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The Dynamic Annihilation of a Rational
Competitive Fringe by a Low-cost
Dominant Firm

Abstract

A low-cost dominant firm will drive all competitive fringe firms out of the
market if all firms have rational expectations; however, the dominant firm will
not predate (price below marginal cost). Since a dominant firm will not drive out
fringe firms if they have myopic expectations t it may be in the dominant firm’s
best interests to inform the fringe. The effects of governmental intervention on
the optimal path and welfare are presented.
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The Dynamic Annihilation of a Rational Competitive Fringe
by a Low-Cost Dominant Firm*

1. Introduction

A low-cost dominant firm with no capacity constraint that can precommit to
a price path is in an excellent position to drive constant average cost fringe
firms from the market. Surprisingly, much of the existing literature on dy-
namic models [e.g., Gaskins (1970, 1971)] concludes that the dominant firm
eventually limit prices with a positive number of fringe firms left in the
market. This result in a dynamic model is especially disturbing since in a
static model (the extreme case of a dynamic model where adjustment is instan-
taneous) all fringe firms will be driven from the market. We show that these
earilier results are due to an unreasonable assumption about expectation
formations.

Gaskins and others have assumed that fringe firms use myopic (adaptive)
expectations when determining whether to enter or exit. We show that, when
all of Gaskins' other assumptions are maintained, but firms use rational ex-
pectations, the dynamic model's steady state resembles that of the static
model: All fringe firms are driven out by the time the dominant firm limit
prices.

There are two basic strands of the literature on dynamic models of domi-
nant firms. 1In one strand, the rate of entry of fringe firms depends on the
current price.

Examples of this literature include Gaskins (1970, 1971) and Baron (1973).
In Gaskins' model, if there are initially few fringe firms, a low-cost dominant
firm without a capacity constraint initially sets a high price which the domi-

nant firm gradually lowers until it reaches the limit price so that a constant,
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positive number of fringe firms persist forever. Since price never falls below
the limit price, at no time does exit occur. This result is startling when one
realizes that, in a static model (where entry is instantaneous), such a domi-
nant firm would drive out the fringe and be a monopolist. Gaskins' (1970,
1971) results stem from his assumption that, while the dominant firm has
rational expectations, the fringe firms use myopic expectations in their entry
decisions: They only look at instantaneous profits.

Another strand of the literature uses a two-period and/or two-firm model.
Examples of this type of model include Kamien and Schwartz (1971) and De Bondt
(1976). In these models, period one is the interval until the arrival of one
or more entrants (which is typically uncertain); period two is the remainder
of time. These two-period models by their very nature cannot be used to study
the complex pattern of entry and exit by fringe firms which we investigate
here. Indeed, in Kamien and Schwartz (1971), the price in the preentry period
is a constant.

The reason that the dynamic models of Gaskins and his followers come to a
counterintuitive result is that they assume that fringe firms form expecta-
tions that are not rational. Three papers consider similar problems with
rational expectations. Flaherty (1980) assumes that firms are rational, but
there is a single entrant with a cost functional identical to that of the
existing firm. Judd and Petersen (1986) assume that fringe firms retain
earnings in order to invest, and the dominant firm and the fringe play a Nash
open-loop game. The fringe firms are rational and take the dominant firm's
price as given, while the dominant firm takes the fringe firms' percent of
retained earnings as given. Karp (1987) also has fringe firms determine

optimal investment, but uses a feedback model. Thus, these three papers
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change a number of assumptions in addition to that of rationality. To isolate
the effects of expectations alone, we maintain Gaskins' other assumptions
including the fringe's linear entry equation and the ability of the dominant
firm to commit to a price path.

This new assumption leads to qualitatively and quantitatively different
results from those of previous papers. We begin by presenting a general
dynamic model of a dominant firm with competitive fringe firms entering as a
function of expected profits. Next, we present our rational expectations
(perfect foresight) model.

The dominant firm uses a dynamic, open-loop strategy to maximize its
present value of profits, where it chooses its price path at time zero. That
is, the dominant firm cannot change its nlans after they have been made,
although fringe firms may enter or exit the industry at any time.1

Next, Gaskins' (1970, 1971) model is shown to be a special case of the
general model where expectations are adaptive, and we compare his results to
ours. We show that, even if fringe firms used adaptive exvectations ini-
tially, it may be in the dominant firm's best interest to announce its long-
run policy so that the fringe firms' expectations become rational. That is,
if the fringe's expectation formation is endogenously determined, nonrational
behavior may not persist.

We next consider a more realistic policy where the government restricts
the dominant firm's market share. We conclude the paper with a summary and a

discussion of the policy implications.
2. A general dynamic model

The dominant firm chose a price path over time, p(t), to maximize the

functional
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- =rt
V=g [p(t) - el [£(p) - x(0)°  dt, (1)

where V is the present value of the dominant firm's profit stream, c is the
average cost of production for the dominant firm (constant over time), f(p) is
the market demand curve, x(t) is the level of sales by the competitive fringe
(where each fringe firm produces one unit of output), r is all firms' discount
rate, and [f(p) - x(t)] is the residual demand facing the dominant firm.

This functional is maximized subject to the evolution of the fringe, x(t).

The initial number of fringe firms is given:

x(0) = x,. (2)

Fringe firms then enter or exit the industry based on their expectations about
the present discounted value of their future profits, y(t). Because the cost
of entry depends upon the speed of entry, fringe firms do not enter instanta-
neously. The rate of entry is proportional to the expected present value of

profits:

x(t) = ky(t) (3)

y(t) = [T 7°(s) e—r(s-t) ds, (1)

t

where 1°(t) are expected profits by a fringe firm at time t, k is a

constant response coefficient > 0, and y is the expected present value of a
fringe firm's profits. We follow the common convention used by Gaskins (1970,
1971) and others that k is a constant.2 Because the number of fringe firms

cannot be negative, the dominant firm also faces a state constraint,

x(t) > 0. (5)



3. Rational fringe firms

At least where the demand curve is linear, the solution to the dominant
firm's profit maximization problem is to choose a price path that drives out
all rival firms in finite time and then keeps them out by limit pricing
thereafter. If fringe firms use rational expectations (verfect foresight),
then expected profits, n1°(t), equal actual profits, n(t) = [p(t) - p] for
all t, where p(t) is the actual path of prices and v(> c¢) is the limit price

(the average cost of a fringe firm). As a result, we can rewrite (4) as
y(t) = ST [p(s) - B) & TS gs, (6)

Before we can state the dominant firm's problem as one solvable by the
maximum principle, we must reduce equation (6) to a form that does not include

an integral by differentiating it with respect to time:
y=r1y+PB - p. (7)

The dominant firm which faces rational fringe firms chooses a price path at
time t = 0 so as to maximize (1) subject to (2), (3), (5), and (7). The
necessary conditions for a solution to the problem of maximizing subject to a
state constraint, (5), are given by Jacobson, Lele, and Speyer (1971).

The method of solution begins by forming the usual Hamiltonian,

H=(p-c)(f-x)e t + zky« v(iry + p - p), (8)

where z and v are the costate variables corresponding to the state variables x

and y and adjoining a multiplier, (w), and the state constraint [x(t) > 0],



i
L = H + wx. (9)

As with the usual Lagrangian methods, wx = 0 is necessary for optimality.
The rest of the necessary conditions are (a) the equations of motion, (2), (3),
and (7); (b) the adjoint equations, z = -Lx and v = —Ly; (c) the transvers-
ality conditions, lim zx = lim zx = 1im vy = lim vy = 0; (d) the maximum

tEe t=0 oo t=0
principle; and (e) the necessary conditions at the "jump time," t (which, as
shown below, is finite), at which x becomes zero. For our problem, there are
three jump-time conditions, which we state here, but discuss in more detail

below.

First, because y is not constrained, v is continuous
vitT) = v(r"), (10)

where v(t™) is shorthand for limt+T v(t).

<t

Second, because x is constrained, its multiplier jumps:

z(t7) = z(t") + ¢ (11}

where ¢ > 0.
Lastly, the Hamiltonian is continuous at (1):
H(t") = H(tH). (12)

Our construction of an optimal solution proceeds by (1) describing the
solution when there are competitive firms (the "interior' solution);
(2) describing the solution after these fringe firms are driven from the
market (the '"corner' solution); and, finally, (3) piecing together the two

types of solutions.



3.1 Interior solution

Since H and L are identical when x > 0, the usual Hamiltonian methods
suffice to construct an interior solution. The necessary conditions include

(2), (3), (7), the adjoint equations,

2=(p-c)e Tt (13)

v = -zk - vr, (14)
and the maximum principle which implies
Hy= [(f-x)+ (p-c) £1] e’ Tt - v = 0, - (15)

By appropriate substitutions, the necessary conditions can be reduced to a
single second-order differential equation. First, we solve (15) for v and

differentiate with respect to time to obtain
V= -TV + efrt[Z £'p+ (p - c) f"b - kyl. (16)
We then equate equations (14) and (16) to eliminate v,

- ky - zke'"t
P + (o - TP L17)

and differentiate with respect to time to obtain

-rt . .
7 = -1z - ET (B + [p-cl ) PP+ 2 +0p-cl ) op-ky. (18)
Substituting into (18) for z from (13), for z from (17), and for ; from (7),

we find that
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FL2E s (p- ) £ p+ g (3874 (p - c) £'] (B)°
(19)

- % [2f* + (p-c) '] p+2p-c-p=0.

Where demand is linear, f(p) = a - bp, equation (18) is a second-order,

ordinary differential equation,

p-rp-Kp.KB2c) (20)

whose general solution is

Y+t Y5t -
P=oqe 1 +a, e 2 + E—%-E, (21)
where
)
y1=-]22 r-/r2+4k/bJ
Y2=%‘|:I‘+Vr +4k/b:l.

Equation (21) gives the solution to the dynamic limit-price problem when thers
are fringe firms in the market. It depends upon two unknown parameters,

ay and ay-. The§e parameters are determined from the conditions joining
interior and cofner solutions, where x(t) = 0,

We can show that the corner is reached in finite time since internal solu-
tions that last forever and meet the transversality conditions eventually have
strictly negative values of x. Not all values of oy and a, are compatible with
the transversality conditions. If a, (the constant associated with the positive
root) is positive, price will grow without bound. Since 2 = (p - ¢} e'rt,

z will also grow without bound. Fquations (3) and (6) guarantee that x will

grow without bound, but this violates the transversality condition that



lim zx = 0. A similar argument can be made for a, < 0. Therefore, interior
to0

trajectories that last forever must have a, = 0.

By substituting for p from (21) in (6), integrating to obtain y, substi-
tuting for y in (3), and then integrating again with respect to t, one can
calculate x:

Y1t k(c - p)
x(t) = x5 + a;b - ajbe + =t (22)
Because Yy < 0, eventually the last term on the right-hand side dominates;

and, since ¢ - p < 0, 1im x < 0. Thus, an optimal policy starting with x > 0
trx

will eventually drive x to zero at some time, t. AS a result, interior tra-

jectories that last forever are impossible. Hence, a, may be nonzero. Since

the constraint is eventually reached, we now consider corner solutions.

3.2 Corner solution

When x is zero and remains zero for an open time interval, y will equal 0

and p will equal p. As a result, once x becomes zero on an open interval, it
will remain zero forever.
The proof of the proposition that, if x = 0 on an open interval, p =7,

follows from continuity. Let x be zero from 2 to T, (since x is continuous,

it is zero at 1y and T, as well). Since for 1, < t < T,,

t
x(t) = x(rl) +J ky ds, (23)
1T
1

y is certainly zero. Similarly,

t
y(t) y(Tl) +7 e (p-p) ds, (24)
T

1

so y(t) = 0 implies that p(t)

]

o}
-

4
peb

A

r+

A
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The final claim that once a corner solution is reached it will continue
indefinitely follows from the principle of optimality. If it is optimal to
set p(t) = p when x(t) = y(t) = 0 at t = Ty, it will be optimal to set p = p
at any other time when x(t) = y(t) = 0. Since x(t) = y(t) = 0 for a corner
solution and that implies p(t) = P, it follows that x(t + ) = y(t + &) = 0
for small €, so the corner solution will last indefinitely. Thus, an optimal
program that begins with competitive fringe firms will consist of one interior
segment of finite length followed by a corner segment of infinite length, where

p(t) = p and x(t) = 0.

3.3 Linking the interior and corner solutions

Matching the interior to the corner solution determines Ays Ay and T.
The definition of x, the continuity of the Hamiltonian, and the transversality
condition at time zero give three equations to determine Qs Gy and 1. This
section derives each in turn.

Substituting for p from equation (21) in the definition of x in (2) and

integrating between 0 and t gives our first condition:

Y17 alk Y, T YqT
x(r)=x0+a1b(1-e )+-§W(e - e

Y5T Ak /=y T Y,T
+ azb (i - e 2 >-+ rZ (/e 1 e2 > (25)
Y1\

. k(zr- c) (1. TT

-rt) =0,

where the second equality follows hecause x{t) = 0 by the definition of t.
The continuity of the Hamiltonian implies that p(t) = p. Since H for

given x, y, z, and v has a unique maximum in n, H is said to be regular.
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Therefore, p is continuous at t and p(t) = p [Jacobson, Lele, and Speyer
(1971), p. 272]. This result also can he shown directly using (12). This

second condition, p(t) = p, may be written as

@ e + 0, e = = P. (26)

The last condition comes from noting that v(0) = 0 because y(0) is free and
v(0) y(0) must equal zero by a transversality condition. Since Hp = 0 by the
maximum principle, a - bp(0) - x; - bp(0) + bc = 0. (Notice that p(0) is the
short-run profit maximization price.) Substituting for p(0) from (21) and
rearranging gives

a-x3-b )
1t %= 75

(27)

Equations (25), (26}, and (27) determine Ay, Ay, and T.

3.4 The price path

The price path depends on the parameters of the system. Heuristically, i:
X is relatively small (given the other parameters), the price starts high,

falls below p, and then rises to p. Alternatively, if is relatively

X9
large, the price starts below p and then rises to p.

In either case, as t » 1, p(t) approaches p from below. The price must
he below p for the dominant firm to drive the fringe firms out of the market.
After all fringe firms are driven out, price must remain at p or new entry
would occur.

In the interior, the price path is described by equation (21). The path

depends on oy and ay. From equation (27) and the associated argument,
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ap + a, > 0. Since price must approach p from below at t near t, p(t) =
A Y eYlt'+ ay Y, eY2t 1 0. It follows that a < 0 is impossible. Since
oy and a, cannot be negative, were a, < 0, ay would have to he positive;
but that would imply that a v and as Y, would both be negative which vio-
lates 5 > 0.

Thus, a, > 0, o *a, > 0, and alg- 0. There are two possible price paths
as shown in fig. 1. As the figure shows, the dominant firm never predates in
the sense that its price is always greater than c--its marginal and

average cost. As the figure shows, in all cases price is above (p + c)/2.

Since ﬁf> c, (p+c)2>ec.
4. A comparison of our model and Gaskins' model

In contrast to our model where fringe firms have rational expectations,
Gaskins (1970, 1971) implicitly assumes that firms form their expectations

myopically: Profits tomorrow will be the same as today. His entry condition

is given as:

x(t) = «[p(t) - Bl. (28)

Equation (28) says that the rate of entry of fringe firms is a constant, «,
times a fringe firm's instantaneous profits.

Equation (28) can be derived from (3) and (4) if we assume that the
potential entrants form their expectations myopically: %s) = [p(t) - Bl,

s>t, so

y(t) = () - Pl (20
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Substituting for y from (29) into (3), we obtain Gaskins' (1970, 1971) equation
(28), where x = k/r.
Using the maximum principle, Gaskins (1970, 1971) derives the solution

consisting of the differential equations in Q(t), as given by (28) above, and

. _k(Pp-c)+rlx- flp) - (p-c) £(p)]
p(t) = ZF ) = (p - <) Tp) : L3

Equations (28) and (30) generate a family of trajectories in the (p, x) plane.

The intersection of the p = 0 and x = 0 equations in the (p, x) plane

determines the saddlepoint. Gaskins (1970, 1971) describes how to derive the
unique trajectory meeting all of the necessary conditions.

The optimal paths of our model in (p, x) space and the path in Gaskins'
(1970, 1971) model are shown in fig. 2 for a case in which X is relatively
small.> Notice that the path in Gaskins' (1970, 1971) model starts at a high
price and falls to ﬁ_where it remains, so a large finite number of fringe
firms (50) produce in the limit. By contrast, the path in our model shows the
price starting at a high price, falling below n, and then rising to p where it
remains and x(t) = 0, t > t. Indeed, in this example, our model implies
there are always fewer than 21 fringe firms. The myopic path approaches
within 2 percenf of the steady-state mumber of fringe firms (49 firms) in 106
time periods. At 112 time periods, the rational path reaches the maximum

number of firms. The rational path hits the corner in 298 time periods.
5. Endogenously determined expectations

In many cases, even if the fringe firms have myopic expectations, it is

in the dominant firm's best interests to announce its price path so that the

fringe firms' expectations become rational. For exampnle, given the parameters
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used in fig. 1, when the fringe has myopic expectations, the present value of
its profits is $141 and the present value of the dominant firm's profits is

$7,354. 1In contrast, if the fringe's expectations are rational, the corre-

sponding present values are $212 and $9,472. In other words it is in all
firms' collective best interest for the fringe to use rational expectations.

In this example if the fringe becomes rational, consumer surplus would fall
from $8,870 to $5,715. Thus, total welfare (here defined as consumer surplus
plus combined profits) falls from $16,366 to $15,398. That is, the firms'

gain does not offset consumers' losses.

The models are too complex for us to derive general conditions when it is
in the dominant firm's best interest to correct fringe firm's myopic beliefs,
We have found it difficult to find examples where it is not in the dominant
firm's best interest to reveal its price path to the fringe; however, the

welfare effect can go in either direction.4
6. Market share constraint

The possibility of antitrust action may partially explain why one does not
observe dominant firms driving their competition completely out of business. »
Although neither statute nor case law sets absolute market shares that will
support an antitrust conviction--a survey of recent cases shows findings of
monopoly power were common above a 70 percent share and uncommon below a
50 percent share [Flynn (1981, p. 51)]--a dominant firm may form stronely held
views as to the crucial share at which they would face prosecution. For
example, some years ago, General Motors apparently felt that 60 percent was

the relevant number. In this section we examine the optimal actions of a



-17-

dominant firm subject to a constraint on its market share. The section begins
with a formal statement of the problem as a control constrained optimization
problem, which is fundamentally different from the state constrained problem
of the earlier sections. Four theorems and three lemmas, all of which are
technical in nature, narrow the set of possible optimal paths. Fig. 3 and the
last paragraph of this section summarize these results.

The dominant firm's market share is defined as its sales divided by total
sales:

ssagl—‘fE’b'T?S. (31)
Given the market share and the number of competitors, one can invert the

share formula to express price as a function of x and §:

a(l - §) - x .

plx, §) = LLro8) (32)
Letting 6* > 0 be the maximum share that the dominant firm can attain
without facing an antitrust suit, the control problem for that firm is to
maximize the present discounted value of net revenues (profits):
max [ R dt (33)
8<8%*
subject to
;(=ky,;'=ry+5~p(x, §) s X(O)=X0,
where

R = {[a - bp(x, &) - x] [p(x, 8) - clte"TE,

i}

Since x is certainly bounded away from zero by § being bounded away from ne,
this problem is unlike the original problem. Tt involves only a constraint on

the control, §, and not a constraint on the state variable, x.
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The Hamiltonian for this problem is:

H=R+ zky + v(ry + p - p). (34)

The maximum principle yields (where subscripts denote partial derivatives):

Rp Pg - VPg = 0 and § < &%
or (35)

Rp Ps - ' D < 0 and § = &%,

Since py # 0 [see equation (32)], in the interior the maximum principle gives

the same expression as before. The costate equations are

7 = -Rppx -R . +vop, (36)

v = -zk - rv. (37)

These equations hold for all time. During those times for which § is less
than §#* [Rp = v from equation (25)], the equation for z, (36), simplifies

to give

7 = = R (361)

which is the same equation as for an interior solution in the original problem
which does not have a share constraint.

The solution to this problem consists of two parts. First, in the interior
solution, § < &*, the maximum principle and costate equations are exactly
those of an unconstrained interval for the original problem. Thus, the
equations determining the price path in the interior solution are the sam. as

in the original problem.
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Second, when the share constraint binds (§ = &%), we rewrite the con-

straint as

x = (1 -6*) (a - bp) (38)
and take its time derivative and set it equal to ky [using (3)]:

X = (6% - 1) bp = ky. (39)
Differentiating (39) with respect to time and substituting ry + p - p for y

using (7) and [(s* - 1) bﬁ]/k for y using (39), we obtain the second-order,

ordinary differential equation

B-rb+r}§—£"~_‘—1—‘§—)~5=0- (40)

The solution to this differential equation is

Ult Hzt _
p(t) = 6, e + 8,0 + P, (41)

where

My = %( r -/t -4k/(8* b - b))

u2=%<r+/rz -4k/(8§* b - b)

S~

There are many possibilities for an optimal path, Where § < §%*, optimal

t 20 line (the short-run, profit-maximizing

paths begin on the Rp e’
condition) as interior segments. FEventnally they reach the share constraint
and equilibrium at p, but there are many possible routes. We use a set ¢~

lemmas to restrict the set of possibilities.
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Fig. 3 shows the relation of'E, Rp = 0, and the share constraint in
X - p space so that paths may be drawn in it as projections from (x, p, y)
space into (x, p) space. The figure includes four lines--(A) the constraint
(38); (B) a fringe firm's costs, p; (C) Rp = 0 which is x = a - 2pb + bc;
and (D) the dominant firm's cost, c. The intersection of the constraint and
Rp = 0 is labeled (X, p). Let (x, p)* denote the projection of an optimal
path.

For small enough x, the optimal path follows the constraint:

Leima 1: If a path is optimal and x(t) < X, then (x(t), p(t))*

lies on the share constraint.

Proof: Those points below the share constraint (see fig, 3) are not

feasible, Thus, the optimal path must lie on or above the constraint. For

x(t) < x, points above the share constraint are also above the Rp ert =0
line. Above the Rp ft-o line, increases in price decrease instantaneous

profit. Since increases in price also encourage entry which decreases future
profits, prices above the share constraint lead to less instantaneous and
future revenues and cannot be optimal.

By the same reasoning:

Lemma 2: The interior portion of an optimal path does not 1lie above
the Rp et = 0 1ine at even a single point.

The next two lemmas and the theorem describe the general direction that
interior optimal paths may follow. They show that the direction of travel is

re 0 line.

away from the RP e
LLemma 3: If, along an optimal interior arc above c, there is a time
t for which d/dt (Rp &Yy s negative, then d/dt (RD e't) remains

negative so long as (x, p)* remains interior and above c.
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Proof: Since (x, p)* lies in the interior, from the maximum principle,

Rp = V. (35')

Multiplying both sides of equation (35') by 't and differentiating with

respect to time gives

rt

%(Rpe )= (v+rv)et.

The costate equation (37) requires

(G + rv) = -zK.

Given the hypothesis of the lemma that d/dt (Rp et is negative, these
last two equations show that z is positive. The costate equation for z is
2 = (p - c) e'rt, so z is increasing along (x, p)*. Since z is positive and
increasing, it must be that d/dt (Rp ert) is negative and decreasing which
establishes the lemma.

A geometric interpretation of Lemma 3 uses a vector normal to Rp = 0:

N = (1, 2b) is the normal pointing in direction of decreasing R The

p'
tangent vector to (x, p)#*, (x, ﬁ)* points in the same half space as N--or

l(i, ﬁ)*, N| > 0--when d/dt (Rp ert) is negative.

A final lemma tells us the direction of motion in the x plane:
Lemma 4: When p > p and X < 0, then X remains negative as long
as (x, p)* remains above p. When p < p and x > 0, then x remains
positive as long as (x, p)* remains below p.

Proof: Since x = ky, if X < 0, then y < 0. Further, since }

il

Ty +
5 - p if p is also greater than p, y is negative. Thus, above p, x must
become more negative which establishes the first half of the lemma. The

second assertion is established hy the same steps with the signs reversed.
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Corollary: An optimal path that begins with x < x travels along

the share constraint toward (X, p).

Proof: Lemma 1 shows that the path travels along the share
constraint. Lemma 4 shows that, if the optimal path starts moving away
from x toward lower O X must remain negative forever and p must remain
above p forever. Such a path is impossible since, if p is always above
E; then y must be positive and hence X must be positive.

Theorem 1: Let (x, p)* be an optimal path, and let (X, p)* be its

tangent. When p is above p, |(x, p)*, N | < 0.

Proof: The proof proceeds by contradiction: Assume that at some time
t >0, p>p, and | (x, ﬁ)*, N| > 0. Three steps are needed to establish
the contradiction. First, the optimal path may not remain above p. Second,

if the optimal path passes below p, it will recross the p line; when it re-

rt

crosses, the optimal path will be closer to the RD e = 0 line than when

it first crossed. Third, since there is no limit point on the RD eft =0

rt

line and optimal paths cannot cross Rp e = 0, an optimal path cannot

t

become ever closer to Rp e't = 0 which is the contradiction that estab-

lishes the theorem.
It is impossible for an optimal interior path to remain within the tri-

angle formed by the Rp et

= 0 line, the p = p line, and the constraint.

Lemma 3 shows that once (x, o)* moves in the same half space as N it must move
in the same half space as N as long as it remains in the interior. Therefore,
it must eventually come to the boundary of the triangle. Lemma 2 establishes
that an optimal path does not lie above the Rp et =0 line, so the opti-

mal path must eventually hit one of the other two boundaries.

The optimal path, (x, p)*, could join the constraint, but it would still

have to move in the same direction as N which would mean that it either
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becomes interior again in the same direction as N or crosses Rp e
which is impossible. Fig. 4 shows (x, p}* joining the constraint while moving

in the same half space as N. The vector N is the outward normal to R ert =0,

and it is drawn beginning at the point B, the point where the path (x, p)* be-

gins traveling along the constraint. The diagram also shows a line through B

r

parallel to Rp et = 0 that is orthogonal to N. By hypothesis, the tangent to

(x, p)* has positive inner product with N so it must lie between N and the line

ta 0, and it cannot cross the constraint. If the optimal

parallel to Rp el
path travels along the constraint, x < 0.

Using Lemma 4, when x < 0 for p above p, x cannot become positive. Since

X cannot change signs, the direction of travel while on the constraint cannot
reserve. When x < 0 and (x, ﬁ)* is on the constraint, then |(x, p)*, N| > 0.
By continuity, if (x, p)* again becomes interior, [(x, p)*, N| will still be
positive. Thus, paths that move in the same direction as N and are above p
must move in that half space and may not exit the triangle through either the

¥ o 0 line.

constraint or the Rp e
The only remaining possibility is that such a path eventually has p < p.
Again looking at fig. 4, the only way for a path to have |(x, p), N| > 0
and I(é, ﬁ), (o, -1)] > 0 (so the path crosses the p = p line) is for x > 0.
Since (x, ﬁ)* must drop helow p with x > 0, all that remains is to
describe the behavior of the path below p. Lemma 4 shows that X cannot change
signs while the path remains below p. Since x > 0 and firms only enter when
present value of profits are positive (y > 0), there must be some time wher
instantaneous profits are again positive so that (x, p)* must again cross p.

The value of p is the same (p) at hoth points where the optimal path

crosses the E'Iine, while the value of x is larcer at the second point (since
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Line parallel to

Rpe™=0

Constraint
*

FIGURE 4. An Optimal Path Joining the Constraint
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X was positive at all times in between) so, at the second point, Rp e’ must

be smaller. Thus, Rp ert

't _ 0 line, and

above or below p. Since an optimal path cannot cross the Rp e
there is no limit point on that line, it is not possible for (x, p)* to be
constantly moving in the same half space as N, which establishes the theorem.

Corollary: When (x, p)* is optimal and p < o, then ; < 0.

Proof: By contradiction, assume i > 0. By the argument of the previous
theorem, p must eventually exceed 5} and at that instant ﬁ > 0. Since the
direction of increasing x is the direction of decreasing p along the con-
straint--when p crosses 5;-(x, p)* must be interior. An interior path that
has increasing p and increasing x must have l(i, ﬁ)*, N| > 0 which is im-
possible by the theorem.

Theorem 2: An optimal path does not cross E'from below.

Proof: The proof proceeds by contradiction: Assume that (x, p)* is opti-
mal and crosses the p = E_Iine from below. Lemma 4 and the corrollary show
that along a path crossing p from below, x < 0. Since x < 0 at the time
of crossing, there is some later time during which the fringe firms suffer
losses. This implies that (x, p)* must recross Sl Since the optimal p is tﬂé
sum of two real exponential functions with real coefficients, o can change
signs, at most, once. Recrossing E-requires a change of sign so, after the
recrossing, ﬁ < 0. Given decreasing p and x, (x, p)* must intersect the
constraint. The direction of decreasing p on the constraint, however, is the
direction of increasing x, so (i, 5)* could not be continuous at the point tt
meets the constraint which is a contradiction.

Theorem 3: Once (x, p)* lies on the constraint below », it will con-

tinue on the constraint until it reaches p where it will stop.

must decrease regardless of whether or not the path is
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Proof: The proof proceeds by showing that the alternative--exiting to an
interior arc--requires the tangent to the interior arc to point in a direction

that is not "high" enough to leave the constraint. Along an interior arc, since

v = Rp’
vert = (a - 2bp + bc - x). (42)

Differentiating (42) with respect to time gives

(v + rv) et = -2bp - X,

which can be solved for p/x:

(v et
dp) _D_ X
Xl interior x 2b
Along the constraint,
dp -1

Hf‘constraint BT -7

For an optimal path to leave the constraint, it must climb above it:

ol
Xl interior =~ dX constraint

or
G + TV 1+ 6
e (43)
e X

Since leaving the constraint with x < 0 means moving in the same direction 1s
N, (v + rv) must be negative. Thus, the inequality asserts one positive rumber
is greater than another. Returning to the constraint, however, requires +he

inequality to be reversed, which cannot happen. Since (v + Tv) = -2k and z is
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growing along the path, the left-hand side numerator of equation (43) is grow-
ing in absolute value. The corresponding denominator, e Tt i, is shrinking

in absolute value because

o2}

’gf (e’ Tt %) =‘§f’ Kft e T (p-p)ds| = ce Tt (p - p)>0,
and X was initially negative. Since the numerator grows and the denominator
shrinks (in absolute value) and neither of the parts changes sign, the in-
equality in equation (43) can never be reversed, so an interior path begin-
ning on the constraint below p can never return to the constraint. Thus, as
with all other interior paths traveling in the same half space as N, this path
cannot exist. The conclusion is that, once an optimal path joins the con-
straint below p, it continues along the constraint.

We are now in a position to describe the optimal path that begins in the
interior (not on the constraint). Fig. 3 shows the phase space for this
problem. The arrows indicate what is known about the directions of travel.

't _ 0 line. By theorem (1), it travels in the

The path begins on the Rp e
same direction as -N, as indicated in fig. 3 by the arrow labelled -N. It
could intersect the share constraint and travel down it and go from interior
to corner solution any number of times. Sooner or later, it comes to rest at
the intersection of the share constraint and p or it passes below p. Once
below p, the corollary to theorem (1) shows that x must be decreasing, though
the direction for p is unknown, as shown in fig. 3 by the arrow below p. By
theorem (2), the path cannot cross the p line from below. Thus, the only

remaining posssibility is that of theorem (3): The path will join the

constraint and move up it till it stops at the equilibrium.
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7. Conclusions

When the fringe's expectations are rational and Gaskins' other assumptions
are maintained, a low-cost dominant firm will eventually drive the fringe out
of the industry. In doing so, the dominant firm will not predate (price below
marginal cost).

In most, if not all, cases, it is in the dominant firm's best interest to
reveal its intentions to the fringe--that is, the dominant firm makes it ex-
pectations rational.

It is generally not socially optimal nor in consumers' best interests for
the government to set a minimum number of fringe firms. An antitrust policy
which constrains the dominant firm's market share leads to a price path which
is often qualitatively similar to the unconstrained path: falling and then
rising. In both the constrained and unconstrained cases, the dominant firm
limits prices and drives the fringe out or to the lowest market share

allowable.
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FOOTNOTES

*We thank L. Karp and the participants at workshops at Rice University;
University of California, Berkeley; Hebrew University; Ben Gurion lniversity;
and North Carolina State University for valuable comments. Giannini Founda-
tion Paper No. 855 (for identification purposes only).

lgee Flaherty (1980) for a defense of open-loop rather than closed-loop
models in which firms incur adjustment costs and choose output rates.

This Gaskins' (1970, 1971) assumption, which we maintain, is not
innocuous. The entry condition makes sense where the cost of producing the
necessary capital is quadratic in the rate of capital production (for now, the
marginal cost of making capital is set equal to the present value of the
profits that capital produces); but this equation also makes the decision to
scrap capital stock a, the mirror image of the investment process. The model
also does not allow temporary shutdowns.

3In this example, X%y =1,5=10,c=5,%k=0.01,r=0.1,a= 10,
b = 250. As a result, in the rational expectations model, a; = 7.45,

a, = 1.46873 x 10°1%, 1 = 298.2061, p(0) = 14.95, and y(0) = 43.2479.

2
Gaskins' (1970) myopic expectations model coefficients (see his papers) are
6 = 50 and A = -0.0366025.

Yeor example, if X, =1,p=10, c=3,k=0.01,r=0.1,a=~ 250,
and b = 10, then switching to rational expectations raises the dominant firm's
profits by $3,806, raises the fringe's profits by $119, and lowers consumer

surplus by $1,335 so total welfare rises by $2,589.
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