE IMPLICATIONS OF THE EQUILIBRIUM CONCEPT

It is possible to demonstrate that, assuming the owner’s objective is to
maximize expected Y (EY) over both periods, an increase in the quality of good
managers has an ambiguous effect on the owner’s welfare while an increase in Pg (the
proportion of good managers in the population) unambiguously enhances the owner’s

welfare.

THEOREM 6: An increase in Pg (the proportion of the manager population that

is good) increases EY over both periods.

PROOF: To prove Theorem 6, we must demonstrate that d(EY)/dPg is
positive. Let mg (ng) equal the probability that a good (bad) manager chosen in the
first period will be retained. Let Ny (Lgy) be the mean level of Y produced by a good
(bad) manager in the second period. Let A = Pg(lgo) + (1 — Pg) (iiga), the expected
return of a manager chosen at random during the second period. Then, (6.1) is the

equation for EY over both periods:

(6.1) EY:PG'uG+PGnG'uG2+(I_nG)PG'A"'(l"'PG)uB

+(1"PG)TCB'uBZ"'(l-PG)(l"RB)'A'

Recall from section 3 that the distribution of managers has no effect on equilibrium
when replacement costs equal zero. Hence, dng/dPg and dng/dPy are equal to zero.

As a result, the derivative of (6.1) with respect to Pg is

(6.2) d(EY)/APG = g + TG - Hap + (1 - i) [PG(AA/APG) + A)

— g —Tg * Uy + (1 ~TCB) [(1 — PG) (dA/dPG) - A]

23



To show that the sign of (6.2) is positive, the terms of the equation can be rearranged
and simplified:
d(EY)/dPg = [ug — upl + [(1 — ng) Pg - (dA/dPg)]
(6.3) + [(1 = mg) (1 - Pg) (dA/dPR)] + [(rg - ngo)
—TGA] + [(np - Upy) + TRA].

The first term is positive, since Theorem 4 establishes that jLg > . The second and
third terms are positive, since dA/dPG is equal to pgy — gy and UGy > Hpy by
assumption. Since A is just a weighted average of [igy and [ig), Ry > A > gy, As

a result, the last two expressions are positive and d(EY)/dPg is positive. 0

Although d(EY)/dPg is always positive, there are circumstances in which a
risk-averse owner may be worse off if the proportion of good managers increases. For
example, consider our example of a type (B) equilibrium and a risk-averse owner with
the quadratic utility function U = —(1 - Y)2. Since the owner’s utility function has no
effect on first-period manager choices when there are no replacement costs, managers
make variance choices identical to those in our example — 6 = 2 and og = 1. For both
types of manager, mean return equals zero. As a result, the owner’s first-period
expected utility from good managers is —5 while it is ~2 for bad managers. In this
case, the good manager has identified himself by performing substantially worse than
the bad manager. Since managers of either type choose to maximize the owner’s
expected utility during the second period, good managers will set ¢ approximately to
4 (resulting in an expected utility of —.16) while bad managers set ¢ approximately to
.33 (resulting in an expected utility of —.667). Substituting these values into (5.1) in
place of the first- and second-period mean returns, and using the probabilities of
retention for both manager types provided by the type (B) example, we find that EU =
-2 — 4.28Pg + ‘8(PG)2. The derivative of this expression w.r.t. Pg is —4.28 + 1.6Pg,

which is negative for any conceivable value of Pg. Hence, in this example, an increase
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in the proportion of good managers lowers the owner’s expected utility over both

periods.

THEOREM 7: An increase in the ability of good managers has an ambiguous

effect on EY over both periods.

PROOF: In order to prove Theorem 7, we provide an example in which an
increase in the ability of good managers results in either an increase or a decrease in
EY over both periods depending on the distribution of managers in the population.

Consider the example presented in section 4. In that example, the managers’
mean/variance frontiers were defined as ig = bog — 6g? and {g = O ~ Og2. Assume
that b= 2. Managers of both types will make the choices outlined above in the
example of section 4. By incorporating into (6.1) the resulting values for first- and
second-period mean returns for both types of manager as well as their probabilities of

survival, we find that
(6.4) EY = 1.53Pg + 44.

Now let us assume that there is an increase in the ability of good managers so that
b= 3. By incorporating the resulting values for first- and second-period returns and

probabilities of survival into (6.1), we find that
(6.5) EY =4.17Pg + .08.

Comparing (6.4) and (6.5), we see that EY’s relationship to the value of b
depends critically on the value of Pg. If Pg < .125, then an increase in the ability of
good managers from b = 2 to b = 3 lowers EY over both periods. If Pg > .125, then an
increase in the ability of good managers from b = 2 to b = 3 raises EY over both

periods. ¢
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The intuition behind Theorem 7 is that increases in the ability of good
managers force bad managers into taking ever more desperate gambles. This can
offset all the other benefits of the increase in ability. When the value of b is raised
from two to three, the managers’ choice of ¢ increases from 3/4 to one. As a result,
ig declines from 3/16 to zero while L increases from 15/16 to two. The expected
second-period return for good managers, |Gy, increases from one to 2.25 while pg, is
unchanged. The probability that a good manager will be retained following observation
of first-period results increases from .69 to .84 while the probability of bad managers
retention falls from .31 to .16. If bad managers are far more common than good
managers, the first-period decline in mean return for them far outweighs the first-
period gain in mean return for good managers. Since Agood managers are rare,
increases in their second-period mean return or in the probability that good (bad)
managers are retained (replaced) hardly matter. Replacing a bad manager is

meaningless if his replacement is almost inevitably just as bad a manager.

7. CONCLUSIONS

We have demonstrated that conditions may exist that induce relatively capable
managers, influenced by reputational concerns, to behave in a manner that owners
would regard as overly cautious while the same conditions and concerns induce less
capable managers to behave in a manner that owners would regard as overly
aggressive. We call equilibria in which such behavior is seen endgame equilibria.
Such behavior is likely to take place in a wide variety of real-world managerial
settings and can easily be induced when managers unobservably choose investments
or business strategies that, combined with their level of ability, generate a stochastic
stream of profits, whose realizations are then used to draw inferences regarding

manager ability.
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Given that the owners’ interest is in the maximization of profits, the
equilibrium behavior described in section 3 is costly. Bad managers choose a greater-
than-profit-maximizing level of risk, sacrificing mean profits in order to increase the
standard deviation of profits, while good managers choose a lower-than-profit-
maximizing level of risk. Furthermore, the equilibrium behavior of managers would not
be affected if, rather than profit maximization, owners were interested in maximizing
some reasonable utility function. This is because the point where the ratio of
likelihood functions equals one would remain unchanged regardless of the owners’
utility function. As long as managers choose the same value for 6*, the owners’ best
response, regardless of their utility functions, remains the same.

In this paper, we severely constrained the contract choices that owners could
offer managers. The only type of contract possible lasted a single period and involved
a fixed payment. This allowed us to greatly simplify the model’s presentation and
permitted us to focus on the incongruity between owner and manager preferences.
The design of appropriate contractual mechanisms aimed at mitigating endgame-type
problems, as well as the influence of such behavior on the firms’ decisions regarding
capital structure, remains for future research.

In considering the design of contractual mechanisms aimed at mitigating
endgame behavior, it should be appreciated that, unlike standard contingent
contracting models, owners attempting to mitigate this type of agency effect may
prefer managers to be more, rather than less, risk averse. The reason for this is
obvious. In typical contingent contracting, the efficacy of the contract is limited by the
degree of manager risk aversion. Owners, assumed to be risk neutral, always wish
that managers would be less risk averse and, hence, more willing to accept a share of
a stochastic stream of profits. After all, the greater the degree to which manager
compensation is tied to profits, the better the alignment of manager and owner

preferences.
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In the endgame model, however, bad managers behave too aggressively.
These managers may not be so willing to sacrifice mean profits in order to increase the
variance of profits if they are sharing in those profits. The manager’s desire to raise
mean income will induce more cautious behavior while the desire to avoid risks will
further increase the degree of caution chosen in making decisions regarding the mean
and variance of profits. This is exactly what owners want. Hence, depending on the
frequency of good and bad managers, owners may see manager risk aversion as
facilitating, rather than hindering, the design of contractual mechanisms which will

reduce the incongruity of preferences between owners and managers.
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FOOTNOTES

1If both agents choose the same combinations of mean and variance, the
equilibrium breaks down.

2For a discussion of Bayesian Nash equilibria, see Gibbons (1992).

3This assumption is required in order to assure that the mean/variance

frontiers of good agents strictly dominate bad agents.
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APPENDIX

PROOF OF LEMMA 1: Since Y is normally distributed, the probability of a

realization of Y between y* and y** is given by

(A.1) Q = P[(y** - n)/c] - ®l(y* - wol,

where @ is the standard normal CDF and is a function of the z values associated with

the standard normal distribution. The derivative of Q w.r.t. ¢ is
(A.2) 0Q/36 = (Olyxx) (1 — y**)/o? + (dly*) (y* — u)/o?,

where ¢ is the standard normal PDF evaluated at either y* or y**. Since ¢ and o are
always positive, expression (A.2) is negative when y* < |1 < y**, so the probability of
falling between y* and y** decreases as G increases when y* Spu < y** Ify*<p<
y** 0Q/dc is negative, and a manager should choose the lowest (highest) feasible
value of ¢ should he seek to maximize (minimize) the probability of a realization of Y
between y* and y**.

Recall from section 3 that, if 6g < O, then C is the open interval (y*, y**). In
this case, managers whose choice of mean is between y* and y** will choose the
highest possible value for 6. If 6g > G, then C is the closed interval [y*, y**] and
managers whose choice of mean is between y* and y** will choose the lowest
possible value for 6. If og = 6, then both C and C are open intervals and managers
whose choice of mean is inside of C (t‘w ) will choose the highest (lowest) possible
value for ©.

It can easily be shown that Lemma 1 remains true as y** approaches co and/or

y* approaches ~oo. Proof of this has been omitted. 0
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PROOF OF LEMMA 2: The derivative of Q w.r.t. it is

(A.3) 0Q/op = (¢l(1 — y**)/o]) (-1/0) + (¢[(n - y**)/c]) (1/o).

This expression is only equal to zero at |L = (y* + y**)/2, since that is the only value

of W for which ¢ly=x = ¢ly*. The second derivative of Q w.r.t. |1 is

(A.4) [Olyex] (0 — y**)/o3 — [dly+] (1 ~ y*)/o3.

This expression is negative when evaluated at (L = (y* + y**)/2, so [T is a local
optimum. Since there is no other point where dQ/dt = 0, it is also a global optimum,

which establishes the lemma. ¢

PROOF OF LEMMA 3: Recall from section 3 that, when g # op, there
are two points, y* and y**, where [(ylug(cg*))/I(ylpg(og*)) = 1. Because normal
distributions are symmetric, y* and y** must be equidistant from pg = g and y* <
Lg = Up < y**. Hence, t = (y* + y**)/2 must equal B and pg. Lemma 3 is

illustrated graphically in Figure 5. ¢

PROOF OF LEMMA 4: Since [I = (y* + y**)/2, dji/dug will be negative if
dy*/dug and dy**/dpg are negative. First, consider dy*/dug. Recall that in

equilibrium

(A.5) Ky*lug(og*), ag*) — l(y*lug(og™*), og*) = 0.
Taking the total derivative of (5.5) with respect to y* and pp,

(A.6) [di(y*lug)dy* — dl(y*Ing)/dy*] Ay* = [dl(y*Iug)/dpp] App.

Since ug > y*, di(y*lug)/dup is negative. Referring to Figure 5, we see that
while the slopes of both managers’ probability distribution functions are positive at y*,

the slope is steeper for good managers. Hence, dl(y*Iug)/dy* > di(y*lpug)/dy* and
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dy*/dup is negative. Following similar reasoning, di(y**Iug)/dpg is positive and,
while the slopes of both managers’ probability distribution functions are negative at
y**, the slope is steeper for good managers. Hence, di(y**lug)/dy** <
di(y**iug)/dy** and both terms are negative. As a result, dy**/dug is negative.
Since both dy*/dpg and dy**/djig are negative, dfi/djg is negative. Hence, ng is
between [L and . The proof for the case in which g > o is similar and will not be

shown. ¢

-33.



TABLE I

POSSIBLE EQUILIBRIA
HG > HB UG =HUB HG < UB
G and B on oG > OB possible possible T4
inefficient oG = OB T2 A A
side oG < OB T3 T3 T3
G on efficient GG > OB possible possible A
side and B on oG = OB possible possible A
transition oG < OB possible possible T4
G on inefficient GG > OB T3 T3 T3
side and B on oG = OB T2 A A
efficient side oG <GB T3 T3 T3
B on inefficient oG > OB possible A A
side and G on oG = OB possible A A
transition oG < OB possible A A
B on inefficient oG > OB possible A A
side and G on oG = OB possible A A
efficient side oG < OB possible TS T4
G and B on oG > OB T3 T3 T3
efficient oG = OB T2 A A
side OG < OB possible possible T4
B on efficient GG > OB T3 A A
side and G on oG =0 T2 A A
transition oG < OB possible A A
Gand B 6G > OB possible A A
on oG = OB possible A A
transition OG < OB possible A A



C

>

FIRST
PERIOD

SECOND
PERIOD

RO E e AR NS

GRAPH 1: THE FLOW OF EVENTS

Principal chooses agent at random from pool of available agents

J

Principal selects the critical region C, and the
agent chooses mean and variance of Y,
subject to constraint given by agent type

J

Principal observes first period realization of Y

l

Principal chooses to replace or retain the current agent

N

Agent chosen for second period chooses mean and variance
of Y, subject to constraint given by agent type




STANDARD
DEVIATIONS

L

GRAPH 2: EXAMPLES OF MEAN/VARIANCE FRONTIERS

N

Mean/Variance Frontier
for a Good Agent

MEAN

Mean/Variance Frontier
for a Bad Agent



GRAPHS 3A AND 3B: DETERMINATION OF y* AND y**

Probability

y*

Figure 3a: Sigma is the same
for good and bad agents

N

Probability

Figure 3b: Sigma is greater
for one type of agent

<
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GRAPH 6A: A TYPE "A" EQUILIBRIUM
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