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Abstract   

Advanced biofuels such as cellulosic ethanol are of great interest for their potential to supply a 
significant portion of U.S. fuel needs plus advantages over corn grain-based ethanol.  The 
sustainability of agriculture-based advanced biofuels depends on how farmers would respond in 
providing biomass feedstock, yet economic behavior by farmers has been under recognized by 
the science community.  Focusing on markets and policy incentives, this research shows that 
farmers are unlikely to convert current grain cropland to grow a dedicated cellulosic biomass 
crop such as switchgrass.  However, the financial incentives to harvest cellulosic biomass 
provided by the 2008 farm bill may stimulate corn production due to demand for corn grain for 
feed and ethanol and corn residues for advanced biofuels.  The prospect of continuous, possibly 
expanding corn production for advanced biofuels raises the same environmental issues as for 
corn grain-based ethanol.  To assure the environmental sustainability of advanced biofuels 
production, environmental policies are needed to complement existing bioenergy initiatives.  
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Market Interactions, Farmer Choices, and  

the Sustainability of Growing Advanced Biofuels 

 

 

1.  Introduction 

While high petroleum prices combined with government supports have stimulated the production 

of corn grain-based ethanol in the U.S., policy interest has been extending to biofuels that can be 

made from a broad range of biomass such as grass, wood or municipal wastes (Somerville 2006, 

Kennedy 2007).  Compared to corn grain-based ethanol, biofuels made from cellulosic biomass 

have many advantages.  For example, cellulosic ethanol has lower greenhouse gas emissions and 

higher energy efficiency than ethanol made from corn grain (Lynd 1996, Farrell et al. 2006, Hill 

et al. 2006).  Being made from a broad range of inedible biomass, cellulosic ethanol does not 

influence food prices as directly as ethanol made from corn grain.  This feature makes cellulosic 

biofuels socially attractive, especially when a) there is concern over the impact of corn for fuel 

on food supply (Runge and Senauer 2007) and b) the U.S. policy of promoting corn-based 

ethanol has been criticized for contributing to the current surge of global food prices.  Other 

considerations motivating cellulosic ethanol include enhanced energy security with reduced 

dependence on foreign petroleum and the insufficiency of corn-based ethanol alone to reach this 

goal (Copulos 2003, Greene et al. 2004, Perlack et al. 2005, Copulos 2007, Osborne 2007). 

 

Despite their potential economic, social, and environmental appeal, cellulosic biofuels have not 

been commercialized.  To stimulate the development of cellulosic biofuels, the U.S. government 
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has promulgated a series of policy initiatives.  For example, the U.S. Energy Independence and 

Security Act of 2007 (H.R. 6) has updated the renewable fuel standard (RFS) that mandates 36 

billion gallons of biofuel supply in 2022 with 16 billion gallons from cellulosic biomass.  More 

recently, the Food, Conservation, and Energy Act of 2008 (H.R. 2419), the so called farm bill, 

introduces further support programs to promote advanced biofuels from biomass crops other than 

corn kernel starch, including a tax credit of $1.01/gallon for cellulosic biofuel refiners (Section 

15321) and a cost-sharing program matching up to $45/ton for collection, harvest, storage, and 

transportation of biomass crops (Section 9011).  With agriculture being the current focus of 

biofuel policy, how farmers would respond to the policy initiatives in providing biofuel 

feedstock becomes an important policy question.   

 

Farmer choices on which feedstock to produce or which crops to grow -- including dedicated 

cellulosic energy crops -- directly affect the development and a sustainable supply of agriculture-

based advanced biofuels and their environmental sustainability.  Their production decisions are 

largely driven by the markets for agricultural products and associated policy incentives.  Farmers 

face many alternatives for producing cellulosic biofuel feedstocks, including crop residues from 

current food crops, such as corn, and dedicated energy crops, such as switchgrass, miscanthus, or 

poplar.  Which feedstock will farmers choose to provide to meet the RFS of 16 billion gallons of 

cellulosic ethanol? How will the economic incentives in the newly enacted farm bill affect 

farmers’ decisions, and thus the supply of cellulosic biomass feedstock? Are any unintended 

consequences likely to flow from the current policy incentives?  All these questions of policy 

importance are linked to the fundamental problem: how farmers’ production decisions will 

respond to market price and policy initiatives.   
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Despite its critical importance, the farmers’ production choice problem has been under-

recognized in the science community.  For example, the Billion Ton report asserted that U.S. 

agricultural and forest lands have the potential to produce over 1.3 billion dry tons of biomass 

per year to displace 30 percent or more of the country’s petroleum consumption by 2030 while 

still continuing to meet food, feed, and export demands (Perlack et al. 2005).  This conclusion is 

derived largely based on technical feasibility rather than economic behavior needed to  supply 

the target level of biomass.  Tillman et al. (2006) show the potential of low-input high-diversity 

(LIHD) mixtures of native grassland perennials to produce biofuels with desirable properties on 

agriculturally degraded land.  Yet, to what extent farmers would adopt the LIHD production 

system to produce desirable biofuels is another question without a clear answer.  While many 

studies and research projects exploring the potential and merit of biofuels continuously derive 

their conclusions based on assumptions that may have no solid economic foundation, an analysis 

to show how farmers would respond to the market and policy incentives in providing feestock 

for cellulosic biofuels is urgently needed.   

 

In this paper, we first develop a graphic exposition of the emerging biofuel economy, 

demonstrating the linkage between energy and agricultural markets.  Within this market setting, 

we show how farmers’ production choices between dedicated cellulosic energy crops and food 

crops (especially crops with residues available for biofuel feedstock) are linked to the potential 

cellulosic feedstock market and associated policy incentives.  To illustrate the farmer’s choice 

problem, we focus on a typical case where farmers can supply cellulosic feedstock by either from 
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switchgrass (a dedicated biomass crop) or from corn (a food crop that produces cellulosic 

residues).  The illustration is built using U.S. market data and production parameters 

representative of the “Corn Belt” states.  This empirical example also allows us to examine the 

potential effect on the agricultural supply of cellulosic feedstock of the biomass crop assistance 

program and the tax credit established by the newly enacted farm bill.  We conclude by 

discussing potential environmental impacts and associated policy implications.  

 

2.  Market Interactions between Energy and Agricultural Products 

The biofuel economy has emerged as markets for petroleum, biofuels and agricultural crops have 

become linked.  Figure 1 shows the emerging correlations among crude oil prices, ethanol 

production, and corn prices.  For example, ethanol production steadily rose from 83 million 

gallons in 1981 to 1.77 billion gallons in 2001 with an average growth rate at approximately 80 

million gallon per year.  Since 2001, average growth rate of ethanol production has dramatically 

increased to approximately 674 million gallons per year over the period of 2001-2007.  The 

expanding production of ethanol since 2001 correlates with the dramatic increase in crude oil 

price over the same period.  As for corn, the average corn price tended to fluctuate around $2.50 

per bushel before 2005, and after that suddenly rose up to over $4.00/bushel in 2007.       

 

The correlations between crude oil price, booming ethanol production and corn price are not just 

random coincidences, but can be attributed to the economic dynamics of markets and their 

integration.  Enabled by the biofuel policy, the rising petroleum prices in the global market 

triggered a chain of market reactions in the U.S. from gasoline to ethanol and to agricultural 
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products like corn and cellulosic biomass crops (Figure 2).  The interaction between the global 

petroleum market and the U.S. market of agricultural products, corn and dedicated cellulosic 

energy crops in particular, can explain the current rising corn price, absence of cellulosic ethanol, 

and farmers’ behavior in expanding corn production.  

 

In the global petroleum market (panel A), the recent expansion in petroleum demand from 

demand curve Dt1 to demand curve Dt2 increases international prices, attracting higher cost 

supplies. The rising petroleum prices induce higher cost gasoline and liquid fuel supplies in the 

U.S. fuel market (panel B), shifting the supply curve from St1 to St2 such that the same level of 

fuel supply is only provided at a higher price.  With higher fuel prices, more costly substitute 

fuels, such as corn grain-based or even cellulosic ethanol, become profitable and can supplement 

the petroleum-based fuel supply.  Consequently, even if the demand for fuels in the U.S. does not 

experience a significant structural change, the higher fuel price makes profitable the production 

of biofuels that were previously attractive only under government subsidies and protection from 

the competition of imported biofuels.  The U.S. ethanol market (panel C) shows the supply of 

ethanol coming mainly from corn grain rather than from cellulosic feedstock, due to the high 

production cost of cellulosic ethanol relative to the current fuel price.    

 

The expanded production of corn grain-based ethanol in turn increases the demand for corn to 

make biofuels in addition to the traditional demand for livestock feed.  In the corn grain market 

(panel D), the biofuel need creates an epochal kink in the demand for corn grain, which drives 

prices higher than they otherwise would be with corn being mainly used as livestock feed.  
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Meanwhile, no market currently exists for cellulosic biomass crops to make advanced ethanol 

(panel F), because the highest price that biorefiners can afford to pay for biofuel feedstock 

remains below what even the most efficient farmer needs to earn in order to convert cropland to 

biomass crops.  The market potential of cellulosic biofuel feedstock, however, could improve if 

new technology were developed that can either reduce the cost of converting cellulosic feedstock 

to advanced biofuels or increase the yield of biofuel feedstock crops.  An advance in the 

conversion technology would allow biorefiners to pay more for feedstock, while a yield increase 

would allow farmers to accept less for biofuel feedstock.     

 

3.  Farmers’ Production Decisions in the Market Economy   

What to grow is the most basic question faced by farmers.  We assume that farmers decide which 

crops to grow on their land to maximize their profits, given market prices of agricultural products 

and their production costs.  A simple yet policy-relevant way to examine farmers’ response in 

growing crops for cellulosic biofuel feedstock is the case where a farmer can use available land 

to grow food or cellulosic biomass crops or a combination of both.  A special and interesting 

case is concerns food crops that also generate crop residues that could serve as cellulosic biofuel 

feedstocks.  Figure 3 illustrates examples of yields per unit land of six crop that produce grain 

and/or cellulosic feedstock products.  Switchgrass, miscanthus and poplar produce only 

cellulosic feedstock.  Soybean produces only food grain.  By contrast, corn and wheat are food 

crops that produce both grain and cellulosic biofuel feedstock products.  For profit-maximizing, 

risk-neutral farmers, the optimal allocation of land between cellulosic biomass and food crops 

depends on relative earnings per unit land devoted to producing each crop. 
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3.1 Model Setup 

Consider a farmer with a total amount of A units of land available for agricultural production. 

Suppose the farmer allocates Afood units of land to food production and the remaining (A – Afood) 

units of land to cellulosic biomass crops.  Assume a fixed output production function such that 

the output per unit land devoted to food production is a with a joint output of residues for 

cellulosic feedstock at an amount c.  Similarly, assume the output per unit land devoted to 

cellulosic biomass crops is b.  Consequently, the total output of food, Qfood, is equal to aAfood; and 

the total output of cellulosic feedstock Qcellulose is equal to b(A – Afood) + cQfood, assuming 

homogeneous cellulosic feedstock from either cellulosic biomass crops or crop residues 

associated with food crop production.  Assume further that not all cellulosic residues from food 

production can be sustainably harvested due to conservation concerns, so we introduce a 

harvesting ratio ε to capture the portion that can be collected sustainably.  Therefore, the total 

output of cellulosic feedstock which farmers can produce based on their land allocation decision 

can be expressed as Qcellulose = b(A-Afood) + cεQfood.       

 

Based on the model above, we can derive the production possibility frontier (PPF) of corn versus 

cellulosic feedstock for the total amount of available land, A, as follows   

AQc
a
b

b
Q

b fooodcellulose =−+ )(11 ε                          (1) 

As demonstrated by Figure 4, more cellulosic feedstock can be produced for given levels of food 

output than otherwise would be possible if no cellulosic residue were available from food 
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production.  As we will see, the potential joint production of both food and cellulosic feedstock 

from food crops has important implication for farmers’ allocation of land between food and 

cellulosic biomass crops.  Note that the straightline PPF is the outcome of the assumption of 

fixed output production of land, which implies separable crop outputs.  The negatively sloped 

PPF also assumes higher yields of cellulosic feedstock from dedicated energy crops as compared 

to those from food crop residues (i.e., b > acε) per unit land.   

 

3.2  Linking Farmers’ Production Decisions to the Markets 

With the above setting for agricultural production, the optimal allocation of land between food 

and cellulosic biomass crops depends on the relative profits per unit land devoted to each crop. 

Those profits, in turn, are determined by market prices and production costs.  Denote Pfood as the 

market price of the food product and Pcellulose as the market price of cellulosic feedstock.  

Suppose the production cost per unit crop output is α for food crops and β for cellulosic biomass 

crops, both of which include harvesting costs.  Further, we assume the harvesting cost per unit 

output of crop residue is γ, which is less than the production cost per unit output, β, of cellulosic 

biomass crops.  Denote h as transportation cost.  Mathematically, the farmer attempts to allocate 

land between both crops so as to maximize profit 

π = PfoodQfood + PcellulosecεQfood – αQfood – (γ + h)cεQfood + PcelluloseQcellulose - βQcellulose (2) 

Collecting items on the right hand side, the profit equation can be reduced to  

π = [Pfood + Pcellulosecε - α – (γ + h)cε]Qfood + (Pcellulose - β)Qcellulose  (3) 
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Without losing generality, assume Pfood > α and Pcellulose > β.  The profit equation (3) represents 

isoprofit curves with different profit levels π, as demonstrated by Figure 5.  The optimal 

allocation of land that maximizes farmers’ profit would be any points on the PPF that are also on 

the isoprofit curve at the highest possible level of profit π (Figure 5).  As a result, the optimal 

allocation of land between growing dedicated energy crops versus food crops would be: 1) all 

land allocated to grow food crops with residues available as byproduct for cellulosic feedstock, if 

[Pfood + Pcellulosecε – α – (γ + h)cε]/(Pcellulose - β) > b/a - cε; 2) all land allocated to grow dedicated 

energy crops, if [Pfood + Pcellulosecε – α – (γ + h)cε]/(Pcellulose - β) < b/a - cε; or 3) any points along 

the PPF as farmers are indifferent on which crop to grow, if [Pfood + Pcellulosecε – α – (γ + 

h)cε]/(Pcellulose - β) = b/a - cε.  Figure 5 illustrates case (1), where all land is allocated to the food 

crop. 

 

The following condition must be satisfied for farmers to grow dedicated energy crops when they 

could also grow food crops:  

[Pfood + Pcellulosecε – α – (γ + h)cε]/(Pcellulose - β) ≤ b/a - cε  (4) 

That is, the slope of the isoprofit curve should be less than or equal to the slope of the PPF.  This 

economic condition can further be reduced as  

Pcellulose ≥ {a/[b – 2acε]}[Pfood – α – (γ + h)cε + (b/a - cε)β], if b/a > 2cε (5) 

Note that if b/a < 2cε, Pcellulose ≤ {a/[b - 2acε]}[Pfood – α – (γ + h)cε + (b/a - cε)β] < 0, which can 

be ruled out because it would contradict with the assumptions Pcellulose > β, Pfood > α, and β > (γ + 

h). Consequently, conditional on the production constraint of both crops (b/a > 2cε), the 
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minimum price acceptable for the farmer to grow dedicated energy crops when he could also 

grow food crops would be 

Pcellulose
farmer = {a/[b – 2acε]}[Pfood – α – (γ + h)cε+(b/a-cε)β] (6) 

 

Further, the farmers’ minimum acceptable price (MinAP) for growing cellulosic biomass crops 

can be decomposed into different cost components as follows 

εγβ
ε

α
ε

β ch
cab

P
cab

P food
farmer

cellulose )(
2/

1)(
2/

1
−−

−
+−

−
+=   (7) 

This equation shows that the market price of cellulosic feedstock needs to cover at least the 

production cost of the dedicated energy crops, the forgone profit associated with food crops, and 

the saving in production cost attributable to crop residues as a byproduct for feedstock compared 

to growing dedicated energy crops.  If we ignore the residues from food crops as a potential 

source of cellulosic feedstock, the corresponding farmers’ MinAP would be artificially low at     

)(
/
1' αβ −+= food

farmer
cellulose P

ab
P  for c = 0  (8) 
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3.3  The Cellulosic Feedstock Market 

The above section establishes the minimum feedstock price acceptable for farmers to grow 

cellulosic biomass crops when they could also grow food crops with a cellulosic crop residue 

byproduct.  Farmers can increase their profits by dedicating their cropland to cellulosic biomass 

crops rather than food crops only if the market price for cellulosic feedstock is greater than the 

MinAP.  However, the market price for cellulosic feedstock also depends on how much 

biorefiners can afford to pay for the cellulosic feedstock.  To biorefiners, the maximum price 

affordable for feedstock is determined by the market prices of biofuels and related biorefinery 

costs.   

 

Suppose the market price of biofuels such as ethanol is Pbiofuels.  This is the price that cellulosic 

biofuels need to compete with in order to be economically viable, especially when other biofuels 

from starch or sugar, such as corn grain-based ethanol, are relatively more cost-competitive and 

have not reached market saturation.  Take corn grain-based ethanol as an example.  The current 

market value for corn grain-based ethanol is largely determined by its energy content relative to 

exogenous crude oil or gasoline prices, government subsidies, and its premium as a fuel additive.  

 

Denote the market price of cellulosic feedstock Pcellulose, the biofuel yield of cellulosic feedstock 

r, capital cost k, and cash operating cost m.  All the costs are measured as costs per unit volume 

of cellulosic biofuels produced.  Biorefiners are willing to produce cellulosic biofuels only if 

Pbiofuel – k – m – Pcellulose/r ≥ 0      (9) 
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That is,  

Pcellulose ≤ r(Pbiofuel – k – m)       (10) 

So biorefiners’ maximum affordable price (MaxAP) for cellulosic feedstock is 

Pcellulose
biorefiner = r(Pbiofuel – k – m)      (11) 

As we can see, an increase in the biofuel price can raise biorefiners’ MaxAP for cellulosic 

feedstock, while a decrease in the production and transportation costs can also boost biorefiners’ 

MaxAP for cellulosic feedstock.  By determining the price and production costs of biofuels, 

respectively, crude oil prices and fuel processing technology can affect the maximum price of 

cellulosic feedstock that biorefiners can offer in the feedstock market. 

 

Figure 6 depicts the relationship between crude oil price and cellulosic feedstock prices.  The 

area above the farmers’ MinAP curve represents all cellulosic feedstock prices for each given 

crude oil price that are acceptable to farmers; while the area below the biorefiners’ MaxAP curve 

represents all cellulosic feedstock prices for each given crude oil price that biorefiners can afford 

to pay.  So to the lower left of the intersection of the two curves, there are no cellulosic feedstock 

prices that are acceptable for both farmers and biorefiners, because there is no overlap between 

the domains defined by farmers’ MinAP and biorefiners’ MaxAP.  To the upper right of the 

intersection of the two curves, the acceptable regions overlap, indicating that cellulosic feedstock 

prices are acceptable to both parties at these (high) crude oil prices. 
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4.  An Empirical Illustration: Switchgrass versus Corn 

To illustrate how farmers’ production decisions affect the supply of cellulosic feedstock, we 

apply the decision model above using market data and production parameters from the literature.  

Specifically, we compare the empirical estimates of both farmers’ MinAP and biorefiners’ 

MaxAP for cellulosic feedstock in order to evaluate to what extent farmers and biorefiners can 

reach an agreement on the feedstock price such that farmers would choose to grow dedicated 

cellulosic energy crops when they could also grow food crops.  We also use this empirical model 

to evaluate the effect on farmers’ production choices of the biomass assistance program and the 

new tax credit in the 2008 farm bill.      

 

4.1  Model Crops 

In this empirical illustration, we focus on switchgrass (Pancium virgatum) as a dedicated 

cellulosic biomass crop to compete with corn (Zea mays).  A 10-year research program 

sponsored by the U.S. Department of Energy has identified switchgrass as a model energy crop 

that not only is compatible with existing farming systems but also could generate annual cash 

flows while providing many environmental benefits (McLaughlin and Kszos 2005).  Life cycle 

analyses also suggest that switchgrass produced for energy could compete favorably both as an 

agricultural crop and as fuel for industry (McLaughlin and Kszos 2005).  In contrast, corn is the 

food crop most widely grown in the U.S. and will continue to be one of the major cash crops that 

farmers would consider growing where possible.  Our quantitative analysis of farmers’ decisions 

on allocating land to grow switchgrass versus corn is relevant to the corn-growing areas (such as 

the “Corn Belt” States) and to the environmental sustainability issues associated with corn.  
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Given that corn residues (stover and cob) could also be harvested as cellulosic feedstock for 

biofuels, farmers’ production choices between switchgrass and corn could have strong 

implications for how the U.S. Renewable Fuel Standards are met with attendant consequences 

for environmental sustainability.  

 

4.2  Empirical Equations and Parameters 

To highlight the linkage between the global petroleum market and both the U.S. domestic 

ethanol market and the cellulosic feedstock market, we can estimate biorefiners’ MaxAP for 

cellulosic feedstock as a function of crude oil prices via the relationship between ethanol and 

crude oil prices.   

 

Based on monthly market data over the period of 2000-2006, Hurt et al. (2006) empirically 

identified the wholesale gasoline prices as a function of crude oil prices  

Pgasoline($/gal) = 0.3064 + 0.03038Pcrude oil($/bbl)        (adjusted R2=0.93) (12) 

The market value of ethanol is composed of its gasoline energy equivalent value, a government 

subsidy, and a premium from ethanol as a fuel additive.  At an additive premium of $0.25/gal, 

we can derive 

Pethanol($/gal) = (2/3)Pgasoline($/gal) + 0.51 + 0.25   (13) 

Substituting (12) into (13) in place of Pgasoline yields 

   Pethanol($/gal) = 0.9643 + 0.02025Pcrude oil ($/bbl)   (14) 
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With the above ethanol price Pethanol, we can derive biorefiners’ MaxAP for cellulosic feedstock 

as a function of crude oil prices and the production costs of cellulosic ethanol  

Pcellulose
biorefiner= r(0.9643 + 0.02025Pcrude oil ($/bbl) – k – m)   (15) 

 

From Equation (6), farmers’ MinAP for switchgrass as the cellulosic feedstock when corn as the 

competing food crop is  

Pcellulose
farmer = {a/[b – 2acε]}[Pcorn – α – (γ + h)cε + (b/a – cε)β] (16) 

Table 1 summarizes the parameters to be used for estimating farmers’ MinAP for cellulosic 

feedstock at the current technology and market conditions.   

 

4.3  Results of the Empirical Model 

Using 2007-08 U.S. market data on crude oil and average corn prices, we calculated the 

maximum price that biorefiners can afford to pay for cellulosic feedstock and the minimum price 

required for farmers to grow switchgrass rather than corn (Table 2).  Over the period of  

January 2007 to February 2008, farmers’ MinAP for growing switchgrass rose from $250/Mg to 

$536/Mg (column 4) as the U.S. average corn price rose from $119.96/Mg to $178.18/Mg.  If we 

ignore the potential profit from corn residues as feedstock, farmers’ MinAP for growing 

switchgrass would drop to $91-147/Mg.  In both cases, farmers’ MinAP were greater than 

biorefiners’ MaxAP for feedstock, although the rising crude oil price from $0.31/L to $0.54/L 

raised biorefiners’ MaxAP from $19/Mg to $63/Mg (column 6).  This price gap illustrates that at 

the current conversion technology and market conditions, switchgrass as a cellulosic biomass 

crop cannot compete with corn for cropland in biofuel production, and cellulosic biofuels cannot 
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be profitably produced from switchgrass grown on cropland that can also grow corn at the 

typical yields and prices used here.      

 

To compete with corn, the single biggest cost that farmers’ MinAP needed to cover for 

producing switchgrass was the profit forgone from selling corn grain (column 3), which 

accounted for over 45% of farmers’ MinAP and increased to 75% when corn price rose to its 

February 2008 maximum.  The overall profit available from growing corn ranged from 

approximately 2.5 to7 times the production cost of switchgrass.  Even if we assume away the 

profit of corn production at low corn prices, the potential profit from corn residues as a 

byproduct for feedstock still remains an important cost component compared to the production 

cost of switchgrass.  In contrast, what biorefiners could afford to pay for cellulosic feedstocks at 

the current conversion technology could not even cover the production cost of switchgrass, 

which was only a small portion of the farmers’ MinAP.  The comparison between the cost 

components of farmers’ MinAP and biorefiners’ MaxAP strongly favor of production of corn 

over switchgrass on cropland.        

 

4.4  The Effect of the 2008 Farm Bill 

The farm bill introduces policy incentives to both biorefiners and farmers that could change the 

calculations above.  This analysis only considered a tax credit of $1.01/gallon for cellulosic 

ethanol refiners (Section 15321)  and an cost-sharing program matching $1 for each $1 per ton 

provided by biorefiners up to $45/ton for collection, harvest, storage, and transportation of 

biomass crops (Section 9011).  With the incentive from the crop assistance program, the 

harvesting and transportation costs were fully covered for corn residues because the total cost 
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was less than $45/ton; for switchgrass, the maximum limit of $45/ton was applied to the total of 

transportation and production costs.  

 

Results show that the cost-sharing program could reduce farmers’ MinAP to $189-475/Mg for 

growing switchgrass instead of corn (column 6).  The tax credit of $1.01/gallon for biorefiners 

could raise biorefiners’ MaxAP from $19-63/Mg to $80-124/Mg for the same range of crude oil 

prices (column 7).  Together, the tax credit coupled with the cost sharing could reduce the gap 

between biorefiners’ MaxAP and farmers’ MinAP for cellulosic feedstock.        

 

Figures 7 and 8 graphically show changes of farmers’ MinAP and biorefiners’ MaxAP with the 

prices of corn and crude oil.  In Figure 7, when crude oil price went up and drove up corn price 

via increased demand for corn to make ethanol from January 2007 to February 2008, both 

farmers’ MinAP and biorefiners’ MaxAP for cellulosic feedstock increased as well.  These 

results can be attributed to the increased profits of growing corn and producing ethanol due to 

increased prices for corn and crude oil.  While a higher price could be offered by biorefiners for 

feedstock, farmers’ MinAP increased more quickly (Figure 8).  Consequently, the gap widened 

between the prices that farmers would accept and what biorefiners could afford to pay for 

cellulosic feedstock.  This wider gap implies that for farmers voluntarily to grow switchgrass 

instead of corn would require dramatic technological advances to reduce the cost of cellulosic 

ethanol production and/or the cost of switchgrass production. 
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5.  Conclusion    

This analysis has important policy implications.  While agriculture holds the promise to supply 

sufficient feedstock for producing advanced biofuels, how farmers would respond to the biofuel 

policy in providing the feedstock becomes critical.  The importance of the issue is justified by its 

relevance to two inversely related policy questions.  If dedicated energy crops compete with food 

crops for farmland, how will devoting more land to energy crops affect food availability and the 

current ecosystem services from food crop land?  On the other hand, if dedicated energy crops 

cannot compete at all with food crops for cropland, where will energy crops be grown?  Is it 

feasible to produce the 998 million dry tons of agricultural biomass estimated by the Billion-Ton 

report using marginal lands that do not currently grow crops?  The answers to these questions 

hinge on how farmers would choose to use their existing cropland, yet how farmers’ decisions 

driven by the markets would affect biofuel supply has received scant attention from the science 

community.  

 

In this study, we showed how the biofuel economy links the global petroleum market to the U.S. 

ethanol market and from there to agricultural markets for corn and dedicated energy crops in 

particular.  We developed an economic model of farmers’ production decisions and how those 

decisions are driven by markets and market integration from petroleum to agricultural products.  

The economic model showed that for cropland currently in food production, the minimum price 

required to compensate farmers for growing dedicated energy crops rather than food crops 

should cover at least three cost components: the production cost of the dedicated energy crops, 

the forgone profit otherwise available by growing food crops, and the forgone profit in providing 

cellulosic feedstock when producing food crops also generates cellulosic feedstock as a 
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byproduct.  The model established that dedicated energy crops could compete with food crops 

only if the maximum price that biorefiners could afford to pay is greater than the minimum price 

that farmers would accept to grow dedicated energy crops rather than food crops.  The 

biorefiners’ maximum affordable price is chiefly affected by the petroleum price, while the 

farmers’ minimum acceptable price is chiefly affected by the price of competing food crops.   

For simplicity, the model assumes profit-maximizing, risk-neutral behavior.  A model that 

included risk averse behavior would likely find a that farmers’ minimum acceptable price of 

cellulosic biomass was higher and biorefiners’ maximum affordable price was lower, 

strengthening the risk-neutral results shown. 

 

An empirical illustration of farmer and biorefiner decisions regarding switchgrass and corn 

production was constructed using parameters from “Corn Belt” States and price data from 2007-

08. While actual U.S. production conditions are heterogeneous, this representative analysis 

reflects typical conditions.  The analysis showed that without policy incentives, farmers were 

unlikely to grow switchgrass for biofuel when they could also grow corn.  Indeed, the empirical 

example demonstrated that the maximum price that biorefiners can afford for cellulosic 

feedstock only covered a portion of the estimated production cost of switchgrass, not beginning 

to cover the 2.5-7 times larger opportunity cost of giving up corn production.  Apart from prices, 

these results are driven by the underlying technologies for producing crops and converting 

biomass to ethanol.   

 

This study contributes a multi-market framework conceptual model and empirical illustration of 

how farmer decisions about whether to produce energy crops are linked to other food and fuel 
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markets.  Our analysis of the farmer’s minimum acceptable payment and biorefiner’s maximum 

affordable payment complement recent technical and budgeting studies of the potential supply of 

cellulosic feedstock (Duffy and Nanhou 2002, Hipple and Duffy 2002, Perlack et al. 2005, 

Khanna et al. 2007).  Our finding on the importance to farmers of opportunity cost from foregone 

crop income is borne out by Jensen et al. (2007), whose survey of Tennessee farmers found that 

higher net farm income per acre reduced farmers’ willingness to convert the land to switchgrass 

as an energy crop.   

      

The 2008 farm bill has introduced new subsidies that could increase farmers’ incentives to 

produce cellulosic biomass crops.  Nonetheless, corn likely remains an economically attractive 

crop because corn grain can be used both as feed and as grain based-ethanol, which implies a 

high opportunity cost of growing other crops, including dedicated energy crops.  Even if 

advanced biofuels become economically competitive within the next 10 to 15 years 

(Stephanopoulos 2007), corn would be one source, because corn residues are a byproduct of 

grain production and federal policy does not discriminate among different cellulosic biofuel 

feedstocks.  Indeed, the empirical example showed that farmers’ MinAP for growing switchgrass 

would 2.5-5 times higher with corn residue economically usable as feedstock to make cellulosic 

biofuels.  This high economic threshold would further discourage growing switchgrass instead of 

corn on cropland.  In future, sustained or rising demand for both grain-based and advanced 

biofuels in addition to feed demand could lead to expanding corn acreage.  Such an expansion 

would raise similar issues to those surrounding corn grain-based ethanol expansion: the food 

versus fuel competition for cropland (Runge and Senauer 2007), the indirect land use effect on 

greenhouse gas emissions and wildlife habitat (Fargione et al. 2008, Searchinger et al. 2008), and 
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other environmental concerns associated with producing corn, such as water pollution and soil 

erosion.  

 

If switchgrass does not readily compete with corn for cropland, then it becomes critical to 

identify where switchgrass or other energy crops could be grown to meet future U.S. fuel needs.  

Producing cellulosic biomass crops may be economically attractive on marginal lands that have 

lower opportunity costs than prime cropland.  Future research is needed to identify those lands 

where growing energy crops might be attractive.  One important consideration, however, is that 

marginal lands are often vulnerable to soil erosion and actively providing ecosystem services 

such as wildlife habitat and carbon sequestration, so the environmental impact of developing 

marginal lands deserves scrutiny.  To ensure that agricultural biofuel production is 

environmentally sustainable, further research is needed into the likely environmental effects of 

land use change and the design of policies that provide incentives for sustained provision of rural 

ecosystem services alongside biofuel incentive policy.  
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Table 1. Parameters for estimating farmers’ and biorefiners’ compensated prices for cellulosic feedstocks  

Parameters Unit1 Value Year Source/justification 

Corn     

yield, a Mg/ha 

(Bushel/acre) 

9.42 

(150) 

2007  Corn yield has been increasing continuously at an annual rate of 

approximately 1.7 bushel/acre on overage (Doberman et al. 2002).  

Since 2004, the U.S. average annual corn yield has reached around 

150 bushel/acre (USDA National Agricultural Statistics Service 

2008).  

Production cost, α $/Mg 

($/bushel) 

96.37 

(2.45) 

2000-2007 Multiple year average of costs, including land rent, of corn 

production in Northern Illinois (Schnitkey and Lattz, 2008).   

Residue yield, c Mg/Mg 

(Mg/bushel) 

0.8457 

(0.0215) 

2002 Graham et al. used a stover mass to grain mass ratio of 1:1, or a dry 

weight harvest index (HI) of 0.5 reported by (Gupta et al. 1979), 

and a dry mass of 21.5 kg per bushel of corn assumed by Wilcke 

and Wyatt (2002).  Sheehan et al.(2004) used a dry mass of 25.4 kg 

per bushel of corn for yield estimates in Iowa. 
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Residue harvesting 

ratio, ε 

N/A 50% 2004, 2007 Sheehan et al. (2004) estimated 70% of the corn residue can be 

collected under continuous corn production and no-tillage, taking 

into account soil erosion restriction in Iowa.  Graham et al. (2007) 

assumed no more than 75% of the stover could be collected due to 

equipment constraints.  

Residue harvesting 

cost, γ 

$/Mg 28.74 2002 Graham et al. (2007) estimated corn stover collection cost as a 

function of stover collected in the field, including $7.17/Mg 

nutrient replacement cost: y($/Mg)=50.65x(Mg/ha)-0.41 for collected 

stover x > 3.3Mg/ha. 

Transportation 

cost, h 

$/l 

($/gal) 

0.04 

(0.14) 

2007 Duffy (2008) estimated transportation to plant cost at $8.65/ton in 

Iowa, which translates into $0.14/gal assuming an ethanol yield of 

60 gal/ton. 
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Switchgrass     

yield, b Mg/ha 

(Mg/acre) 

9.9 

(4) 

2001 Duffy (2008) assumed switchgrass yield of 4 ton/acre in Iowa; 

Perrin et al. (2008) summarized alternative estimates of switchgrass 

yield, including 6.4 Mg DM/ha (2.59 dry ton/acre) based on 

commercial-scale field data from North Dakota to Nebraska, 7.6 

Mg DM/ha (3.08 dry ton/acre) (Duffy and Nanhou 2001), 9.0 Mg 

DM/ha (3.65 dry ton/acre) (Epplin 1996), 11.1 Mg DM/ha (4.50 dry 

ton/acre) (Hallam et al. 2001). 

Production cost, β $/Mg 60 2007 Collins (2007); Perrin et al. (2008) summarized alternative 

estimates of the production cost of switchgrass in 2003 dollars, 

including $63.83/Mg DM, $95.90/Mg DM (Duffy and Nanhou 

2001), $29.35 (Epplin 1996), and $72.52/Mg DM (Hallam et al. 

2001) 

Capital cost, k $/l 

($/gal) 

0.15 

(0.55) 

2007 Collins (2007) 



31 
 

Cash operating 

cost, m 

$/l 

($/gal) 

0.29 

(1.1) 

2007 Collins (2007) 

Ethanol yield, r L/Mg 

(Gal/Mg) 

227 

(60) 

2007 Collins (2007).  Ethanol yield demonstrated at bench scale or higher 

was 255 liters/Mg, or 66.3 gallon/Mg (Sheehan et al. 2004) 

1Unit conversion is based on the following conversion factors: 1 acre = 0.405 hectare, 1 bushel = 0.0254 Mg for corn, and 1 gallon = 

3.7854 liter for liquid in the U.S. 
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Table 2. Farmers’ minimum acceptable prices (MinAP) and biorefiners’ maximum affordable prices (MaxAP) for cellulosic feedstock 

with and without farm bill subsidies.  

Time 1. Crude 

oil 

pricea,  

$/L 

($/bbl)  

2.  Corn 

priceb, 

 $/Mg 

($/bushel)  

3. Forgone 

profit of 

corn grain, 

$/Mg 

4. Farmers’ 

MinAPc, 

$/Mg 

5. Farmers’ 

MinAP with 

corn 

residues 

unavailable, 

$/Mg 

6. Biorefiners’ 

MaxAP,  

$/Mg  

7. Farmers’ 

MinAP 

with farm 

bill 

subsidiesd, 

$/Mg 

8. Farmers’ 

MinAP with  

corn 

residues 

unavailable 

and farm 

bill 

subsidies, 

$/Mg 

9. Biorefiners’ 

MaxAP with 

farm bill 

subsidies,  

$/Mg 

01/07 0.31 

(49.51) 

119.97 

(3.05) 

116.13 249.82 91.15 19.02 188.99 46.15 79.62 

03/07 0.35 

(56.26) 

134.91 

(3.43) 

189.68 323.37 105.40 27.23 262.53 60.40 87.82 
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05/07 0.39 

(61.44) 

137.27 

(3.49) 

201.29 334.98 107.65 33.52 274.15 62.65 94.12 

07/07 0.44 

(70.72) 

130.59 

(3.32) 

168.39 302.08 101.28 44.80 241.24 56.28 105.40 

09/07 0.46 

(72.77) 

129.41 

(3.29) 

162.58 296.27 100.15 47.29 235.44 55.15 107.89 

11/07 0.54 

(85.52) 

134.91 

(3.43) 

189.68 323.37 105.40 62.78 262.53 60.40 123.38 

02/08 0.54 

(85.80) 

178.18 

(4.53) 

402.58 536.27 146.65 63.12 475.44 101.65 123.72 

 
a. Crude oil price is measured by the U.S. refiners’ acquisition cost of imported crude oil in unit of $/barrel, which is from the 

U.S. Energy Information Administration (2008); crude oil prices are converted to SI unit with 1 barrel = 158.99 liter in the 
U.S. for petroleum. 

b. Corn price is from USDA National Agricultural Statistics Service (2008), which is in the unit of $/bushel; corn prices are 
converted to SI unit $/Mg with 1 bushel = 0.0254 Mg. 

c. Farmers’ MinAP for growing switchgrass instead of corn needs to cover production cost of switchgrass, forgone profit from 
corn grain, and forgone profit from corn residues as cellulosic feedstock.  Production cost of switchgrass including 
transportation cost is estimated around $68/Mg dry matter without farm bill subsidy and $24/Mg dry matter with farm bill 
subsidy; forgone profit of corn grain depends on market prices of corn grain, and is calculated in column 4; and forgone profit 
of corn residue is estimated at around $65/Mg dry matter without farm bill subsidy and $49/Mg dry matter with farm bill 
subsidy. 
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d. This analysis only considers a tax credit of $1.01/gallon for cellulosic ethanol refiners (Section 15321)  and an assistance 
program matching $1 for each $1 per ton provided by biorefiners up to $45/ton for costs of collection, harvest, storage, and 
transportation (Section 9011) in the 2007 Farm Bill (H.R. 2419).
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Figure 1.  Trends of composite refiner’s acquisition cost of crude oil, fuel ethanol production, 

and corn price over the period of 1981-2007.
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Figure 2.  Interaction of Commodity Markets: Petroleum, Fuels, Ethanol, Corn, and Cellulosic Biomass Crops. A. global petroleum 
market.  B. U.S. fuel market.  C. U.S. ethanol market.  D. U.S. corn market.  E. U.S. ethanol market.  F. U.S. cellulosic feedstock 
market  

A. Global Petroleum Market  B. US Fuel Market  C. US Ethanol Market 
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Figure 3.  Examples of yields per unit land of main crop product and crop residues usable 

as cellulosic feedstock for crops.  Corn, soybean, and wheat yields are average US yields 

in 2007 from USDA (2008).  Cellulosic feedstock from crops is estimated at a rate of 

0.0215 U.S. ton dry matter/acre for corn (Wilcke and Wyatt 2002) and 69.76 × yield 

(bushel/acre) + 1067.7 pound/acre for wheat (Kerstetter and Lyons 2001).  The yields of 

dedicated energy crops are 3 U.S. ton/acre (2.85 Mg/acre) dry matter for Miscanthus, 8-

22 Mg/ha with an average of 6 Mg/acre for Poplar, and 11.5 U.S. ton/acre (10.9 Mg/acre) 

for Switchgrass (BFIN 2008). 
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Figure 4. Possible combination of cellulose and food production from different allocation 

of available land between the two crops.  The solid line represents the possible 

combinations of cellulose and grain production where residues from food crops (such as 

corn) are available for use as cellulosic feedstocks for advanced biofuels.  In this case, 

even if all land is allocated to producing grain, cellulosic feedstocks are still available 

from residues.      
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Figure 5. Optimal allocation of land between food and cellulosic biomass crops.  

Production possibilities frontier PPF represents all combinations of cellulose and food 

possible from land available for crop production.  π1 , π2, and π3 represent alternative 

profit levels. At the relative prices illustrated, the most profitable point to produce is point 

B, where isoprofit line π2 is tangent to the PPF and all land is devoted to the food crop 

(which produces both food and a cellulosic byproduct). 
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Figure 6.  Demonstration of changes of estimated farmers’ minimum acceptable price and 

biorefiners’ maximum affordable price for cellulosic feedstocks with the market price of 

crude oil.  Farmers can consider converting land to grow cellulosic biomass crops only in 

the region to the upper right of intersection of the two curves, where the biorefiners’ 

maximum affordable price exceeds the farmers’ minimum acceptable price.  

 

 

 

 

 

 

 

 

 

Price, Crude oil 

Price, Cellulose 

Biorefiners’ maximum affordable price 

Farmers’ minimum acceptable price 



41 
 

 

 

 

Figure 7.  Trends in crude oil price, corn price, and empirical estimates of farmers’ 

minimum acceptable price and biorefiners’ maximum affordable price for switchgrass.  

With rising crude oil prices, farmers’ minimum acceptable price increases more quickly 

compared to biorefiners’ maximum affordable price.   
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Figure 8.  Empirical estimates of farmers’ minimum acceptable price and biorefiners’ 

maximum affordable price for switchgrasss at different crude oil prices.  Farmers can 

profitably convert land from growing corn to switchgrass only in the domain where the 

biorefiners’ maximum affordable price exceeds farmers’ minimum acceptable price.  

However, that condition is not met in this simulation of conditions in 2007-08.  


