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The Differential Approach to Superlative
Index Number Theory

William A. Barnett, Ki-Hong Choi, and Tara M. Sinclair

Diewert’s “superlative” index numbers, defined to be exact for second-order aggregator
functions, unify index number theory with aggregation theory but have been difficult to
identify. We present a new approach to finding elements of this class. This new approach,
related to that advocated by Henri Theil, transforms candidate index numbers into growth
rate form and explores convergence rates to the Divisia index. Because the Divisia index
in continuous time is exact for any aggregator function, any discrete time index number
that converges to the Divisia index and that has a third-order remainder term is superlative.
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According to Theil (1960, p. 464), ‘““The sub-
ject of index numbers is one of the oldest in
statistics and also, as regards the more spe-
cialized subject of cost of living index num-
bers, an old one in economics.” Although an
old subject, economists have long struggled to
identify useful index numbers. The most influ-
ential selection criterion is that the index num-
ber be exact for an aggregator function that
can produce a second order approximation to
any twice continuously differentiable linearly
homogeneous function. Diewert (1976) de-
fined such index numbers to be “‘superlative.”
Superlative index numbers thus have known
tracking ability relative to the exact aggregator
functions of economic aggregation theory.
The class of superlative index numbers
contains an infinite number of index numbers,
since an infinite number of second-order ag-
gregator functions exist, but only a small num-
ber of index numbers in the superlative class
have so far been found. The search process has
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previously involved finding an index number
that is exact for a known second-order alge-
braic aggregator function or searching for a
second-order aggregator function for which a
known index number is exact. No simple pro-
cedure has been found for either direction. For
example, the minflex Laurent aggregator func-
tion, originated by Barnett and Lee over 15
years ago, is known to be second order, but
no one has succeeded in finding the index
number that can track it exactly. In the other
direction, Fisher proposed many index num-
bers in his famous book, but to the present
day, the aggregator functions tracked exactly
by them remain unknown for most of those
index numbers.

The Divisia continuous time index holds a
prominent place in the literature because New-
man and Ville, Hulten, Samuelson and Swa-
my, and Barnett and Serletis (p. 101-2) have
shown that the Divisia line integral produces
the unique exact index number formula for
any neoclassical aggregator function. Similar-
ly, the Divisia price index is the unique exact
index number formula in continuous time for
the neoclassical aggregator function’s dual
unit cost function. These results imply that the
Divisia integral index is the prototype eco-
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nomic index number. For general use, how-
ever, the Divisia continuous time index must
be adapted to apply to discrete data. A log-
change form index is usual for all well-known
discrete time approximations to the Divisia in-
dex. This observation alone is not sufficient to
determine the weight function. Thus, large
numbers of potential finite change approxi-
mations to the Divisia index have been pub-
lished. Each is in log change form, and they
are differentiated by their weights.

We show that Theil’s differential ap-
proach, which he used to support the Térn-
qvist index (Theil 1973), can be used system-
atically to determine which finite change
approximations to the Divisia index are su-
perfative. Because the Divisia line integral in
continuous time is exact for any aggregator
function, any superlative discrete time index
number must (1) converge to the Divisia in-
dex as the time intervals narrow and (2) have
a third-order remainder term for finite-change
time intervals. This is true regardless of
whether or not we are capable of finding the
second-order aggregator function for which
the discrete time index number is exact in dis-
crete time.

To use this approach, it is necessary to be
able to put candidate index numbers into
growth rate form in discrete time (Theil’s
[1974] ““log-change” form) so that conver-
gence rates to the Divisia index can be ex-
plored. Using convergence theorems, which
are widely available in mathematics, it be-
comes possible to identify large numbers or
comparably good index numbers, and perhaps
even to find new index numbers with better
properties than the currently known index
numbers.

In this paper, we show that the most well-
known index numbers can be represented in
log-change form. In the next section, we con-
sider the mean of order r class of index num-
" bers. Then we consider the quadratic mean of
order r class of index numbers. In the conclu-
sion, we discuss the interpretation of the
weights in log-change form and suggest fur-
ther research in this area.

Log-Change Representation of the Mean
of Order r Class of Index Numbers

Let x! be the quantity of good i during period
t, and let p! be its price. The mean of order r
index of aggregate price change between pe-
riods 0 and 1, as defined by Allen and Diew-
ert, is characterized by its selection of the ex-
ponent r and superscript t. If we define the
period ¢ cost shares as sf = (pix)/(p'x*) for i
=1, ..., N, the mean of order r index of
aggregate price change for r # 0 between pe-
riods 0 and 1, using period ¢ shares, is

where P,, = P1,/P% is the price change in-
dex, with P!, being the price index level in
period 1 and PY, being the price index level
in period 0.

Members of this class include the Laspey-
res index (r = 1, ¢t = 0) and the Paasche index
(r = —1,t = 1). The mean of order r quantity
index is defined analogously by interchanging
the role of prices and quantities in the defini-
tiom.

THEOREM 1. The mean of order r price index
can be transformed into log-change form, and
the sum of weights in log-change form is less
than or equal to uniry.

Proor. If we take the natural logarithm of both
sides of the mean of order r price index, we
find

1. & (py 1 =
@ WmP,=>ln3 s;(l%) = S lp———,

where v = pixiand In P,, = In P!, — In P?,.

We now apply the concept of the log-mean,
which was introduced by Vartia and Sato to
the economic literature for x, y > 0.

£ x#y
@ Lixy) = |IGHY
X, xX=y
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For our equation, we let x = X2, vi(pt/p?)’,
and we let y = X, vi. We then have
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which is the log-change form of the mean of
order r price index. The weight, w!‘, can
equivalently be written as

L

Py
(7)1

From this form we can show that its sum is
less than or equal to unity as follows.
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However, L(x, 1) = (x — D/(ln x) is con-
cave, as proven in the Appendix. Hence by
Jensen’s inequality, 22, wi < 1, with equality
only if » = 0 or p{/p? = 1 for all i, Because
the log-change approximation to the Divisia
index is based on the Weighted Mean Value
Theorem (Fulks, p. 162), we have the require-
ment that the discrete time interval should be
as narrow as data allow. Because p{/p? — 1

for all i, the sum of the weights approaches
unity. Q.E.D.

@B X wpr= s
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Note that this encourages the use of the
chain method introduced by Alfred Marshall
and described by Frisch. Diewert (1978) also
argues for the use of this method.

ExAMPLES. We can write the log-change form

of the Laspeyres index of aggregate price
change between periods O and 1 (r = |, ¢t =

() as
V?(‘og) | VIDI
F 2

L|3 v (p) > o
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L
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where In Plapeyres = In Pll_upey,es = 10 P opeyres
and where the Laspeyres weights are

Similarly, we can write the log-change
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form of the Paasche price index (r = —1,¢ =
1) as
v
Lly! Ll , vl
L] ! pll ! p!
(10)  In Prype = 2, ln(p—;),
i=1 a () " i
LY vl &), > v,a]
=1 Pil k=t

where In Ppyene = 10 Phoone — 1n PR
where the Paasche weights are

w'l}mche -

Log-Change Representation of the
Quadratic Mean of Order r Class of Index
Numbers

The quadratic mean of order r index is
closely related to the mean of order r index
from above. Diewert (1976) defines the qua-
dratic mean of order r price change index in
terms of the mean of order r price change
index as

A1y P, = (PP )"?

{[2 (p;)ﬂzrh[g . ( 5{_} )-ﬂz]—zf,}u;

i/r

5 s%(i'i—:i)"”}

for r # 0, where P, = Pl/P? is the price
change index, with P! being the price index
level in period 1 and P? being the price index
level in period 0.

Diewert (1976) has shown that the qua-
dratic mean of order r class of indexes is su-
perlative for all r. That class is the most gen-
eral superlative index number specification
known and includes the Fisher ideal index and
the Torngvist index.
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CoroOLLARY TO THEOREM 1. The guadratic
mean of order r price index can be trans-
formed into log-change form, and the sum of
weights in log-change form is less than or
equal to unity.

Proor: The proof is a simple algebraic manip-
ulation applying the relationship between the
guadratic mean of order r price index, the
mean of order » price index, and our result
from Theorem I. Note that

1
(12) InP, = l}n(P,,z_o) + —ln(P,,,z.;)

p!
[Z wrfzoln P‘) + EW r1211n(p )

Vi i=t

so that
(13) InP, = i -l-(w-”2=° + wEDn al
oA ' f 44
" pi
= wiln ,
E (p?)
where
1
(14) w'r = E(wir.fz,o + w!_-rll.l).

We can expand w! to determine the value of

its sum.
1 Fi2
1 b
(15)  wi=1sP
2 i . P}( ri2 1
L sH—] .,
=RV
P,l —-ri2
L (;,6) N |
+ s}

If we take the summation of both sides we
obtain
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n pl ri2
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As in the case of the mean of order r index,
each of the two terms within the outer paren-
theses on the right-hand side is less than or
equal to one. Hence, the sum of those terms,
divided by two, is also less than or equal to
one and approaches one as p!/p! — 1 for
all /. Q.ED.

EXAMPLES. We can write the log-change form
of the Fisher ideal price index (r = 2) as

LA | 1
(A7) 10 Prge = X S (wErom -+ whasr)In (%),

=1 i

where In Py, = In Pl — In PY,... We also
know that the Torngvist index is a limiting
member of this class (for r — 0). Because we
did not consider the case of r — 0 above, we
now show that this index also can be repre-
sented in log-change form. For r = 0, Allen
and Diewert defined the quadratic mean of or-
der O price change index as

(18) P,

1_[ (p1 [(msP+(1/2)8 |
(%)

i=1

where P, = PY/P}.

RESULT. P, can be represented in log-change
form, and the weights then sum to 1.

PrOOF.

n [/ +rs)]
(19) InPy=In]] (&ﬂ)
i=1 \Pi
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1
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We can see from the definition of the weights,
w? (i = 1, ..., N), that their sum in this spe-
cial case becomes exactly unity. Q.ED.

Conclusion

We have shown that two large classes of eco-
nomic index numbers can be represented in
log-change form. This provides a new method
to determine whether index numbers are su-
perlative. Instead of searching for the second-
order aggregator function for which the dis-
crete time index number is exact in discrete
time, we can test the suggested index number’s
convergence to the Divisia index in log-
change form. If an index converges to the Div-
isia index as the time intervals narrow and has
a third-order remainder term for finite-change
time intervals, then the index is superlative,

The log-change form provides a unified
view of index number formulas and their con-
vergence properties. There also is a useful in-
terpretation of index numbers in this form. Re-
call the form

L !
@l mpP=3 w,.ln(p—;),

i=1 Pi
where In P = In P! — In P% Equation (21) is
an additive decomposition (Tornqvist, Vartia,
and Vartia) of the global rate of growth, In P,
into each contributing factor wIn{ p}/p?).

These results suggest the potential produc-

tivity of further research investigating new in-
dex numbers by this method to see if they are
superlative, or better than superlative with re-
mainder terms of order higher than 3.
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Appendix

Let f(x) = L(x, 1), where L(x, 1) = (x — 1)/(Inx)
is defined as in the proof of Theorem 1. We now
prove the following lemma.

Lemma 1. f(x) is concave for all x # 1, x > 0.

Proor. The second derivative of f is

—xlnx—Inx+2x—2
x%(In x)?

fi=y =

Letting d(x) = x(Inx)* and A(x) = —x Inx ~ Inx
+ 2x ~ 2, we obtain

we v _ R(X)
e =22
Clearly, d(x) is negative for 0 < x < 1 and positive
for x > 1.

Observe that A(1) = 0, #'(1) = 0, and 2"(1) =
0 because A'(x) = —Inx — 1/x + 1 and A"(x) = (1
— x)/x2. Thus we know that x = 1 is an inflection
point (critical point) of the curve h(x). But 2"(x) <
Qforx>1and A"(x) > 0 for 0 < x < 1, so h(x)
is strictly concave for x > 1 and strictly convex for
0 < x < 1. Hence, h(x) is negative for x > 1 and
positive for 0 < x < 1.

It follows immediately that f*(x) < O for all
positive x # 1. Q.ED.

This result can be generalized to the full logarith-
mic mean function L(x, ¥) = (x — y)/(Inx — In y). We
are indebted to W. Erwin Diewert for the following
proof provided to us through private comrespondence.

CorOLLARY TO LEMMA 1. L{x, y) is concave for all
xy>0x#y

Proor. Consider the Hessian matrix, H(x, y), of
second-order partial derivatives of L(x, y). By an
argument anajogous to that used in the proof of
Lemma 1, it follows that the diagonal elements of
H(x, y) are strictly negative for x # y. However,
because L(x, y) is linearly homogenecous, the deter-
minant of H(x, y) is zero (see Hadar, equation 5.32,
p- 71). At all points off of the ray x # y, the nec-
essary and sufficient conditions are therefore sat-
tsfied for H{x, ¥) to be negative semidefinite.
Q.E.D.



