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Berck, P., and Jonathan Lipow—Estimation in a Long-Run Short-Run Model

Often, production decisions must be made under conditions of uncertainty regarding
key variables influencing supply and demand conditions. In this paper, it is
demonstrated that long-run and short-run profit-maximizing decisions under
uncertainty may result in the familiar econometric result (usually ascribed to multi-
collinearity): The estimated betas of current and lagged variables tend to have

opposite signs.



ESTIMATION IN A LONG-RUN SHORT-RUN MODEL

Inputs to a production process, particularly in resource and agricultural problems
where the production process is quite lengthy, are not all chosen at the same time.
Many inputs are chosen well before output prices are known, while others are chosen
with very good knowledge of price. This is, of course, the standard model of the long
and short run. This paper addresses estimation when Muth's (1961) rational
expectations model is expanded to encompass a long run and short run.

The motivation for addressing this issue is derived from the problem of
estimating a reduced-form equation for the price of stumpage (standing trees ready to
be cut). The major demand-shift variable in such a model is housing starts. When
both starts and lagged starts are included in such an equation, the coefficient on
lagged starts is negative while that on starts is positive. Of course, these variables
have much in common, so the phenomenon could be written off to multi-collinearity.
There is, however, another explanation that depends upon a long- and short-run
model. This paper develops a rational expectations long-run short-run model and
shows why a forecast of good news has the opposite effect of the good news itself.

In the case of a forest in the American West, there are time-consuming
bureaucratic hurdles to be overcome before timber may be harvested. In the private
sector in California, one must file a timber harvest plan with the California Department
of Forestry and have it approved. In the public sector, the forest must be cruised
(surveyed for trees) and the stumpage put out to public bid. In all ownerships roads
must be built or improved. Rain, mud, fire danger, and snow also create strong
seasonal constraints for logging. After logging, there is milling and drying, which are
also time consuming. For the better grades of redwood, the air-drying itself can take
about two years. The sum of all of these processes is a one- to three-year time scale

for the provision of lumber. Stumpage owners must commit to cutting their timber well



before the state of the market is known. Other aspects of the process, such as
shipping, are done after the state of the market is known. There is also an opportunity
to cut from previously approved and roaded but uncut areas. The ability (and need) to
act at two separate times creates a long-run short-run model.

To see these consequences, it is best to abstract the situation somewhat.
Consider a resource whose shadow value, in situ, is known and nearly constant from
year to year. The shadow value should be nearly constant because it depends upon
long-term demand conditions—the forecast of which (for instance an average of 1.5
million starts) changes very little with current information. The first input in the
production process is chosen when only the distribution of the demand-shift variable,
housing starts, is known. It is some amalgam of road building, filing plans, and such.
The second input is chosen after the starts are known. It is some amalgam of milling,
drying, and such and cutting from areas that are already permitted and roaded.

If all of the information in this model were known at the beginning, the firms
would know the demand and supply curves for lumber. They would equate them and
find price. Lumber price would be a function of the things that shift those curves—the
price of the two inputs and housing starts. An econometrician would have a simple
job: regress lumber price on the input prices and housing starts.

When the situation is that the information regarding, for the sake of argument,
starts is not available, the firms have a much more difficult procedure. As described
above, they can set supply equal to demand and solve for price for any level of starts.
The uncertainty in the starts then induces an uncertainty in price. The firms must then
make a two-stage decision, given that uncertain, and later certain, price.

The model could be viewed as an expansion the Muth rational expectations
idea to beliefs about a whole parameter vector rather than just a mean. It is also close
in spirit to Wolak's (1991) estimation of utility-cost functions when the firms are

heterogenous and Stavins and Jaffe's (1990) estimation of wetland response when



land is heterogenous. In all of these cases, an underlying heterogeneity parameter—

relating to cost, land quality, or demand-—plays a key role in the estimation.
The Pure Theory

At time t-1, a risk-neutral, expected-profit maximizing, price-taking agent chooses
inputs, X1, to a production process. At time t, the remaining inputs, x7, are chosen and
the output is y. The prices of the inputs are wy, and wp, respectively.

At time t-1, the demand function at time t, Q(p,h), depends upon the realized
price at time t and the unknown value of h (which may as well be housing starts). The
distribution, F, and density, f, of h are known by all agents, and the parameters of the
distribution are J3.

Consider period t first. By t, the value of x; has been chosen. Everything
known about the representative firm is embodied in its restricted profit function,
n(p,wy; X1), the most amount of money it can make when prices are p, wp and x; has
already been chosen. Equilibrium is simply that supply is equal to demand. Letting
Dy be the differential operator, differentiate with respect to x and make use of

Hotelling's lemma,
Dpn(p,w2; x1) = Q(p,h).

For any given value of h, this equation has a solution of the form p= R(ws, x1 h), and
that solution is the reduced form for price, given xj. We assume this equation is
invertible for h = R-1(w», x1 p). Since h is a random variable, p is also a random
variable. Its density, g, is f(R-1) dh/dp. Its distribution is G.

In period t-1, the representative agent maximizes expected profits. Since the
representative agent cannot affect price, G, its distribution, is taken as fixed. The

first-period problem is to choose xj to maximize expected profit:



maxx, ir -w1 x1 dG.

The first-order conditions for a maximum are

0 =] Dx,m - w1 dG(B.p),

and x1* is its solution, the factor demand for x; as a function of the known parameters
of G, B, and factor prices, w.

Plugging x1* into the restricted profit function and subtracting the cost of x1*

gives profits at t:
IT = n(x1*(B,w1,w2),p.w2) - wixy*.
Now setting demand equals to supply gives
DplT = Q(p.h)
with solution
p = R"(w,w2,B.h).

The true reduced-form R" includes the distribution parameter of F as well as the
realized value, h. Leaving out the distribution parameter {3, for example mean and
variance, will bias the regression coefficients whenever B is correlated with the
outcome. In other words, any time an informative prediction can be made about h, and
agents act on that prediction, the prediction must be included in the reduced-form
regression.

The reduced-form has the (at first) peculiar property that changes in beliefs
about h work opposite of changes in h. To be more precise, consider an element of 3,
Bo, that shifts F in the manner of first-degree stochastic dominance. Let e be the unit

vector with a one in the place corresponding to the position of Bg, then: F(B + e Bp) <



F(B). All agents (not only risk-averse agents) agree that an increase in o means

more h.
The logic of the exercise is fairly simple, though the calculus is not. Since

demand has shifted out (ex-hypothesis), the agents will increase xi and, in their
view, the distribution of price will be less favorable. To begin, recall that (at time
t-1) p is distributed as F(R-1,8) and the first-order condition for profit maximization, /

Dyr dF = wy. Totally differentiating the first-order condition with respect to Bg and x;

gives

(J Dxx® dF) dx + [Dy (] Dy dF(R-1(x1 + t,p,w2),B) ] dx
+[Dp,, | Dx dF(R"1B)] dp = O.

The first term is negative because Dyxxm is negative. The second term is
limi-s0 {(1/t) [ Dxm dE(R-1(x1+t,...)...) - § Dy dF(R-1(x1,..)..) ).

Since F is a CDF it is non-decreasing in h=R-!; the properties of the reduced-form R
give dh/dx = 0. Thus, F(R-1(x1 +t..)...) 2 F(R-I(x7 ..)...) which is exactly first-
degree stochastic dominance. Since Dyn is positive, the stochastic dominance
theorem makes the expression with lim negative for all t and the second term of the
total differentiation is non-positive. The third term is positive by the original
assumption on Bg. Thus, dx/ dBo > 0.

With an increase in B, the price distribution shifts up, but only in the sense
that the expected value of the quasi-rents to x; grows. Rearranging the total

derivative and dropping the first term which is negative gives

(D (J - DxwdF(R-1(x1 + tp,w2),B) | dx/dp, < [Dp, | Dy mdF(R-1,B)].



Since the first term is positive, so is the second, which is the same as DB() | Dy 7dG >
0, which was to be shown.

To summarize, increasing h in the sense of FSD increases xj and the
distribution of p in the sense that the new distribution has higher quasi-rents to xj

than the old distribution of p.
A Cobb-Douglas Log-Normal Example

The steps to create the example start with a careful consideration of the problem of a
representative firm. In the second period, the price of output, P, will be known. The
second-period problem for the firm is the ordinary one of maximizing profits, given
whatever first-period choice, x1, was made. After a little algebra, the supply curve of
such a firm in the second period is derived. By setting that supply curve equal to
demand, one can find the distribution of price given x;. As mentioned above, it is the
uncertainty in housing starts that induces the distribution in price. The last step is to
have the firms maximize expected profits, given the distribution of future prices and to
be sure that the choice of x| accomplishes that maximization.

Let the production function for the lumber be Cobb-Douglas with decreasing

returns to scale:
a a
(D y=Axj' x3?

where x is input and y is output.

The restricted profit function, profits given x1, is
(2) T(xy, P) = max,, (PA x;" x32 — Wy X9)

where wj is the factor price for xj and P is output price. Restricted profits are the most

money that can be made given the prices and given that the level of x7 has already
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been chosen. It is well known that the derivative of a restricted profit function with
respect to an input price is the factor demand for that input—the amount of the input to

be purchased to maximize profits. Here the amount of x» is chosen after the price, P,

is known.

On taking the derivative and solving for x3,

1

(3) Xy = K&] (PA)! xl—a’ }arl )
a2

By substituting for x7 in (2), one derives another expression for restricted profits—

this one in terms of the second-period price. So the restricted profit function is

) 1 1 a)

(4) H(XI,P)Z (1 ...az) (_\2_”_2_}'2—1 pl—az A1—32 xll—az
2

Equation (4) gives profits as a function of the uncertain price, P, and the first-period

choice of x1. The first-period choice of x] is made to maximize expected profits;
(5) maxy, EIN(x, P) - wy xy.

Solving the first-order condition gives

ap S L S P

(6) XT = [ﬂ](ﬁjl—az Elpl82 | al™®

a4 an

where s = aj+ay. Substituting back into the restricted profit function and subtracting

the factor cost for X1,



—ady —a9 1

1_~— 1-8 IR
(7) T1(P, EP) = (ﬂ} 5[_"1’_’2.] Al=s | o
ﬂl 212
_211_ 1"‘32
1 1 1-s 1 1-s
(1-a,) P2 g/ plm32 | _y E[pI™®

(When P = EP, this reduces to

1 4 ~az

T(P) = (1 - 5) (PA)1-S [ﬂ}” (—“—’lll's ,

aj dr

the familiar form for the Cobb-Douglas profit function.) The short-run supply curve is

a1
v ] —
oll x*, P 42 I-s
(8) —(——L——):P‘““z E| pl22 K
oP
where
4 T2 g
K = {Wi ]1—8 [:&z.]l-s AT
&y ()

Let demand be log-linear and let the demand shift variable, h, be log-normally

distributed; the short-run equilibrium is given by



ap
(9) GP~Y hP =pl22 | pl-22 K,

where G, ¥, and P are positive constants.

1
Solving this for In P1732

1 1

(10) InPH’Zm———L————— lnG/K+Blnh—a—]1nE pl-a2
ay+y-—-vyas 1-5

1

Since In h ~ N(it, 62), In| PI™2 | is also normal. Let & = ay + vy - y a2, which is

positive because ap < 1.

1 )

1nG/K+{3u—lilnE pli-a2
- 8§

BZ 0.2

(11) mpl 2 ~ N 22

d

1

l1-ay . N .
From the usual formulas, P* 792 g normally distributed with mean

9.



_ , -
In(G/K)+PB——1 InE P~ %
1 (1-s) 52 52
12 EpIm%2 = +
(2 exp 5 252
Solving,
. I
(13) Ep % = {(G JK)V expy/ 8+ 3% 02 /2 52]}1—a2 .
By the same argument, let 8 = &/(1 — ap).
1-s
.1. l~212
(14) EP={(G/K)8 exp[ﬁu/9+[3202/292]
The ex-post reduced form is
(15) InP=8"'(nG/K+BInh)- 1 4 {%ln(G/K)+Bu/8+BZ 02/262}.

Equation (15) is what should be estimated. It differs from the naive specification in
including the parameters ({1, 8) of the distribution of housing starts as well as
including the realized values. From (15) and (14), it is clear that expected price
increases with |, but realized price decreases in W, In h held constant. In (15) h and p
have different signs: a surprise in housing starts—high when u is low—is what gives
a high price. Since the two variables have opposite signs, it accounts for a frequent
observation: Running a regression with current and lagged starts gives opposite

signs to the two variables. The lagged variable in that regression is simply a proxy for

-10-



p. It belongs in the regression, and the opposite signs are expected. There is more
that can be dragged from (15), but we shall desist. When the decision-making agents
do not know the values of variables, the information that they have must be used to
supplement the ordinary variables in a reduced-form equation. Estimation is not so

simple after all.
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