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Whole-Farm Evaluation of No-Till
Profitability in Rice Production using
Mixed Integer Programming
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Tony E. Windham

Rice production in Arkansas vsually involves intensive tillage. No-till rice has been stud-
ied, but the focus has been limited to impacts on yields and per acre returns. This study
uses mixed integer programming to model optimal machinery selection and evaluate
whole-farm profitability of no-till management for rice-soybean farms. Results indicate
that lower machinery ownership expenses combined with lower fuel and labor expenses
do enhance the profitability of no-till management, but the monetary gains appear to be
modest, implying that other incentives may be necessary to entice producers to use the

practice.
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Arkansas is the top rice-producing state in the
United States and accounts or over 48% of
total U.S. rice production (U.S. Department of
Agriculture, Economic Research Service).
Nearly all rice production occurs in the eastern
part of the state in the Mississippi Alluvial
Valley. Surface water quality in this region is
significantly influenced by geography, climate,
and agriculture. The area has little topographic
relief, and soils are predominantly composed
of dense alluvial clay sub-soils that limit water
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infiltration (Kleiss et al.). Surface soils contain
little organic matter and are comprised of silt
and clay particles that are readily transported
by runoff from tilled fields during heavy rain-
fall events (Huitink et al.). Sediment is the pri-
mary pollutant identified for most eastern Ar-
kansas waterways (Arkansas Department of
Environmental Quality, Huitink et al.), and
conservation practices like no-till are com-
monly recommended as remedial mechanisms
(Huitink et al.).

Conventional rice production in Arkansas
involves intensive cultivation. Fields are “cut-
to-grade™ every few years, disked annually in
either late fall or early spring, and ““floated”
(land planed) annually in early spring to en-
sure smooth water movement across the field.
In 2004, conventional tillage (spring tillage
and floating) accounted for 60.7% of all plant-
ed rice acres in Arkansas, while stale seedbed
(fall tillage followed by burn-down herbicides
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prior to planting in the spring) accounted for
over 31.4% of planted rice acres.! True no-till
management (rice planted directly into the
previous crop residue without tillage at any
time) accounted for 9.7% of planted Arkansas
rice acreage in 2004 (Wilson and Branson).

The economics of no-till rice production
have not been fully investigated. Most studies
have been limited to partial budget analyses
based on experimental research plots and have
produced mixed findings regarding profitabil-
ity (Pearce et al.; Smith and Baltazar; Watkins,
Anders, and Windham). Although these stud-
ies account for operating (variable) expenses,
they tend to ignore or inadequately account for
ownership expenses associated with machin-
ery selection. No-till involves significant
changes in the types and quantities of both op-
erating and machinery inputs relative to con-
ventional till management (Epplin et al.). Thus
ownership expenses related to machinery se-
lection should not be excluded when deter-
mining the profitability of no-till management.
The partial budget studies also fail to account
for the impacts of farm size on profitability
since economies of size are ignored.

The composition of the machinery comple-
ment can differ by farm size, and machinery
investment decisions often involve more than
one crop. Thus, economies of size and ma-
chinery selection are best evaluated using a
whole-farm framework. This study uses
Mixed Integer Programming to evaluate the
profitability of no-till relative to conventional
till rice management for farms of varying size
growing both rice and soybeans in a two-year
rotation.

Potential Benefits and Expenses of No-Till

Erosion control is the primary benefit of no-
till as cited in the literature (Fuglie; Hartell;

! Stale seedbed is considered by some to be a con-
servation tillage system in rice production. However,
such a designation may be inappropriate. The amount
of tillage is usually no less for stale seedbed than for
conventional till systems. Only the timing of titlage is
different. Tillage for stale seedbed systems is conduct-
ed in the fall, while tillage for conventional systems is
conducted in early spring.
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Krause and Black; Uri). However, no-till is
also promoted for reasons other than erosion
control, including reduced labor requirements,
reduced fuel expenses, and lower machinery
ownership expenses relative to conventional
tillage (Epplin et al.; Fuglie; Krause and
Black; Parsch et al.). No-till is also promoted
as a method of carbon sequestration in agri-
cultural production (Hartell; West and Post).
Intensive tillage releases soil organic carbon
in gaseous form into the atmosphere when the
soil is turned and thus contributes to the ac-
cumulation of greenhouse gases in the atmo-
sphere. No-till allows soil organic carbon to
be sequestered, with the highest sequestration
rates occurring immediately following conver-
sion from conventional till to no-till manage-
ment (Hartell; West and Post). Soil moisture
conservation is also cited as a benefit of no-
till (Krause and Black). No-till improves the
soil’s capacity to hold water by increasing wa-
ter infiltration and limiting soil drying. In the
case of rice, the additional soil moisture in the
soil profile often eliminates the need to
“flush’ water across the field to ensure proper
seed germination, stand emergence, and her
bicide activation (Anders et al. 2003).

Yield advantages to no-till are ambiguous
based on the literature. Several studies have
evaluated crop yields under ne-till manage-
ment, but the agronomic results of these stud-
ies tend to be crop, soil, and region specific,
and no definitive conclusions can be drawn
(Hartell; Uri). Studies focusing on rice have
found no clear yield advantage for no-till.
Studies in Arkansas and Louisiana indicate
that no-till rice yields are generally lower or
not significantly different from conventional
till rice yields (Anders et al. 2005; Bollich;
Pearce et al.; Smith and Baltazar).

Higher herbicide expenses are often cited
or assumed for no-till management in the lit-
erature (Epplin et al; Fuglie; Krause and
Black; Parsch et al.). No-till systems substitute
herbicides for tillage in weed control, and the
additional cost of herbicide applications can
be substantial (Epplin et al.}. However, Fuglie
examined data on no-till adoption in the Corn-
belt and found no significant difference in her-
bicide expenditures between no-till and con-
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ventional till systems. Fuglie speculates that
reliance on herbicides may lessen once no-till
has been practiced in a field for several years.
Adjustment costs may also be present when
converting from conventional till to no-till
technology. Adjustment costs would include
the cost of replacing current machinery with
new machinery as well as costs associated
with lack of experience with no-till technology
during the initial years of adoption (Krause
and Black). Adjustment costs decline over
time as the producer becomes more familiar
with no-till technology.

As mentioned earlier, no-till systems are
often promoted because of savings in machin-
ery expenses compared with conventional till-
age (Epplin et al.; Fuglie; Krause and Black;
Parsch et al.). Machinery ownership and op-
erating expenses constitute a large portion of
total crop production expenses. Beaton et al.
report that machinery expenses account for
28% to 46% of total crop production expenses
in Kansas. Machinery expenses directly im-
pact farm profitability and must be properly
accounted for when making profitability com-
parisons among production systems like con-
ventional till and no-till (Beaton et al.; Epplin
et al.). The current study uses Mixed Integer
Prograrnming to model optimal machinery se-
lection and evaluate whole-farm profitability
of no-till relative to conventional till rice pro-
duction.

Mixed Integer Programming Studies
Related to Conservation Tillage

Mixed Integer Programming (MIP} involves the
optimization of a linear objective function sub-
ject to linear constraints, nonnegativity condi-
tions, and variables taking on both continuous
and integer values. Mixed Integer Programming
permits the modeling of fixed costs associated
with items purchased in whole units, like trac-
tors or implements. Many studies have used
MIP to evaluate optimal machinery selection de-
cisions at the whole-farm level (Al-Soboh et al_;
Camarena, Gracia, and Sixto; Danok, McCarl,
and White, 1978, 1980; Epplin et al.; Held and
Helmers; Martin et al.; Pfeiffer and Peterson;
Reid and Bradford; Salassi, Breaux, and Na-
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quin). However, only two studies have used MIP
to evaluate the whole-farm economics of con-
servation tillage systems,

Epplin et al. estimated machinery require-
ments and operating inputs for a representative
1,240-acre wheat farm under conventional till,
minimum till, and no-till management. Mixed
Integer Programming was used to obtain least
cost tractor and implement combinations for
each tillage treatment, and the results were
used in the Oklahoma State University Enter-
prise Budget Generator to generate enterprise
budgets for each tillage practice. The authors
found that reduced tillage systems reduced
preharvest labor, fuel, and machinery invest-
ment but increased annual operating capital
and herbicide costs relative to the convention-
al plow system.

Martin et al. used a MIP model to determine
the optimal crop mix and machinery comple-
ment for a representative 4,500-acre farm pro-
ducing cotton, soybeans, corn, and grain sor-
ghum with conventional and reduced tllage
practices. The authors also used the MIP model
to obtain optimal crop mixes and machinery
complemenis for farm sizes ranging from 1,000
to 4,500 acres. The authors included decoupled
government payments in the analysis and tied
eligibility for these payments to a soil conser-
vation compliance parameter. Conventional till-
age systems failed to comply with soil conser-
vation compliance. Thus reduced tillage
systems were selected for each farm size and
profit maximizing crop mix.

The current study differs from the previous
two studies in the following ways. This study
differs from Epplin et al. in that more than one
farm size is modeled to evaluate the econo-
mies of size associated with both conventional
till and no-till rice farms. This study also dif-
fers from Martin et al. in that only one crop
mix is modeled (the typical rice-soybean ro-
tation used in Arkansas rice production) and
decoupled payments are excluded to determine
the relative profitability of no-till to conven-

tional till management without government di-

rect payment assistance or compliance to en-
vironmental regulations.
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The Mixed Integer Programming Model
Specification

Two MIP models were developed for this
study: one for a typical farm growing both rice
and soybeans using conventional tillage (CT)
and one for a farm producing both crops using
no-till management (NT). Both MIP models
maximize returns above operating and own-
ership expenses. The objective functions of the
MIP models are specified as follows:

(1) Maximize Z

= 2 X PuQu = X X IPA,

a=1 b=1
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where a is crop type (rice or soybean); b is
land type (owned or rented); ¢ is production
period (land preparation, planting, irrigation,
and harvest for CT, planting, irrigation, and
harvest for NT); d is operation (disking, float-
ing, drilling, rolling, levee building, etc.); e is
tractor type; f is implement type; and g is well
type (total well or power unit only). P, is the
price per bushel of crop @ on land type b, and
(., 1s the total bushels of crop a produced on
land type b. IP, is the per acre nonmachinery
operating expenses of crop production inputs
(seed, fertilizer, herbicide, custom chemical
application) for crop a; A, is the number of
acres in production of crop a on land type b;
RMM,, is the per acre repairs and mainte-
nance expense associated with tractor/imple-
ment combination ef and crop a; Ay is the
number of crop acres @ on land type & allo-
cated to tractor/implement combination ef dur-
ing operation 4 in production period c; and
RMW,_, is the per acre repair and maintenance
expense associated with well type g and crop
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a. A, is the number of crop acres a on land
type b allocated to well type g. Variable w is
the wage rate for labor (dollars per hour), and
L,, ts the number of hours of hired machine
and trrigation labor allocated to crop a on land
type b. Variable f is the fuel price for diesel
(dollars per gallon); D, is the number of gal-
lons of machine and irrigation diesel fuel al-
located to crop a on land type b; II, is the
annual fixed costs of tractor type e; 7, is the
integer number of type e tractors used; II; is
the annual fixed costs of implement type f;
and I; is the integer number of type f imple-
ments used. I, is the annual fixed costs of
well type g, and W, is the integer number of
type g wells used.

The MIP models were solved subject to
acreage constraints on total cropland available,
owned cropland available, and rented cropland
available. Both models also included operation
sequencing rows (disked acres to floated acres;
floated acres to cultivated acres), a yield bal-
ance row to account for the sale of rice and
soybeans, a nonmachinery input purchase bal-
ance row, rice-soybean rotation requirement
balance rows, tractor, implement, and well an-
nual capacity rows, and labor.and diesel fuel
purchase balance rows.

The tractor and implement annual capacity
rows were formulated as follows:
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where CAP,, is the capacity of annual use
hours of tractor type e available for production
period ¢, CAP; is the capacity of annual use
hours available for implement type f, TH,; is
the per acre tractor use hours for tractorfim-
plement combination ef on crop a, IH,; is the
per acre implement use hours for tractor/im-
plement combination ef on crop a, and A .z
T,, and /; are as defined above. Irrigation well
capacity rows were formulated as follows:

2 2
4 —CAPW,+ 2 X Ay =0
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where CAP, is the number of acres supplied
with water by well type g, and A,, and W,
are as previously defined.

Balance rows to accommodate the purchase
of labor and diesel fuel were formulated as
follows:
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where MLH_is the per acre labor requirement
for tractor/implement combination ef on crop
a, ILH,, is the per acre labor requirement for
well type g on crop a, MDG,,, is the per acre
diesel fuel requirement for tractor/implement
combination ef on crop a, IDG,, is the per acre
diesel fuel requirement for well type g on crop
a, and A, .up Auge La and D, are as previ-
ously defined.

Data and Methods

The complete list of machinery items used in
the study is found in Table 1. Ownership ex-
penses (depreciation, interest, taxes, insurance,
and housing) for tractor and implement items
were calculated based on ASAE machinery
management standards (American Society of
Agricultural Engineers 2003a,b). Depreciation
was estimated for each machinery item based
on 2004 current list prices and ASAE remain-
ing value equations that account for the impact
of machinery age (years of useful life) on im-
plement value and the impacts of both ma-
chinery age and annual usage (hours) on the
value of combines and tractors. The ASAE re-
maining value equations are reduced forms of
functions estimated by Cross and Perry (1995,
1996). Depreciation and interest were annu-
alized for each tractor/implement item using
the capital recovery method and an interest
rate of 5.75%. Additional annual costs for tax-
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es, insurance, and housing were estimated as
1.5% of list price for each tractor/implement
item. Ownership expenses associated with ir-
rigation items (well, pump, gearhead, and
power unit) were based on data reported in
Bryant et al. for a standard well less than 120
feet deep and supplying water for 120 acres.
Irrigation ownership cost data reported in Bry-
ant et al. were adjusted to 2004 dollars using
the Producer Price Index.

Items related to the estimation of machin-
ery operating expenses (repairs and mainte-
nance, fuel, engine oil, and labor) were also
obtained using ASAE standard formulas and
recommendations. Per acre repairs and main-
tenance costs for each machinery item were
estimated based on ASAE standard formulas
that relate repair and maintenance costs to
both accumulated use hours and list price. Per
acre diesel fuel consumption rates for tractors
were estimated based on Nebraska Tractor
Test Data as reported in the ASAE, which cal-
culates fuel consumption as a product of Pow-
er Takeoff (PTO) horsepower. Engine oil costs
were estimated at 15% of per acre fuel costs
as per ASAE recommendations. Per acre ma-
chinery labor hours were estimated for each
tractor/implement combination as a product of
per acre machinery use hours and a labor ad-
justment factor that accounts for additional la-
bor involved in locating, hooking up, adjust-
ing, and transporting machinery. Operating
expense items associated with irrigation (re-
pairs and maintenance, fuel consumption, and
irrigation labor) were taken directly from Bry-
ant et al. for a standard well less than 120 feet
deep and irrigating 120 acres.

Per acre nonmachinery operating expenses
associated with crop inputs (seeds, fertilizer,
pesticide) and custom chemical application
were calculated based on input data from a
long-term rice-based cropping systems study
at Stuttgart, AR. All nonmachinery input pur-
chase expenses were in 2004 dollars. Average
crop yields were obtained from the long-term
cropping systems study for the period 2001~
2004 to represent expected crop yields for a
typical rice-soybean rotation under conven-
tional till and no-till management, Expected
yields were 182 bushels per acre for rice and
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43 bushels per acre for soybeans under con-
ventional till management and 173 bushels per
acre for rice and 44 bushels per acre for soy-
beans under no-till management.

Market prices of $2.58 per bushel for rice
and $5.67 per bushel for soybeans were used
as expected prices in the study. These market
prices correspond to season average Arkansas
prices for the period 2001-2004 (U.S. De-
partment of Agriculture, National Agricultural
Statistics Service 2005d). A four-year average
loan deficiency payment (LDP) of $1.15 per
bushel was added to the expected rice price to
obtain a total cash price of $3.73 per bushel.
A rice drying and hauling expense of $0.42
per bushel and a soybean hauling expense of
$0.15 per bushel were subtracted from ex-
pected crop prices to account for per unit cus-
tom charges.

Total cropland acres for each representative
farm were split into 32% owned and 68% rent-
ed acres based on tenure data from the 2002
Census of Agriculture for Arkansas, Lonoke,
Monroe, and Prairie counties comprising the
Arkansas Grand Prairie region (U.S. Depart-
ment of Agriculture, National Agricultural
Statistics Service 2005a). A typical 25%
straight share arrangement was used to model
land tenure in the study (Parsch and Danforth).
In this arrangement, the landlord receives 25%
of the crop, pays 25% of custom drying ex-
penses, and pays 100% of all belowground ir-
rigation expenses (well, pump, and gearhead).
The farm operator receives 75% of the crop,
pays 75% of custom drying expenses, pays
100% of all aboveground irrigation expenses
(power unit, fuel), and pays 100% of all other
production expenses.

Implement capacities in Equation (3) were
estimated as the potential area covered by each
implement in a growing season multiplied by
per acre use hours. Tractor/combine capacities
in Equation (2) were obtained by distributing
tractor/combine total annual use hours across
each production period. All machinery capac-
ities were developed based on expert opinion
from agronomists and Arkansas Grand Prairie
rice producers. Irrigation well capacities in
Equation (4) were set to 120 acres based on
data from Bryant et al.
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Timing of operations is more critical with
conventional till than with no-till due to the
need to complete land preparation operations
in time for optimal planting. Proper timing of
rice land preparation is particularly important,
since disking is usually done in early spring
when fields have a tendency to be wetter than
normal and the number of days suitable for
fieldwork is more limiting. Many rice produc-
ers include a 4-wheel-drive tractor in their ma-
chinery complement to complete rice disking
in a timely manner. Hours available for rice
disking were constrained in the conventional
till MIP model to allow for the selection of at
least one 4-wheel-drive tractor and one 32-
foot disk for farms operating 1800 or more
cropland acres based on counsel from Arkan-
sas rice producers. Hourly constraints on rice
and soybean land preparation and planting
were then constructed for alternative farm size
ranges based on median April-June fieldwork
day data from the Arkansas Agricultural Sta-
tistics Service (U.S. Department of Agricul-
ture, National Agricultural Statistics Service
2005b) and recommended rice and soybean
planting dates reported in the Arkansas Rice
Production Handbook (University of Arkan-
sas, Cooperative Extension Service 2000) and
the Arkansas Soybean Handbook (University
of Arkansas, Cooperative Extension Service
2001). The land preparation and planting con-
straints imposed on the conventional till MIP
model are presented by crop and farm size
range in Table 2.

Optimal whole-farm net return solutions
were generated for conventional till farms (CT)
and no-till farms (NT) ranging in size from
1,200 to 3,600 acres. A wage rate of $8.12 per
hour was charged for labor based on the wage
reported for Arkansas field workers in 2004
(U.S. Department of Agriculture, National Ag-
ricultural Statistics Service 2005c). A charge of
$1.73 per gallon was used for diesel fuel. This
charge represents the amount paid for off-road
diesel in Arkansas during the latter part of 2004.
The CT and NT MIP models were solved using
the What’s Best! Professional 7.0 Spreadsheet
Solver (Lindo Systems, Inc.).
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Table 3. Optimal Machinery Complements for 2400-Acre Conventional Till and No-Till Farms

Producing Rice and Soybeans

Conventional Till Farm No-Till Farm

Crop Description Machinery Item Number Machinery Item  Number
Rice, soybean Tractor 2wd 105hp® 2 2wd 105hp 2
Rice, soybean Tractor 2wd 190hp 1

Rice, soybean Tractor MFWD 190hp 2 MFWD 190hp 2
Rice, soybean Tractor 4wd 300hp 1

Rice, soybean Combine 240hp combine 2 240hp combine 2
Rice, soybean Disk 26ft disk 1

Rice, soybean Disk 32ft disk 1

Rice, soybean Land float 16ft X 56ft land plane 4

Rice, soybean Triple K 271t Triple-K 1

Rice, soybean Triple K 32ft Triple-K 1

Rice, soybean Grain Drill 30ft grain drill 1 30ft NT grain drill 1
Rice, soybean Ditching Rear-mount ditcher 1 Rear-mount ditcher 1
Rice, soybean Rolling 32ft roller 1 32ft roller 1
Rice, soybean Levee build Levee disk 2 Levee disk 2
Rice Levee build Levee disk/seeder 1 Levee disk/seeder 1
Rice, soybean Butting levees Rear-mount blade 1 Rear-mount blade 1
Rice Butting levees Backhoe 1 Backhoe 1
Rice Combine header 221t rice header 2 22ft rice header 2
Soybean Combine header 251t soybean header 2 251t soybean header 2
Rice, soybean Grain cart 500bu grain buggy 2 500bu grain buggy 2
Rice, soybean Owned weil Wells 7 Wells 7
Rice, soybean Rented well Power units 14 Power units 14

* MFWD is mechanical front-wheel-drive; 2wd is 2-wheel drive; 4wd is 4-wheel drive; hp is horsepower.

Results

Optimal machinery complements for 2,400-
acre CT and NT rice farms are presented in
Table 3. The CT machinery complement has
six tractors and uses two disks, four land
floats, and two triple-K implements (cultiva-
tors) to complete tillage and land preparation
prior to planting. The NT machinery comple-
ment uses no tillage or land preparation equip-
ment and uses two less tractors than the CT
complement. Both machinery complements
look relatively the same during and after plant-
ing and require approximately the same num-
ber and types of implements to complete all
production and harvest operations beyond
planting. Levee construction is the primary
production activity for both farms between
planting and harvest and employs an equal
number of tractors for both farms (two MFWD
190-horsepower tractors; two 2-wheel-drive
105-horsepower tractors).

Optimal machinery complements for 3,600-
acre CT and NT rice farms are presented for
comparison in Table 4. As with the 2,400-acre
farms, the machinery complements for the
3,600-acre CT and NT farms differ prior to
planting in terms of tractors and implements re-
quired for tillage and land preparation but look
relatively the same following planting. The
3,600-acre machinery complements require an
additional grain drill to complete planting op-
erations and replace one 240-horsepower com-
bine with a 275-horsepower combine to com-
plete harvest operations compared with the
2,400-acre farms. The 3,600-acre farms also re-
quire one more MFWD 190-horsepower tractor,
an additional levee disk, and an additional levee
disk with seeder to complete levee construction
and seeding operations compared with the
2,400-acre farms. The 3,600-acre CT comple-
ment requires an additional 2-wheel-drive 150-
horsepower tractor to complete planting opera-
tions and an additional 26ft disk to complete
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Table 4. Optimal Machinery Complements for 3,600-Acre Conventional Till and No-Till
Farms Producing Rice and Soybeans

Conventional Till Farm No-Till Farm

Crop Description Machinery ltem Number Machinery Item  Number
Rice, soybean Tractor 2wd 105hp® 2 2wd 105hp 2
Rice, soybean Tractor 2wd 150hp 1

Rice, soybean Tractor 2wd 190hp 1

Rice, soybean Tractor MFWD 190hp 3 MFWD 190hp 3
Rice, soybean Tractor 4wd 300hp 1

Rice, soybean Combine 240hp combine 1 240hp combine 1
Rice, soybean Combine 275hp combine 1 275hp combine 1
Rice, soybean Disk 26ft disk 2

Rice, soybean Disk 32ft disk 1

Rice, soybean Land float 14ft X 50ft land plane 2

Rice, soybean Land float 16ft X 56ft land plane 3

Rice, soybean Triple K 27t Triple-K 1

Rice, soybean Triple K 32ft Triple-K 1

Rice, soybean Grain drill 24ft grain drill 1 20ft NT grain drill 1
Rice, soybean Grain drill 30ft grain drill 1 30ft NT grain drill 1
Rice, soybean Ditching Rear-mount ditcher 2 Rear-mount ditcher 2
Rice, soybean Rolling 32ft roller 2 32ft roller 2
Rice, soybean Levee build Levee disk 3 Levee disk 3
Rice Levee build Levee disk/seeder 2 Levee disk/seeder 2
Rice, soybean Butting levees Rear-mount blade 1 Rear-mount blade 1
Rice Butting levees Backhoe 1 Backhoe 1
Rice Combine header 22ft rice header 1 22ft rice header 1
Soybean Combine header 25ft soybean header 1 25ft soybean header 1
Rice Combine header 25ft rice header 1 25ft rice header 1
Soybean Combine header 30ft soybean header 1 30ft soybean header 1
Rice, soybean Grain cart 500bu grain buggy 1 500bu grain buggy 1
Rice, soybean Grain cart 700bu grain buggy 1 700bu grain buggy 1
Rice, soybean Owned well Welis i0 Wells 10
Rice, soybean Rented well Power Units 21 Power units 21

s MFWD is mechanical front-wheel-drive; 2wd is 2-wheel drive; 4wd is 4-wheel drive; hp is horsepower.

tillage operations relative to the 2,400-acre CT
complement. The 3,600-acre CT complement
uses eight tractors compared with six for the
2,400-acre CT complement, while the 3,600~
acre NT complement uses five tractors com-
pared with four for the 2,400-acre NT comple-
ment.

Crop sales and operating expenses for
1,200-, 2,400-, and 3,600-acre CT and NT
farms are presented in Table 5. Crop sales are
39 greater for the CT farms compared with
the NT farms due to higher rice yields for CT.
The largest portion of operating expenses for
both CT and NT is devoted to purchases of
production inputs such as seed, fertilizer, and

herbicide. Input purchase expenses account for
57% of total operating expenses for the CT
farms and 64% of total operating expenses for
the NT farms. Input purchase expenses ate
13% larger for the NT farms due to greater
dependence on herbicides to control weeds in
the absence of tillage.

Irrigation and machinery fuel and oil ex-
penses account for the second- and third-larg-
est operating expense items for the CT and NT
farms (Table 5). Fuel and oil expenses for ir-
rigation are two to four times greater than
those for machinery and account for 21-22%
of total whole-farm operating expenses. The
NT farms have slightly lower irrigation fuel
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Figure 1. Whole-Farm Fixed Expenses Per Acre for Farms Producing Rice and Soybeans by

Farm Size and Tillage, 2004 Dollars

and oil expenses than the CT farms because
“flushing” to germinate seed and activate her-
bicides is usually unnecessary on no-till fields.
Not flushing the field amounts to a water sav-
ings of approximately two acre-inches for the
NT farm compared with the CT farm. The NT
farms also have 40—45% smaller machinery
fuel and oil expenses than the CT farms be-
cause no tillage or land preparation operations
are required prior to planting with NT. Ma-
chinery and irrigation labor expenses follow
the same rational as irrigation fuel and oil ex-
penses and are lower for the NT farms than
for the CT farms. The cost savings resulting
from lower fuel and labor are nearly enough
to cover the higher input purchase expenses
associated with NT. Thus total operating ex-
penses for the NT farms are little different
from those for the CT farms. Since whole-
farm operating expenses are nearly equal for
both tillage methods, net returns above oper-
ating expenses are larger for the CT farms.
‘Whole-farm ownership expenses are also
reported by tillage method for 1,200-, 2,400-
and 3,600-acre farms in Table 5. The differ-
ence in ownership expenses between CT and
NT farms increases as farm size increases,
ranging from $11,198 for 1,200-acre opera-

tions to $41,996 for 3,600-acre operations. To-
tal expenses (operating plus ownership) are
lower for the NT farms across farm sizes be-
cause of lower machinery ownership expens-
es. The gap in ownership expenses between
the two tillage methods impacts the profitabii-
ity of NT relative to CT. Whole-farm returns
above total expenses are lower for NT than for
CT at the 1,200-acre farm size due to the small
difference in ownership expenses between the
two tillage methods. However, whole-farm re-
turns are slightly larger for NT at the 2,400-
acre and 3,600-acre farm sizes, where the gap
in ownership expenses is wider between the
two tillage methods.

Whole-farm per acre fixed expenses are
plotted by tillage methed for farm sizes rang-
ing from 1,200 to 3,600 acres in Figure 1. Per
acre fixed expenses for NT are in every case
lower than those for CT due to fewer tractors
and implements related to land preparation in
the machinery complement. These results
agree with those found in the literature (Epplin
et al.; Krause and Black; Parsch et al.). The
gap in per acre fixed expenses between CT
and NT is narrow in the range of 1,200 to
1,600 acres but widens as farm size increases
beyond 1,600 acres. Per acre fixed expenses
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for both tillage methods peak across farm sizes
when high-cost items like additional tractors
or combines must be obtained to complete
production and harvest operations. These
peaks occur in the 2,200 to 2,600 acre range
for NT farms and the 1,800 to 2,600 acre
range for CT farms. Beyond 2,600 acres, per
acre fixed expenses decline as farm size in-
creases for both tillage methods.

Differences in whole-farm net returns be-
tween NT and CT are plotted for farms rang-
ing in size from 1,200 to 3,600 acres in Figure
2, Whole-farm returns are lower for NT than
for CT in the 1,200 to 1,600 acre range. Be-
yond 1,600 acres, whole-farm returns to NT
are slightly greater than those to CT for all
plotted farm sizes except farms operating
3,000 acres, where whole-farm returns to NT
are $1,630 less than those to CT. The relative
profitability of NT to CT is greatest in the

1,800 to 2,400 acre range, where net returns
to NT farms are from $5,495 to $9,999 greater
than those to CT farms. Beyond 2,400 acres,
returns to NT range from —$1,629 for the
3,000 acre farms to +33,067 for the 3,400 acre
farms relative to CT.

Finally, findings from the current study are
compared with those from two other farm-lev-
el economic studies in Table 6. Machinery fuel
expenses, labor hours, and fixed expenses data
reported for the current study in Table 6 ex-
clude items associated with harvest equipment
to allow for direct comparisons across the
three studies. Similar trends emerge across the
three studies despite obvious variations in
farm size and cropping enterprises. All three
studies report savings in machinery fuel, labor,
and fixed expenses for NT compared with CT
management and report higher herbicide costs
for NT relative to CT. Percent differences be-
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Table 6. Findings Across Farm Level Economic Studies Comparing No-Till to Conventional

Till Management

Krause and
Study Black Epplin et al. Present Study
Farm Type Com-Soybean Wheat Rice-Soybean Rice-Soybean Rice—Soybean
Farm size (acres) 600 1,240 1,200 2,400 3,600
Machinery fuel and oil expenses ($/acre)
CT: 5.31 6.39° 11.24¢ 11.56 11.46
NT 1.79 1.19% 4.80 4.15 426
Percent difference —66.2% —81.4% —-57.3% —64.1% ~62.8%
Machinery labor (hours/acre)
CT 1.09 1.25 1.00¢ 093 0.94
NT 0.55 0.25 0.52 0.45 0.46
Percent difference —-50.0% —80.0% —47.7% —51.2% -51.3%
Herbicide expenses ($/acre)
CT 24.55 1.27 21,89 21.89 21.89
NT 31.79 21.06 39.82 390.82 39.82
Percent difference 20.5% 1,558.3% 81.9% 81.9% 81.9%
Machinery fixed expenses ($/acre)
CT 18.15 22.62 40.45¢ 32.48 29.49
NT 11.28 16.5 31.08 18.95 17.83
Percent difference —37.9% —27.1% -23.2% —-41.9% —39.6%
Net returns above variable expenses ($/acre)
CT 194.32 NA¢ 172.32 172.62 172.98
NT 193.25 NA 160.41 161.42 161.80
Percent difference ~0.6% NA —-6.9% -6.5% —6.5%
Net returns above total expenses ($/acre)
CT 176.17 NA 96.82 105.98 116.20
NT 181.97 NA 94.24 108.27 116.68
Percent difference 3.3% NA —2.7% 2.2% 0.4%

aCT is conventional till; NT is no-till.

b Epplin report machinery fuel in gallons per acre rather than dollars per acre.
¢ Machinery fuel and oil expenses, machinery labor, and machinery fixed expenses data from the present study exclude
items associated with harvest equipment to allow for direct comparison with findings from Epplin and from Krause

and Black.
4 NA is not available.

tween CT and NT in the present study tend to
conform more closely with those from Krause
and Black than with those from Epplin, pos-
sibly because corn and rice are both higher
input crops relative to wheat.

Summary and Conclusions

The results of this study indicate that expenses
impact the profitability of no-till relative to
conventional till management in rice produc-
tion. The largest expenses associated with rice

production are input purchases (seeds, fertil-
izer, herbicides), followed in order by machin-
ery ownership expenses, irrigation fuel ex-
penses, machinery fuel expenses, and
machinery labor expenses. Input purchase ex-
penses are larger for no-till management due
to greater herbicide application, but irrigation
and machinery fuel and labor expenses are
smaller for no-till due to fewer machinery op-
erations required for land preparation and
planting and slightty less water applied during
the growing season. Machinery ownership ex-



Watkins et al.: Whole-Farm Profitability of No-Till Rice

penses are also lower for no-till management
due to fewer tractors and implements required
for planting and land preparation. Lower ma-
chinery ownership expenses, lower fuel ex-
penses, and lower labor expenses improve the
profitability of no-till relative to conventional
till management. However, gains in profitabil-
ity appear to be relatively small and alone may
not be enough incentive to promote adoption
of the practice by Arkansas rice producers.

Irrigation accounts for the largest share of
fuel expenses in rice production and is therefore
one of the most important areas to target with
regards to cost savings. No-till reduces total ir-
rigation fuel expenses to some extent relative to
conventional till rice production by removing
the need to flush water onto rice fields to ger-
minate seeds and activate herbicides. Additional
water savings may be gained at the end of the
rice production period when water is drained
from the field prior to harvest. The improved
capacity for soils to hold water on no-till fields
may allow earlier draining, thereby reducing the
total amount of water required for rice produc-
tion in a growing season. More research is re-
quired to determine if further water savings can
be realized by early draining.

Differences in ownership expenses be-
tween conventional and no-till rice farms are
attributed almost exclusively to equipment re-
quired for tillage and planting. Beyond plant-
ing, machinery complements for conventional
till and no-till rice farms look relatively the
same. Levee construction occupies a large
amount of machinery between planting and
harvest for both no-till and conventional till
rice farms. Alternatives to contour levee con-
struction such as straight levees and precision
leveling may in certain instances provide sig-
nificant economic benefits in the form of in-
creased water use efficiency, lower labor and
machinery costs, and lower pumping costs
(Laughlin and Mehrle). More research is need-
ed to appraise the potential economic benefits
of non-contour levee practices in Arkansas
rice production.

Some shortcomings need to be mentioned
to qualify the interpretation of results from this
study. The analysis did not include the impacts
of pecuniary economies of size on farm prof-
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itability. Large operations may receive volume
discounts for purchasing inputs like seed, fer-
tilizer, and pesticides in large quantities (Hall
and LeVeen). Volume discounts for purchas-
ing large quantities of inputs were not includ-
ed in the analysis due to lack of data. In ad-
dition, this study did not include adjustment
costs for no-till management. Krause and
Black argue that adjustment costs associated
with lack of experience and investment in new
machinery may be present during the initial
years of no-till adoption. Adjustment costs for
no-till were assumed negligible in this study
with the implicit assumption that modeled
farms had already converted fully to either
conventional till or no-till management,

The results would suggest that monetary
gains from no-till management in rice produc-

-tion are modest even when adjustment costs

are assumed negligible as in this analysis.
However, there may be additional monetary
benefits to no-till associated with early plant-
ing that are not captured in this study. Farmers
using the practice in Arkansas indicate they
are able to plant earlier with no-till than with
conventional till. Also, profitability may not
be the sole factor impacting adoption of no-
till management. Ryan, Erickson, and De
Young evaluated the reasons behind farmer
adoption of conservation practices like no-till
in the River Raisin watershed of Michigan and
found that intrinsic motivations such as at-
tachment to the land and the desire to con-
serve the land for future generations were
ranked higher among farmers than economic
motivations. Ryan, Erickson, and De Young
also found that government programs play a
strong role in motivating producers to use no-
till management in the River Raisin watershed,
since no-till management is often tied to the
receipt of government subsidies in the water-
shed. No-till management is practiced on near-
ly 10% of all rice acres in Arkansas (Wilson
and Branson). Clearly, more research is re-
quired to determine the motivating factors be-
hind no-till adoption among Arkansas rice
producers currently using the practice.

[Received September 2005; Accepted April 2006.]
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