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Issues and Strategies for Aggregate Supply
Response Estimation for Policy Analyses

Octavio A. Ramirez, Samarendu Mohanty, Carlos E. Carpio,

and Megan Denning

We demonstrate the use of the small-sample econometrics principles and strategies to come
up with reliable yield and acreage models for policy analyses. We focus on demonstrating
the importance of proper representation of systematic and random components of the model
for improving forecasting precision along with more reliable confidence intervals for the
forecasts. A probability distribution function modeling approach, which has been shown
to provide more reliable confidence intervals for the dependent variable forecasts than the
standard models that assume error term: normality, is used to estimate cotton supply re-

sponse in the Southeastern United States.
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Aggregate supply response estimation has
been a key applied research issue for at least
30 years, because supply equations are critical
components of increasingly more sophisticat-
ed U.S. and even world-level partial equilib-
rium trade models that are built, maintained,
and continuously improved for policy analy-
ses. The most common strategy for estimating
the supply response is to build separate econo-
metric models for yield and acreage. In most
applications, these need to be estimated at the
state, regional, or national level, which means
that only relatively small samples are available
for estimation. Although 80 to 100 years of
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data might be available at the highest levels of
aggregation, significant structural changes of-
ten constrain the researcher from using all
available data to build the supply models. In
regional-level analyses like the one exempli-
fied in the present article, it is not uncommon
to have to build yield and acreage response
models on the basis of fewer than 30 obser
vations.

We discuss key issues and exemplify the
use of the small-sample econometrics princi-
ples and strategies that are needed to come up
with reliable yield and acreage models under
such circumstances. These are systematically
presented throughout the following exemplary
applications involving cotton supply response
in the Southeastern United States.

Methods and Procedures

Yield Response Model Specification and
Estimation

Conceptually, aggregate yields depend on
the own crop price, the prices of competing
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crops, input costs, weather conditions during
the growing season (particularly rainfall),
and the number of acres planted. Our econo-
metrics strategy begins by adopting the
probability distribution function (pdf) mod-
eling approach suggested by Ramirez, Misra,
and Field. Specifically, yields at year ¢t are
specified as a linear function of all these var-
iables plus a flexibly distributed error term

(o

(y Y,=XB+ U =B, + B,CP,+ B,SP,
+ B,VCP, + B:RF, + BACI,
+ B,AP, + Bgt + Byr?

+ B + U,

where CP, represents the effective cotton price
received by producers in this region, SP, rep-
resents the effective competing crop prices re-
ceived by producers (regional soybean price
in the case of the southeast), VCP, stands for
variable costs of cotton production, RF, rep-
resents growing season rainfall, ACI, stands
for the number of scutheast cotton acres en-
rolled in crop insurance, AP, represents the
number of cotton acres planted in that region,
and 7 is a time trend.

The effective cotton and soybean price var-
iables were constructed to form a close ap-
proximation of the regional price realizations,
considering the prices received by the produc-
ers participating in government programs as
well as those obtained by nonparticipating
producers, and the total variable costs of cot-
ton production were used as a proxy for input
costs. For details on the effective price cal-
culations and data sources, see Denning (pp.
71-75).

Econometric theory states that these vari-
able approximations (i.e., measurement er-
rors} might result in biased and inconsistent
model parameter estimates and recommends
taking corrective action (e.g., using some
form of instrumental variable procedure) to
at least achieve consistency. This, however,
makes no sense, considering the degrees of
freedom available for estimation in this and
most other supply response applications. In-
stead, we recommend accepting the fact that
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unbiasedness and consistency can not be en-
sured and attempting to estimate a flexible
model that provides for the best possible rep-
resentation of the data at hand. This, of
course, means that the parameter estimates
need to be interpreted with caution, but the
supply and supply distribution forecasts ob-
tained from such a model are likely to be ad-
equate for policy analyses.

The flexible error term (U/,) in Equation
(1) is specified as in Ramirez, Misra, and
Field:

2 U =(Y-XB)
= o,[sinh(8Z) — F(6, p)I/[6G(6, n),

where Z ~ N(p, 1),
(3) o, = By, + Byyt,

4  F(®, p) = E[sinh(62)]
= exp(02/2)sinh(f), and
(5) GO, p) = {lexp(d?) — 1]

X [exp(8)cosh(—26.)
+ 1}/262}172,

where 02 > 0, —% < 0 <, and —» < p <
oo gre distributional parameters; sinh, cosh, and
exp denote the hyperbolic sine and cosine and
the exponential function, respectively; and Z
is an independent normally distributed random
variable. The pdf model above is estimated by
finding the parameter values that maximize the
following concentrated log-likelihood func-
tion:

T

T
(6) LL=2 In(G)— 05X H}

=1 =1
where: G, = [o2/G(8, p)(1 + RH] 12,
H, = [sinh '(R)/6] — p,
R, = {8U/[c¥/G(, p)I'?) + F(®, p),

where sinh~i{x) = In{x + (1 + x2)¥?} is the
inverse hyperbolic sine function, and o?,
F(8, p), and G(6, p) are as defined in Equa-
tions (3), (4), and (5). Ramirez, Misra, and
Field also show that in this probability distri-
bution function model:
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(7 E[Y] = X,B,
Var[¥,] = o} = (B,, + B2,
Skew([Y,] = 5(8, n),
Kurt[¥,] = K(8, p),

where §(0, u) and K(0, p) involve combina-
tions of exponential and hyperbolic sine and
cosine functions of 8 and . In other words,
the mean of the yield distribution shifts
through time in response to changes in the ex-
planatory variables in X,B [i.e., in Equation
(1) above] its standard deviation () is a linear
function of time, and its skewness and kurtosis
are determined by the parameters 6 and . If
6 # 0 and p approaches zero, the ¥, distribu-
tion becomes symmetric, but it remains kur-
totic. Higher absolute values of 6 cause in-
creased kurtosis. If 8 # Qand . > 0, ¥, has a
kurtotic and right-skewed distribution, and p
< 0 results in a kurtotic and left-skewed dis-
tribution. Higher absolute values of p produce
increased skewness.

In practice, under normality, & would ap-
proach zero, and the pdf model above would
collapse into a normal distribution with mean
XB and variance ¢?. Therefore, the null hy-
pothesis of normality versus the alternative of
asymmetric nonnormality is Ho: 8 = p = 0
versus Ha: 6 # 0, p. # 0. The null hypothesis
of symmetric nonnormality versus the alter-
native of asymmetric nonnormality is Ho: 8 =
0, . = 0 versus Ha: 6 # 0, . #= 0. In addition,
the null hypothesis of homoskedasticity can be
tested by Ho: B, versus Ha: B, # 0. More
sophisticated heteroskedasticity alternatives
{(such as ¢, = B;, + Byt + Bt could, of
course, be hypothesized and evaluated. How-
ever, we advise against it because of the small
sample size.

Our proposed yield model estimation
strategy then is to begin with the flexible but
parsimonious pdf model described above
and conduct four critical misspecification
tests to make sure that the parsimony in the
mean and variance specifications is not pre-
venting us from identifying a more suitable
representation for the data-generating pro-
cess. The first is the well-known “RESET3”’
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test for functional form and omitted vari-
ables (Maddala). This test will evaluate if
the simple linear specification for the con-
ditional mean of the yield distribution hy-
pothesized in Equation (1) could likely be
improved on. The second is the also-com-
mon “White” test for heteroskedasticity.
The third is the autocorrelation function
analysis outlined by Bartlett complemented
with the Q-test statistic for the null hypoth-
esis of error term independence proposed by
Box and Pierce. The fourth is the
D’ Agostino-Pearson omnibus nonnormality
test. The last three tests are applied to the
normalized and standardized residuals:

®)  Z = (sinh~{{[0G(®, wU,fa,]
+ F(0, w)]/8) — .

where U, = ¥, — X,B, G(8, n) and F{0, p.) are
as defined above, and all parameters are re-
placed by their estimated values. Note that
Equation (8) is the inverse of Equation (2);
therefore, if the initially assumed error term
specification is correct, Z, should be an inde-
pendently, identically, and normally distribut-
ed random variable and should not reject the
null hypotheses of homoskedasticity, indepen-
dence, and normality. Rejection of the null hy-
pothesis in any of these tests would point to
the possibility of improving the model in that
particular aspect.

If none of the previously discussed hypoth-
eses is rejected, one may proceed to the final
stage of model specification, which involves
identifying and excluding (i.e., setting to zero)
all statistically insignificant parameters. Be-
cause standard maximum-likelihood algo-
rithms only provide potentially imprecise nu-
merical approximations of the elements of the
Hessian matrix used to compute standard error
estimates, we recommend that parameter sig-
nificance be evaluated through the more reli-
able likelihood ratio tests. Also, because the
small sample size would tend to increase the
size of the type-2 error (i.e., the probability of
rejecting Ho when it is, in fact, false) at any
given level of significance (o), we recommmend
to use a liberal a of 0.20.

As a final check, because of the possibility
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of high correlations between some of the pa-
rameter estimators, we suggest conducting a
joint likelihood ratio test to verify the statis-
tical insignificance of all excluded parameters
as a set and to again perform the four previ-
ously discussed misspecification tests on the
final model residuals.

Acreage Response Model Specification and
Estimation

The only difference between the initial speci-
fication of the yield and the acreage response
models is in the conditional mean and variance
functions [i.e., Equations (1) and (3)], specif-
ically:

(9) A, = B, + B,RC, + B,RS,
+ B,RVCR, + B,EDP,
+ B,DUM,, + B,DUMj;
+ B,DUM,, + U,

(10) o, = B,DUM,; + B,.DUM,,

+ B,,DUM,, + B,DUM,,,

where RC, and RS, represent measures of the
expected net returns to upland cotton and soy-
bean, respectively; RVCR, is a measure of the
perceived variability of upland cotton net re-
turns relative to soybean net returns; EDP, is
the effective diversion payment; and DUM,;,
DUM,,, DUMy;, and DUM,, represent dummy
variables for 1965-1973, 19741985, 1986~
1996, and 19972001, respectively. For details
about the calculation of the measures of ex-
pected net returns and of the perceived relative
variability of net returns and a discussion of
data sources, see Denning (pp. 76—78).

As Equation (1), Equation (9) is an ad hoc
approximation of the unknown process relat-
ing explanatory variables to the conditional
mean of the probability distribution of the
number of cotton acres planted in the south-
east during a particular year. In addition, al-
though the set of variables included in this
equation can be justified on the basis of eco-
nomic theory (Denning, pp. 57-66), three of
them are unobservable perceptions or expec-
tations and have to be approximated.
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Because of the small sample size, we rec-
ommend against evaluating too many alter-
native approximation methods, because one of
them would be likely to provide seemingly
outstanding results by mere chance. Instead,
we suggest thinking about the expectation
generating mechanisms thoroughly, from both
a theoretical and a practical perspective, and
coming up with one or two sensible methods
to approximate these variables. In the present
study, we opted for the procedure described in
Denning (pp. 76-77). Also because of these
unavoidable approximations, we again needed
to set aside biasedness and inconsistency con-
cerns, as well as the goal of estimating a
“true” structural relation, and aim instead to
estimate a flexible model that provides for a
good representation of the basic characteristics
of the unknown statistical process generating
the data.

In regards to Equation (10), note that the
typical zero-one dummy variable arrangement
would result in DUM,; and DUM;; encom-
passing only six and five observations, respec-
tively. This is obviously an insufficient
amount of data to reliably estimate variability
and, as illustrated later, can lead to economet-
rically unacceptable results. In addition, one
could argue that the transition to an alternative
“regime” triggered by a policy shift may take
several years.

To address those two issues, in the present
article, except for DUM,;, we use a ‘‘termi-
nal” dummy variable arrangement of
[1 0.75 0.5 0.25 0] instead of [1 1 0 O O],
and, except for DUM,;, we use an “‘initial”
arrangement of [0 0.25 0.5 0.75 1] instead
of [0 0 1 1 1]. This provides for smoother
shifts across policy periods and, as illustrated
later, the linkages established between the pa-
rameters corresponding to the different periods
alleviates the econometric problem encoun-
tered when using the standard arrangement.

The last adjustment needed in the case of
the acreage response model is for the fact that
it might exhibit autocorrelation. Ramirez and
Somarriba explained how to adjust the pdf
model described above to account for auto-
correlation. As in the case of normally distrib-
uted errors, if U, = (¥, — X,B) is autocorre-
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lated, it needs to be transformed into an
independently distributed variable (L/*), as
follows:

(11) Ub=U,-pU —plUis —

_pLU_L(f=L+].,...,D.

where L is the order of autocorrelation iden-
tified through the testing process described
above. Note that Equation (11) is simply an-
other equation entering the concentrated log-
likelihood function [Equation (6)}] where U,
has to be replaced by U*, so that the autocor-
relation coefficients (p,, p,, . . ., p.) are jointly
estimated with all other model parameters. In
small-sample applications, however, one does
not want to disregard the information con-
tained on the first L observations.

As in the case of normally distributed er-
rors, this can be avoided by also transforming
the first L residuals (&/;, U,, ..., U,) into in-
dependently distributed variables (L7¥, Uk,
. «., U¥) using the well-known factors (which
are also functions of the autocorrelation co-
efficients) and including these first I trans-
formed residuals in the likelihood function as
well (Judge et al., p. 294). All remaining as-
pects of the error-term specification for the
acreage response model are as in the yield re-
sponse model, because estimation is also ac-
complished by finding the parameter values
that maximize the so-modified, concentrated
log-likelihood function {[Equation (6)]. We
also follow the same steps for model specifi-
cation and testing.

Supply Response Predictions

We start this section with the premise that, in
the context of policy analysis, a good supply
response prediction must include a reliable
confidence interval for that prediction. Ana-
lysts are much better prepared to inform pol-
icymakers if they have a well-founded feeling
of how precise their predictions are; and pol-
icymakers are beginning to demand that, in
addition to point forecasts, “advisors” provide
them with a range of possible outcomes and
their associated probabilities (i.e., with the
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probability distributions associated with their
forecasts).

In addition to their flexibility, Ramirez,
Misra, and Field’s pdf models have been
shown to provide more reliable confidence in-
tervals for the dependent-variable forecasts
than the standard models that assume error-
term normality. These confidence intervals
are, of course, obtained from the underlying
probability distribution of the forecast. In the
Results section, we will provide examples of
how to derive these more reliable probability
distributions and confidence intervals.

Before going into the exemplary applica-
tions, however, it is critical to discuss the issue
of an unconditional versus a conditional fore-
cast. For the purposes of the present study, we
assumed that the analyst is interested in a 1-
year-ahead dependent-variable forecast. This
means that the values to be taken by some of
the explanatory variables in the model might
be unknown. Typically, the analyst will use
forecasts for these unknown explanatory var-
iable values to obtain a 1-year-ahead depen-
dent-variable prediction. The question then is
how to come up with a reliable (i.e., statisti-
cally sound) confidence interval for that pre-
diction.

In short, in the general case to be illustrated
here, where the model’s error term and some
of the explanatory variables are nonnormally
distributed, there is no simple way to accom-
plish the former. Once its parameters (o,, 9,
and p) have been estimated, the probability
distribution of the error term [U, in Equation
(2)] can be simulated using the procedures
outlined by Ramirez, Misra, and Field and
added to the yield forecast. The resulting dis-
tribution of the forecast, however, would then
be conditional on the explanatory variables
taking their exact predicted values, which is
far from realistic.

The only theoretically sound alternative to
obtain the “‘unconditional” distribution of this
dependent-variable forecast is to also model
the joint probability distribution of the explan-
atory variables which values themselves had
to be forecasted, simulate joint realizations
from this distribution 1 year into the future,
and add the product of the simulated values
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times the corresponding estimated model pa-
rameters plus the simulated error-term values
to the dependent-variable forecast. Mathemat-
ically, in the case of the yield response model

(12) ¥, =B, + B,CcP, + B,SP, +

B,VCP, + B.RF,
+ BACI, + BAP,

+ Byt + B+ Br + U,

where B, stands for the ith parameter estimate,
the subscript s indicates a simulated value
(jointly simulated in the case of the explana-
tory variables), and ¢ has to be set at T + 1
for a 1-year-ahead forecast. The subscript k
indicates that the number of cotton acres plant-
ed and the number enrolled in crop insurance
are assumed known at the time of the forecast
and, therefore, do not have to be modeled,
forecasted, and simulated.

The question now is how to jointly model
and simulate the distribution of the other ex-
planatory variables, recognizing that they
might not be normally distributed, heteroske-
dastic, and/or autocorrelated. Ramirez, Misra,
and Field also helped address this question by
providing a multivariate equivalent of the pdf
model discussed above, which is estimated by
finding the parameter values that maximize the
following concentrated joint-likelihood func-
tion:

(13) MNNLL = <—(n/2) X mm|2)— 05

X 21 {In|ds ]

g

M-

+ []H(G_,;)] - 05

i)

<5 (5] -#))

where m is the number of models to be jointly
estimated; 2 is an m X m matrix with unit
diagonal elements and nondiagonal elements
p; (the cross-equation correlation coeffi-
cients); G, (j=1,....,mt=1,...,T)is
as defined in Equation (6) if Y, is not normally

1

[
It
-
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distributed or G;, = o' if Y; is normally dis-
tributed; and H, is a 1 X m row vector with
elements H, (j = 1, ..., m) also defined in
Equation (6) if ¥; is not normally distributed
and H, = (¥, - X;Bplo, if Y, is normally dis-
tributed. The operator * stands for matrix mul-
tiplication; and .* indicates element-by-ele-
ment matrix multiplication.

The multivariate log-likelihood function
Equation (13} links s univariate log-likeli-
hood functions through a cross-error term cor-
relation matrix 2. Estimates for the elements
of % are needed for a proper simulation of the
joint pdf characterizing the m explanatory var-
iables being forecasted with this “auxiliary”™
model. Heteroskedasticity in any particular
variable (¥)) can be handled through a;, as in
Equation (3). Autocorrelation can also be ad-
dressed as explained above for the univariate
pdf model case. Note that some variables
could be heteroskedastic but not autocorrelat-
ed and vice versa, and some could be i.i.d.

In the exemplary case of yield response, a
joint pdf model for cotton and soybean prices,
variable costs of cotton production and rainfall
are needed. We recommend pure time-series
models, meaning that the means be initially
specified as third-degree polynomial functions
of time, the standard deviations (o) to be lin-
ear functions of a time trend, and the error
term assumed to follow a first-order autore-
gressive process. The misspecification testing
procedures described for the yield and acreage
response models will also be applied in the
case of these auxiliary models.

Results
Yield Response

Three alternative initial and final yield re-
sponse models and related test statistics under
the assumption of normality are presented in
Table 1. Initial Model 1 is as specified in Equa-
tions (1) and (3) (with 8 and p = 0). The prob-
lem with this model is that the estimate for B,,
the parameter associated with the variable
costs of cotton production (VCP), is positive
and highly significant. This, of course, makes
no economic sense and, therefore, is empiri-
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cally unacceptable. This problem remains after
excluding all statistically insignificant vari-
ables from Initial Model 1. Initial Model II ex-
cludes the explanatory variable VCP, whereas
Final Model 1I sets all nonsignificant param-
eters (« = 0.20; i.e., p = 0.20) in Initial Model
II equal to zero. Note that the likelihood-ratio
test statistic [2(179.12 — 177.98) = 2.28 <
X&en = 7.78] confirms the joint nonsignific-
ance of all excluded parameters.

The misspecification tests applied to the re-
siduals from Final Model II do not indicate an
inadequate functional form, heteroskedasticity,
or nonnormality (Table 1), which suggests that
this model might be empirically acceptable.
Note, however, that the estimated standard de-
viation equation is o, = 7.78 + 4.47r This
would suggest that yield variability, as mea-
sured by the standard deviation of the yield
distribution, has increased 14-fold, from 12.25
pounds per acre in 1965 (¢t = 1) to 173.17
pounds per acre in 2002 (+ = 37). These em-
pirically unacceptable estimates illustrate a
common “‘precision’’ problem when trying to
estimate volatility trends with small time-se-
ries samples.

To address this problem, we recommend
using a Gauss Constrained Maximum-Likeli-
hood (CML) procedure to maximize Equation
(6) subject to a constraint in the rate of vola-
tility increase, to an empirically sensible per-
centage; such a constraint significantly lessens
the statistical model’s ability to represent the
observed data. Initial Model II constraints the
rate of increase in o during 1965-2002 to
50%. Then, the estimated standard deviation
equation becomes a, = 61.48 + 0.83¢ (ie., o,
= 61.48 and o,; = 92.20), which is an empir-
ically sensible amount of volatility increase
during that time period. Further, the likeli-
hood-ratio test statistic [2(179.09 — 177.98) =
2.22 < 3,5 = 2.71] suggests that this linear
restriction on o, is not rejected by the data.
Therefore, Initial Model III was adopted as the
starting point for the analysis.

Final Model III sets all nonsignificant pa-
rameters (o = 0.20; i.e., p = 0.20) in Initial
Model III equal to zero, and the likelihood-
ratio test statistic [2(180.99 — 179.09) = 3.80
< XAy = 6.25] confirms the joint nonsignif-
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icance of all excluded parameters. Note, how-
ever, that once this volatility-increase restric-
tion is imposed, the magnitude of the three
nonnormality test statistics goes up substan-
tially, which indicates that the model residuals
are positively skewed, kurtotic, and jointly
nonnormal at far beyond the S50% certainty
level (Table 1).

The nonnormal yield pdf models estimated
using Ramirez, Misra, and Field procedures
are presented in Table 2. Note that, in the full
model (Initial Model I), the parameter estimate
corresponding to VCP (B,) was again positive
but this time was statistically insignificant at
the 20% level. B,, and B,,, the parameter es-
timates corresponding to ¢ in the yield re-
sponse function [Equation (1)] and to ¢ in the
standard deviation equation were also insig-
nificant. Final Model I was obtained by setting
these three parameters equal to zero.

Note that Final Model 1 is homoskedas-
tic—that is, once error-term nonnormality is
taken into account, the null hypothesis of a
time-trending standard deviation cannot be re-
jected at any reasonable level of statistical sig-
nificance (Table 2). Table 2 also presents the
misspecification tests applied to both the “reg-
vlar”’ residuals [U, = (¥, — X,B)] and after
those same residuals have been standardized
and normalized to obtain 2, according to
Equation (8). Although neither shows signs of
functional form or heteroskedasticity prob-
lems, there is strong statistical evidence that
U, is positively skewed, kurtotic, and jointly
nonnormal (e = (.01).

On the other hand, the fact that the 2, series
does not reject the skewness, kurtosis, and the
joint omnibus nonnormality tests of
D’ Agostino et al. (o = 0.20) suggests that the
nonnormal pdf model properly accounts for
the nonnormality in ¢/, Error-term nonnor-
mality is also evidenced by the single-param-
eter statistical significance of 6 and p, whereas
a positive p estimate confirms right-skewness
(Table 2). A likelihood-ratio test of Initial
(normal) Model IT versus Initial (nonnormal)
Model I [2(177.98 — 171.93) = 12,10 >
X&oon = 9.21] provided additional support for
the alternative hypothesis of error-term non-
normality and suggested that the nonnormal
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Table 2. Alternative Initial and Final Nonnormal Yield pdf Models and Related Test Statistics
Initial: Modei 1 Final Model I

S.E.
Par. Par. Est. S.E. Est. PV. Par. Est. Est. BV.
B, —436.68 111.115 0.001 —348.61 84.437 0.000
B, 3.999 1.410 0.009 5.246 0.876 0.000
B, -37.921 9.717 0.001 —38.028 9.626 0.000
B, 0.827 0.697 0.246
B 12.200 2971 0.000 11.572 3.060 0.001
B —1.997 0.218 0.000 —1.882 0.193 0.000
B, 2.282 0.318 0.000 2.084 0.309 0.000
B, 30.943 10.033 0.005 29.172 6.777 0.000
B, -77.579 53.173 0.156 —46.637 17.444 0.012
By, 6.139 9.860 0.539
B, 86.134 41.954 0.050 93.382 24.460 0.001
B, 0.317 1.748 0.858
6 0.752 0.193 0,001 0.744 0.184 0.000
e 2.708 0.881 0.005 2.747 0.857 0.003
Correct. Correct.

Resid. Resid, Crt. V. Resid. Resid. Crt. V.
WHI 8.557 6.441 14.68 4.167 3.109 12.02
RES 0.051 0.243 2,53 0.039 0.276 2.52
SKE 3.360 —-(.214 1.65 3.539 -{(.189 1.65
KUR 2.347 —1.590 1.65 2.565 —1.344 1.65
DAG 16.798 2.575 461 19.106 1.843 4.61
LFV —171.93 -172.70

Notes: 6 and . are the nonnormality parameters in Equations (2) through (7); Resid. refers to the usual model residual
[U, = (¥, — XB)], and Correct. Resid. refers to a residual that has been standardized and normalized [i.e., theoretically
corrected for heteroskedasticity and nonnormality through Equation (8)]. All other abbreviations are as defined in Table 1.

pdf model is a far superior statistical represen-
tation of the data-generating process.

Having established error-term nonnormali-
ty in the empirical yield response models, it is
interesting to compare the differences between
the final specifications under the nonnormal
pdf model versus the standard normal-error

R . D T T

L K B
Time (1=1868}

Figure 1. Yield Time Trends under Three
Alternative Model Specifications

model assumption (i.e., Table 1 vs. Table 2).
First, in retrospect, it becomes clear that an
improper assumption of error-term normality
can result in an erroneous diagnosis of heter-
oskedasticity, because the former can become
a statistical artifact for lessening residual non-
normality. Second, there can be substantial
differences in the set of explanatory variables
that is identified as statistically significant,
particularly when the final normal-error model
included an incorrectly specified variance
function.

Also notice the marked differences be-
tween the predicted yield trends (holding atl
other explanatory variables at their sample
mean levels) from Final Normal Model 11, Fi-
nal Normal Model III (i.e., with a restricted
standard deviation function), and the Final
Nonnormal Model (Figure 1). Most cotton
yield experts would agree that those obtained
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Figure 2. Probability Distributions of the
2002 Southeastern U.S. Yield Forecasts under
the Normal and Nonnormal Models

under the nonnormal pdf model are more like-
ly compatible with the actual yield trends dur-
ing the past four decades.

A key product of a yield response model is
yield forecasts and confidence intervals for
these predictions. It is important to point out
that such confidence intervals need to take into
account the two major elements of uncertainty
affecting the predictions: the model’s error
termn, as reflected on its estimated distribution,
and the uncertainty about the true values of
the model’s parameters, which is captured by
the joint distribution of their estimators. In all
but ordinary least-squares—estimated models,
these confidence intervals have to be obtained
by numerical simulation of both the error-term
and the model parameter estimators’ distribu-
tion. Basically, the intervals are derived from
the simulated distributions of the yield fore-
casts. For details on how to perform these sim-
ulations, please refer to Ramirez, Misra, and
Nelson.

Figure 2 shows the distributions for the
year 2002 cotton yield forecasts for the South-
eastern United States under the final normal
and the nonnormal pdf models, with the as-
sumption that all explanatory variables take
their known year 2002 values. Note that the
distribution of the nonnormal model’s forecast
(standard deviation of 97.6) is much narrower
than the one for the normal model’s forecast
(standard deviation of 108.5), which confirms
that the first provides for a more precise sta-
tistical representation of the yield data.

At this point, it is useful to also warn the
reader against interpreting the standard devi-

Figure 3. Observed Values vs. the 80%
Confidence Intervals for the Predictions from
the Normal and Nonnormal Southeastern U.S.
Cotton Yield Models

ations as comparable measures of dispersion
when comparing normal with nonnormal dis-
tributions., For example, in this case, the
11.2% difference suggested by the ratios of
their standard deviations is not indicative of
the much wider degree of dispersion of the
distribution of the forecast from the normal
model. We have actually encountered situa-
tions where nonnormal distributions that are
narrower across the board exhibit higher stan-
dard deviations than an evidently more dis-
perse normal distribution.

The simulated data underlying Figure 2 can
be used to compute confidence intervals. An
80% interval for the nonnormal forecast, for
example, is obtained by finding the yield
amounts that leave o/2 = 10% of the simulat-
ed values below them and o/2 = 10% above
them. Within-sample confidence bands can be
constructed by joining the lower and the upper
bounds of the T = 37 (1 — o) confidence in-
tervals for the T within-sample predictions.
The constructed 80% confidence bands for the
predictions from the normal and nonnormal
error-term models are presented in Figure 3,
in comparison to the observed yield values.

Previous research using much larger sam-
ple sizes (Ramirez and Fadiga; Ramirez, Mis-
ra, and Nelson) has shown that the confidence
bands from Ramirez, Misra, and Field’s non-
normal pdf model outperform those from a
similar model that assumes error-term nor-
mality, in the sense that they are generally nar-
rower and more closely adhere to theoretical
expectations. In this case, the average width
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of the 37 intervals comprising the normal
model’s band is 224.8 pounds per acre versus
194.6 pounds per acre for the nonnormal band.
Theoretically, one would expect that 80% con-
fidence bands would leave an average of 0.10
X 37 = 3.7 observations above them and 3.7
below them. In this application, the normal
bands leave four observations below them and
three above them, whereas the nonnormal
bands leave three below and four above them.

In short, when the error-term is nonnor-
mally distributed, using confidence intervals
from a nonnormal pdf model provides two
empirical advantages. First, in general, the in-
tervals would tend to be significantly narrow,
which suggests that the corresponding predic-
tion is more precise. Second, under repeated
sampling, they would be more likely to adhere
to theoretical expectations—that is, to leave
the “required” number of yield realizations
within, below, and above them. These im-
provements would certainly be valuable to an-
alysts and policymakers.

Confidence intervals developed as above
will work well on reflecting the behavior of
the yield data within-sample. They will, how-
ever, be inappropriate to represent the sto-
chastic behavior of the dependent variable out-
of-sample (i.e., into the future), because the
values to be undertaken by at least some of
the explanatory variables become unknown.
As discussed above, theoretically suitable (i.e.,
empirically sound) confidence intervals for
out-of-sample predictions have to incorporate
a third element of uncertainty affecting these
predictions: the randomness associated with
the explanatory variable forecasts used to ob-
tain the dependent variable predictions. Be-
cause VCP was excluded from the final non-
normal yield pdf model, a joint pdf model for
cotton and soybean prices and rainfall is need-
ed for this purpose.

For this purpose, the pure time-series mod-
el discussed above was estimated, and the final
model was obtained by setting all nonsignifi-
cant parameters (a = 0.20) equal to zero and
confirming joint nonsignificance through a
likelihcod ratio test [2(151.28 — 150.50) =
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1.56 < x%010) = 9.24].! Likelihood-ratio tests
indicate that all three sets of nonnormality pa-
rameters (p; and 0, { = 1, 2, 3) are statistically
significant at the 5% level, which suggests that
the Southeastern U.S. cotton and soybean
price and growing season rainfall distributions
are all nonnormal. The positive p,; estimates
indicate right skewness in all three cases. Note
that, strictly speaking, it is the error-term dis-
tributions that are nonnormal. Econometrical-
ly, the dependent variable and the error-term
distribution only differ from each other by a
known intertemporally shifting constant (X,B).
Thus, as long as X,B can be considered fixed,
they would have the same variance, skewness,
and kurtosis. Properly speaking, then, we con-
clude that the conditional distributions are
nonnormal.

In the case of the cotton and soybean pric-
es, in addition to being nonnormal, the error-
term distributions are increasing in variance
through time (from 8.81 to 13.04 cents per
pound for cotton and from $1.16 to $1.71 per
bushel for soybeans) and show mild positive
autocorrelation. The rainfall distribution is
homoskedastic, as expected, but it shows a sta-
tistically significant negative autocorrelation.
Because we are not sure that negative auto-
correlation is contradicted by meteorological
theory, we decided to retain this unusual mod-
el characteristic.

The 2002 joint price and the rainfall distri-
butions are simutated as outlined above (for
more details see, Ramirez, Misra, and Field).
Their means and standard deviations are 58.87
and 13.98 cent per pound (cotton price), $6.10
and $1.81 per bushel {(soybean price), and
21.87 and 2.69 inches (rainfall). As anticipat-
ed, they are all right-skewed and kurtotic, with
the one corresponding to soybean price exhib-
iting the highest degree of nonnormality. The
unconditional probability distribution for the
2002 yield forecast was then simulated using
Equation (12).

As expected, the means of these two sim-
ulated distributions were nearly identical
(540.46 vs. 540.13 pounds per acre). The stan-

! Detailed results of the model can be obtained
from the author(s) on request,
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dard deviation of the unconditional distribu-
tion (137.72 pound per acre), however, was
over 40% larger than the standard deviation of
the conditional distribution (97.64 pounds per
acre). This, of course, was caused by the add-
ed uncertainty about the 2002 cotton and soy-
bean prices and rainfall. Although they both
retained the right-skewness and kurtosis of the
nonnormal yield pdf model error term (which
is a component in their simulation), their
skewness and kurtosis coefficients were sub-
stantially different. However, the large differ-
ence in their standard deviations was still re-
flected in misleadingly narrow confidence
intervals from the conditional distribution.
The width of the 80% confidence interval, for
example, was 198.96 under the conditional
distribution of the yield forecast, versus
298.67 under the unconditional distribution.

The empirical implications of such a dif-
ference are evident. In short, all of these sourc-
es of uncertainty must be considered when
constructing confidence intervals for a model’s
forecast, and error-term nonnormality needs to
be accounted for as well. As illustrated above,
neglecting any of these factors can result in
confidence intervals that would not accurately
reflect the future probabilistic behavior of the
dependent variable and, therefore, undermine
the credibility of the analyst’s inferences in the
long run.

Acreage Response

Many of the empirical issues surrounding the
specification, estimation, and simulation of
acreage response models are similar to those
encountered when building yield response
models. Therefore, in this section, we will fo-
cus on the issues that turned out to be some-
what different in our applications. One of
these issues is that, even with the “overlap-
ping” dummy (policy period) variable coding
system explained in the Methods and Proce-
dures, the maximume-likelihood estimate for
the dummy variable coefficient estimating the
standard deviation of the conditional acreage
distribution for the 1997-2001 period ap-
proaches zero in the case of the normal-error
model. This is clearly an empirically unac-
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ceptable aberration due to the small number of
observations available to estimate that volatil-
ity parameter, in combination with the also
small sample size available for estimating all
other model parameters.

The proposed solution for this problem is
a restriction to the standard deviation param-
eters [By, By, By, and By, in Equation (10)]
so that no individual coefficient estimate de-
viates form the average of the four estimates
by more than 50% of this average. This is also
implemented through Gauss-CML. The initial
and final normal-error acreage response mod-
els estimated under this restriction and the
analogous nonnormal pdf models (which do
not require the restriction) are presented in Ta-
ble 3.

Note, first, that the residuals from the initial
normal model show strong signs of nonnor-
mality. Also notice that the estimated autocor-
relation coefficient (0.537) is highly signifi-
cant and similar in magnitode to the ones
obtained under the nonnormal models. The es-
timates for the standard deviation parameters
(By, B,o, By;, and B,;) and their corresponding
standard errors suggest that By and B, and B,
and B,, might not be statistically different
from each other. A model that incorporates
this restriction (i.e., By, = B,; and By; = B),)
and sets the three parameters that are not sta-
tistically significant in the initial normal model
(B,, B,, and B;) equal to zero {(not presented)
exhibits a maximum-likelihood function value
of —205.35. A likelihood ratio test [2(205.35
— 203.63) = 3.44 < x% 410 = 9.24] easily jus-
tifies these restrictions.

The correlation coefficient estimate in that
restricted model, however, drops to 0.341 and
becomes statistically insignificant (p =
0.175), which leads to the final normal model
presented in Table 4. The estimate for B, =
B, is substantially lower than either of the
separate estimates obtained in the initial mod-
el, whereas the estimate for B;, = B,, is much
higher than either of the individual B,, or B,,
estimates in that model, and the 50% mean-
spread restriction on these coefficients be-
comes unbinding and is no longer needed. In
short, the final normal model in Table 4 ap-
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Table 4. Initial and Final Acreage Response Models and Related Test Statistics Under the
Assumption of Error-Term Normality and Homoskedasticity

Initial Model Final Model
Par. Par. Est. S.E. Est. PV. Par. Est. S.E, Est. PV.
B, 1388.57 318.255 0.000 1497.87 326.548 0.000
B, 2.186 2.024 0.290 0.000
B, —-9.277 9.059 0.315 —8.647 5.867 0.151
B, 37.720 22.191 0.101 0.000
B, —1.897 1.025 0.076 —1.650 1.039 0.123
B, —326.292 593.008 0.587 0.000
B, 579.152 530.408 0.285 968.105 389.781 0.019
By 1961.93 728.016 0.012 2138.01 746.575 0.008
By 287.767 34,967 0.000 306.629 37.288 0.000
By 287.767 34.967 0.000 306.629 37.288 0.000
B, 287.767 34.967 0.000 306.629 37.288 0.000
B, 287.767 34967 0.000 306.629 37.288 0.000
P 0.709 0.170 0.000 0.747 0.172 0.000

Cal. V. Cal. V.
{Resid.) Crt. V. (Resid.) Crt. V.

WHI 3.1886 14.68 5.9202 9.24
RES 0.1846 2.53 0.7119 2.50
SKE 3.3485 1.65 3.7124 1.65
KUR 3.5290 1.65 3.9302 1.65
DAG 23.6664 461 29.2284 4.61
LEV —209.86 —212.08

Note: Abbreviations are as in Table 1.

pears to be the best specification that can be
obtained while assuming normality.

The initial nonnormal model, in contrast,
can be estimated without the 50% mean-
spread restriction on the standard deviation co-
efficients (Table 3). Furthermore, once the as-
sumption of normality is relaxed, these four
standard deviation coefficients are no longer
statistically different from each other. The final
nonnormal model is homoskedastic and ex-
cludes the variability of net revenues from cot-
ton relative to sorghum (RVCR)) and DUM,;,
which were insignificant in the initial model.
A likelihood ratio test {2(200.60 — 197.38) =
6.44 < xZ .10 = 9.24] provides the statistical
basis for these restrictions. In addition, a like-
lihood ratio test [2(203.63 — 197.38) = 12.50
> Xhoon = 11.34] indicates that the initial
nonnormal model is quite a superior statistical
representation of the acreage response data
than the initial normal model (the third restric-
tion in X3¢0, is the 50% mean-spread restric-

tion required in the initial normal model). Also
note that, although the final models are not
nested and therefore cannot be compared
through a likelihood ratio test, the maximum
value reached by the likelihood function of the
nonnormal model (—200.60) is much higher
than the one achieved by the normal model
(—206.26).

Having established that the nonnormal
model specification is statistically superior,
one must conclude that the normality assump-
tion in this case leads to misspecification of
other error-term components, in particular the
variance and autocorrelation functions. The
more than fourfold increase in acreage vari-
ability after 1986 and the lack of autocorre-
lation in acreage response implied by the final
normal model would be hard to accept for an
empirical policy analysis.

Final evidence of the empirical advantage
of using the nonnormal pdf model is provided
in Figure 4. The average width of the 33 with-
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Figure 4. Observed Values vs. the 90%
Confidence Intervals for the Predictions from
the Normal and Nonnormal Southeastern 1.S.
Cotton Acreage Models

in-sample 90% confidence intervals under the
nonnormal model is 826.6 lbs per acre, versus
1212.20 in for the normal model intervals. Al-
though the predicted acreages are not that dif-
ferent (3,560 versus 3,881 pounds per acre),
the terminal (year 2002) interval is more than
twice as wide under the normal model.

In the case of this acreage response sampie,
for instance, the 90% nonnormal bands leave
one observation below and one above them,
versus the theoretically required 0.10 X 33/2
= 1.65-—that is, the nonnormal bands could
actually be wider and still accommodate the
observed data. The nonnormal bands, in con-
trast, leave two observations below and two
above them (i.e., they might actually need to
be even wider). Note that the normal bands
are actually narrower than the nonnormal
bands during the first half of the sample and
then widen considerably because of the ex-
traordinary increase in error-term variance
during the second half. What is happening is
that, in the final normal model, most of the
variability in the independent variables is be-
ing exploited to explain the acreage observa-
tions during the first half of the sample.

Considering the above, we decided to re-
estimate the normal model under the assump-
tion of homoskedasticity (Table 4). The final
homoskedastic model was obtained by setting
B,, B,, and B, equal to zero (note that, al-
though B, is almost significant at the 10% lev-
el, the parameter estimate exhibits the wrong
sign). These three restrictions were justified by
a likelihood-ratio test [2(212.08 — 209.86) =

Figure 5. Observed Values vs. the 90%
Confidence Intervals for the Predictions from
the Normal Homoskedastic and Nonnormal
Southeastern U.S. Cotton Acreage Models

4.44 < x% 420, = 4.64] at the 20% level. Note
that, although the autocorrelation coefficient
estimate was high (0.747) and significant at
the 1% level, the two remaining explanatory
variables (RS and EDP) were only moderately
significant (p = 0.151 and 0.123, respective-
ly)—that is, the explanatory power of the final
normal homoskedastic model is mostly driven
by two policy-shift dummies and its autocor-
relation function.

Although the null hypothesis of homoske-
dasticity was rejected [2(209.86 — 203.63) =
12.46 > xAg0, = 11.34] at the 1% level, we
believe that this model is preferable to the fi-
nal normal model in Table 3, and we would
feel more comfortable using it for empirical
analyses. The most suitable model, however,
is the final nonnormal one. Figure 5 compares
the 90% confidence bands for the within-sam-
ple predictions from the final normal homos-
kedastic versus the final nonnormal pdf model
bands. The nonnormal model clearly retains its
superiority in forecasting precision. These
forecasts and confidence intervals are, of
course, conditional on known values of the ex-
planatory variables. The additional procedures
needed to obtain unconditional forecasts and
confidence intervals for acreage response are
similar to those of yields.

Supply Response Forecasts and Confidence
Intervals

Note that, in constructing the yield forecasts
and confidence intervals above, it was as-
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sumed that the number of acres planted was
known. This would be correct if the supply
response was being predicted right after plant-
ing. Then, the supply response forecast and its
probability distribution would simply be ob-
tained by multiplying the yield forecast and
confidence intervals by the known acreage.
Otherwise, more steps would be needed to fi-
nalize the task of obtaining theoretically sound
and efficient cotton supply response forecasts
for the Southeastern United States.

First note that, because the final nonnormal
pdf models are recursive (i.e., acres planted at
time ¢ affects yields but yields do not contem-
poraneously affect acreage), both the yield
forecast and the simulations to construct the
probability distribution of that forecast would
depend on the acreage response predictions
and simulations. In other words, acreage re-
sponse for year 7 + 1 would have to be pre-
dicted and the unconditional distribution of
that forecast simulated first. Each simulated
value (AP) from that acreage forecast distri-

bution would then have to be used for simu- -

lating the probability distribution of the year
T + 1 yield forecast [i.e., in place of AP, in
Equation (12)], and the resulting simulated
vield value (¥;) would be multiplied by the
same AP to obtain a simulated realization (Sg)
from the distribution of the supply response
forecast.

Last, note that, in this case study, we have
assumed that the error terms of the yield and
acreage response equations are contempora-
neously uncorrelated. If this does not hold, the
previously described procedure for generating
the probability distribution of the supply re-
sponse forecast would have to be modified.
Specifically, the two equations would have to
be estimated jointly, using Equation (13). The
estimated contemporaneous correlation coef-
ficient would then be used to simulate the joint
error term distribution corresponding to the
yield and acreage response equations. All oth-
er steps would remain as explained above.

Concluding Remarks

In practice, one can think of supply response
modeling at two levels. The first is focusing
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on the “proper”’” modeling of the average yield
and acreage responses only (i.e., on the sys-
tematic components of the models). We de-
fined “proper” as a model that is the best pos-
sible statistical representation of the data at
hand given the limitations of econometric es-
timation procedures in small sample applica-
tions and is also compatible with economic
theory and other scientific knowledge about
yield and acreage behavior. The econometric
estimation strategies illustrated in the present
article can be useful for this. The resulting
models should produce adequate but not very
precise predictions and, because their random
components (i.e., error terms) could be mis-
specified, any confidence intervals for these
predictions need to be interpreted with cau-
tion.

The next level is striving to also have a
proper representation of the random compo-
nents of the models. Although this is econo-
metrically involved, it might substantially im-
prove forecasting precision and allow for more
reliable confidence intervals for the forecasts.
In practice, this generally means that the an-
alysts’ conclusions are more likely to be on
target. Thus, the extra effort should be justified
given the magnitude of the economic impli-
cations from the decisions being made on the
basis of these forecasts.
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