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Abstract

Disagreement over the form of regulation of greenhouse gasses motivates a
comparison of market based and command and control policies. More efficient
policies can increase aggregate marginal abatement cost, resulting in higher
emissions. Multiple investment equilibria and “regulatory uncertainty” arise
when firms anticipate command and control policies. Market based policies
eliminate this uncertainty. Command and control policies cause firms to imitate
other firms’ investment decisions, leading to similar costs and small potential
efficiency gains from trade. Market based policies induce firms to make different
investment decisions, leading to different costs and large gains from trade. We
imbed the regulatory problem in a “global game” and show that the unique
equilibrium to that game is constrained socially optimal.
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1 Introduction

Two aspects of the comparison between command and control and market based emissions
policies appear to have gone unnoticed: (i) Although market based policies reduce the social
cost of abatement, compared to inefficient command and control policies, the former do not
globally reduce the marginal social abatement cost; they therefore do not necessarily lead to
a higher socially optimal level of abatement. (ii) When the current policymaker cannot make
binding commitments to future policy levels (and there is common knowledge about market
fundamentals), and firms make lumpy investment decisions that affect their future abatement
costs, command and control policies give rise to multiple competitive equilibria. From the
standpoint of the individual firm, this multiplicity is indistinguishable from regulatory uncer-
tainty. In the same circumstance, there is a unique (socially optimal) competitive equilibrium
under market based polices, and therefore no regulatory uncertainty.

Market based policies encourage similar firms to make different investment decisions, in-
creasing the differences in firms’ abatement costs and thereby increasing the efficiency gains
from trade in permits. A command and control policy, in contrast, encourages firms to all
make the same investment decision, thereby preserving or increasing firm homogeneity. Thus,
command and control policies may appear to cause little efficiency loss, because in equilibrium
there would be little trade even if it were allowed. However, this firm homogeneity may be
a consequence of the anticipated lack of opportunity for trade. An accurate measure of the
efficiency gains from trade in permits must take into account the effect of the policy regime on
the aggregate investment decisions.

Some contingencies that affect future policies are endogenous to the economy, but exoge-
nous to individual firms. For example, the optimal future level of abatement depends on the
future abatement costs, which depend on earlier investment decisions. An example demon-
strates that market based policies reduce the regulatory uncertainty arising from current aggre-
gate investment decisions. Consider an industry with many identical nonstrategic firms, each of
which has the opportunity to make a discrete investment that reduces its average and marginal
abatement costs. The firms know that in the next period the policymaker will set the ex post
socially optimal level of abatement. All agents know the marginal pollution damage curve, and
they know that the future social marginal abatement cost curve depends on the fraction of firms
that make the investment, and on whether the regulator uses market based policies. In this
setting, without exogenous uncertainty, taxes and cap-and-trade policies are equivalent (with
one exception, noted below), so hereafter assume that the market based option is cap-and-trade.
The non-market alternative gives each firm the same non-tradable emissions allowance.

The anticipation that the regulator will use non-tradable permits induces a coordination
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game among non-atomic agents at the investment stage. Firms know that investment by a
larger fraction of firms reduces the industry abatement cost curve. They therefore understand
that the second-stage emissions allowance is a decreasing function of the fraction of firms that
invest. Furthermore, the investment becomes more attractive, the lower is the anticipated
emissions allowance. Thus, the use of a non-tradable emissions allowance in the second stage
makes the first stage investment decisions strategic complements. In the simplest case with ex
ante identical firms, there are in general two rational expectations competitive equilibria: all
firms invest or none of them do. This multiplicity of equilibria creates “strategic uncertainty”:
firms cannot rationally predict industry behavior. They therefore cannot rationally predict the
regulator’s behavior. From the standpoint of the individual firm this strategic uncertainty looks
like regulatory uncertainty.

In contrast, under the cap-and-trade policy there is a unique rational expectations compet-
itive equilibrium. An increase in the fraction of firms that invest reduces the (second period)
equilibrium price of tradable permits, thus reducing the value of the investment. The investment
decisions are therefore strategic substitutes, leading to a unique, socially optimal equilibrium to
the investment game. Rational firms can predict the level of permits and the permit price in the
second stage. The commitment to use market based policies eliminates regulatory uncertainty
even though the actual level of the policy is determined in the future.

This example assumes that firms have common knowledge. Suppose instead, in the sce-
nario where the regulator chooses the level of non-tradable emissions after investment, that
each firm receives a private signal about a market fundamental. Here there is a unique com-
petitive equilibrium – a well-known result from the global games literature (Carlsson and Van
Damme 1993), (Morris and Shin 2003). Surprisingly, the unique equilibrium in the global
game is constrained socially efficient. That is, an arbitrarily small amount of uncertainty about
market fundamentals not only eliminates the multiplicity of equilibria, but it also insures that
the resulting equilibrium level of investment is the same as the social planner would choose,
given the constraint of using non-tradable permits. This result occurs even though the social
planner’s objective is to minimize the sum of abatement and investment costs and environmental
damages, while firms care only about abatement and investment costs.

These results are of general interest to the theory of regulation and they are of particular
interest in the climate change debate. There is considerable disagreement about the type of
greenhouse gas regulations to use, and widespread recognition that current policymakers cannot
lock in future policies. California law AB32, which mandates future reductions in greenhouse
gas emissions, exemplifies these two points. Chapter 5 of AB32 recommends the use of market
based mechanisms, without mentioning either taxes or tradable permits. The bill gives future
regulators discretion over the manner of implementing the mandate. Governor Schwarzenegger
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had wanted the bill to guarantee a market based mechanism; shortly after signing the bill,
he issued an executive order forming a Market Advisory Committee to design a cap-and-trade
market. Some sponsors of the bill considered this attempt to lock in the form of implementation
inconsistent with the intent of the law (Robinson 2007). The bill also gives future policymakers
discretion over the extent of implementation. Article 38599 gives the Governor the right to
adjust the targets “in the event of extraordinary circumstances, catastrophic events, or threat of
significant economic harm”.

This paper shows that economists should not promote market based policies on the grounds
that these tend to lead to larger levels of abatement in equilibrium. That claim can easily be
false. In addition to the usual efficiency argument in favor of market based policy, the paper
identifies the more subtle fact that these policies reduce regulatory uncertainty. Furthermore,
market based policies lead to greater firm cost heterogeneity – and therefore greater gains from
subsequent market based policies. The paper also provides a new welfare result in the theory
of global games.

Jaffe, Newell, and Stavins (2003) and Requate (2005) survey the literature on pollution con-
trol and endogenous investment. Many papers in this literature, including Biglaiser, Horowitz,
and Quiggin (1995), Gersbach and Glazer (1999), Kennedy and Laplante (1999), Montero
(2002), Fischer, Parry, and Pizer (2003), Moledina, Polasky, Coggins, and Costello (2003),
Tarui and Polasky (2005) and Tarui and Polasky (2006) assume that firms behave strategically
with respect to the regulator: firms believe that their investment decisions will affect future reg-
ulation. Several paper, including Malueg (1989), Milliman and Prince (1989), Requate (1998),
Requate and Unold (2003), and Karp and Zhang (2002) treat firms as non-strategic. A related
literature discusses the effect of regulation on technology development (Popp 2006), (Jaffe and
Palmer 1997), (Newell, Jaffe, and Stavins 1999), (Taylor, Rubin, and Hounshell 2005). None of
these papers discuss multiple competitive equilibria under command and control, so they do not
consider the relation between the policy instrument and the existence of regulatory uncertainty;
they do not examine the relation between the policy instrument and the equilibrium level of
abatement; nor do they consider the global game application.

2 The model

The model consists of an investment period followed by an abatement period; firms have ratio-
nal expectations. Suppose that firms are identical prior to investment and there is no exogenous
uncertainty; Section 5 relaxes those assumptions. In the first period, each firm makes a binary
decision: it does not invest in a new technology (K = 0) or it does invest (K = 1). The
individual firm’s decision determines that firm’s abatement cost function in the second period.
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The aggregate decisions determine the industry-wide abatement cost function. In the second
period, the regulator chooses the required level of abatement, or equivalently, the allowable
level of emissions, in order to minimize the sum of abatement costs and environmental damage.
There are two possible policy regimes: trade in permits is either allowed or it is prohibited. The
policy regime is known at the investment stage. (However, see closing comments in Section
5.)

For an arbitrary baseline level of emissions ebase and an actual level of emissions e, abate-
ment in the second period is a ≡ ebase − e. The individual firm’s abatement cost, c̃ (a,K), is
increasing and convex in abatement. Investment decreases both abatement costs and marginal
abatement costs.

Define the firm’s benefit of emissions, c (e,K), as the negative of abatement costs: c (e,K) ≡
−c̃ (a,K) . The firm’s marginal benefit of emissions is ce (e,K) ≡ c̃a (a,K), equal to the mar-
ginal abatement cost. The assumptions above imply that c (·) is increasing and concave in e and
decreasing in K, with ce(e, 1)−ce(e, 0) < 0. This inequality implies that the business-as-usual
(BAU) level of emission, the level that satisfies ce(e,K) = 0, is decreasing in K.

The firm’s cost of investment is φ. The fraction of firms that invest is 0 ≤ κ ≤ 1. If
0 < κ < 1, firms are heterogenous in the second stage, when the regulator decides on the level
of pollution permits.

Each (non-atomic) firm is given an emissions allowance of e, independently of whether it
invested. The mass of firms is normalized to 1, so aggregate emissions are e. The damage
function is D(e), an increasing convex function. If firms that did not invest emit at the rate e0

and firms that did invest emit at the rate e1, total emissions are (1− κ) e0 + κe1 = e and social
costs (abatement costs plus investment costs plus environmental damages) are

P
¡
e0, e1, κ

¢
≡ − (1− κ) c(e0, 0)− κc(e1, 1) + κφ+D(e). (1)

This model contains two notable assumptions. The first is that investment is lumpy at the
firm level, but since firms are individually small, investment appears smooth at the societal
level. The second assumption, that the regulator gives each firm the same level of permits, is
consistent with the assumption of ex ante identical firms. In the absence of trade, a regulator’s
ability to condition the endowment of emissions permits on the investment decision would solve
the efficiency problem at the abatement stage. However, that conditioning requires that the
regulator is able to distinguish across firms, and it creates perverse incentives at the investment
stage because firms that invest would receive lower allowances. (Of course, a sufficiently
complex policy solves the investment – or almost any other – problem; but my objective is to
compare the two most likely policy options, not to design an optimal policy.)
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3 The abatement stage

This section establishes that trade in permits might either increase or decrease the socially
optimal level of emissions for a given κ.1 By equalizing heterogenous firms’ marginal abate-
ment costs, trade in permits reduces total (industry) abatement costs for all levels of abatement.
Therefore, trade must lower industry marginal abatement costs for some levels of abatement;
consequently for a range of marginal damages, trade does increase the equilibrium level of
abatement, i.e. it decreases the equilibrium level of emissions. However, the industry marginal
abatement cost curves with and without trade might cross. When this occurs, trade can either
increase or decrease the equilibrium level of abatement, depending on the marginal damage
curve. Roughly speaking, trade reduces equilibrium abatement (increases emissions) when
firms with low marginal abatement costs have steeper marginal costs for some interval of emis-
sions (compared to firms with high marginal costs) and moreover the marginal damage curve
crosses the industry marginal abatement cost curve in this interval.

In the absence of trade, and given the assumption that all firms receive the same level of
permits, all firms emit at the same rate, so e0 = e1 = e. Subscripts denote partial derivatives
and superscripts indicate the firm’s investment decision. Given κ, the first order condition for
the minimization of social costs is

D0 (e) = (1− κ) ce (e, 0) + κce (e, 1) (2)

and the second order condition is

S ≡ −
¡
(1− κ) c0ee + κc1ee

¢
+D00 > 0.

Equation (2) implicitly defines the optimal e∗ as a function of κ: e∗ = e (κ). More investment
(higher κ) reduces the optimal level of emissions:

de∗

dκ
= −c

0
e − c1e
S

< 0. (3)

Now consider the optimal level of emissions in the presence of trade. Trade in permits
equates investors’ and non-investors’ marginal costs, and the price of permits equals this mar-
ginal cost. Let e be each firm’s endowment of permits, and et the equilibrium purchases of
each non-investor – those with higher marginal abatement costs. Since the mass of purchases

1The belief that the cost reductions resulting from the use of efficient policies lead to higher abatement seems to
me widespread. For example, an expert group involved with designing California’s environmental policy writes,
"Properly structured market mechanisms can reduce the costs associated with emissions reductions and climate
change mitigation while reducing emissions beyond what traditional regulation can do alone." (Economic and
Technology Adancement and Advisory Committee 2008), page 2.
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equals (1− κ) et, each of the κ low cost firms (the investors) must be willing to sell (1−κ)e
t

κ
. In

an interior equilibrium, the conditions for quantity (et) and price (p) are

ce
¡
e+ et, 0

¢
= ce

µ
e− (1− κ) et

κ
, 1

¶
(4)

ce
¡
e+ et, 0

¢
= p(e, κ). (5)

Equation (4) implicitly defines the function et = et (e;κ). The assumption that the equilibrium
is interior simplifies the discussion; it means that the price is positive, and the low cost firms do
not sell all of their permits:

ce
¡
e+ et (e;κ) , 0

¢
> 0 and e− (1− κ) et (e;κ)

κ
> 0. (6)

Given κ, the planner’s problem is to choose e to minimize

W (e;κ) = − (1− κ) c
¡
e+ et, 0

¢
− κc

µ
e− (1− κ) et

κ
, 1

¶
+D(e). (7)

Using equations (4) and (5), the first order condition is

D0(e) = (1− κ) ce
¡
e+ et, 0

¢
+ κce

µ
e− (1− κ) et

κ
, 1

¶
= p(e, κ). (8)

Assuming that the planner’s problem is convex, the second order condition holds:

St ≡ d2W
de2

=

− (1− κ) c0ee

³
1 + det

de

´
− κc1ee

³
1− 1−κ

κ
det

de

´
+D00 > 0.

(9)

3.1 Comparison of pollution levels with and without trade, given κ

This section compares the equilibrium levels of pollution permits with and without trade in
permits for a given κ, with 0 < κ < 1. The two levels are equal at κ = 0 or κ = 1, where there
is no incentive to trade, so those limiting cases are not interesting for this analysis.

The individual firm’s marginal benefit of emissions equals its marginal abatement cost. The
social marginal benefit of emissions, G(e;κ, j), j =trade, no trade, equals the industry mar-
ginal abatement cost:

G(e;κ, j) ≡
¡
(1− κ) c0e + κc1e

¢
, j = trade, no trade. (10)

With trade, the two types of firms have the same marginal benefits, p, so G(e;κ, trade) =
p (e, κ). Without trade, the industry marginal benefit of emissions G(e;κ, no trade) is a convex
combination, with weights equal to 1 − κ, κ, of the marginal benefit of emissions for the two
types of firms (those who did not invest and those who did). For some levels of e and κ and
for some technologies, G(e;κ,trade) > G(e;κ,no trade) If this inequality is satisfied at the
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socially optimal level of emissions without trade, then trade increases the socially optimal level
of emissions.

To see that trade can increase industry marginal costs, suppose that initially all firms have e
permits and there is no trade. Now remove de permits from each of the κ firms that invested and
transfer these to the firms that did not invest, each of whom obtain κ

1−κde additional permits.
The change in industry marginal costs is¡

c0ee − c1ee
¢
κde.

Marginal costs increase if and only if c0ee > c1ee. Since both of these quantities are negative,
this inequality means that the marginal cost of firms that invested is steeper than the marginal
cost of firms that did not invest.

Relative to the optimal emissions levels with trade, the optimal levels without trade require
over-emissions by the firms that invested, and under-emissions by the firms that did not invest.
To a first order approximation, both of these departures from the first best outcome result in
welfare losses proportional to the slope of the marginal cost curves, cee. When we transfer a
unit of emissions from a low cost to a high cost firm, the marginal cost of the former increases
by approximately |cee(e, 1)| and the marginal cost of the latter decreases by approximately
|cee(e, 0)|. The two-firm average of marginal abatement costs therefore increases if cee(e, 0)−
cee(e, 1) > 0.

Example 1 contains a situation where the industry marginal cost curves with and without
trade do cross and Example 2 shows a situation where they never cross.

Example 1 Suppose that the marginal benefit of emissions without investment is ce (e, 0) =

1− e for e ≤ 1 and the marginal benefit with investment is ce (e, 1) = 1− be for e ≤ 1
b
, where

b > 1. Marginal benefits of emissions are 0 for e > 1 without investment, and marginal benefits
are 0 for e > 1

b
with investment. The dotted and the dashed lines in Figure 1 graph these

marginal benefits. 2 With κ = 0.5, in the absence of trade the marginal benefit of emissions
is the kinked solid line labelled G (e, 0.5, no trade); for e < 1

b
the slope of this line is 1+b

2

and for e > 1
b

the slope is 1
2
. With trade, the equilibrium level of trade is et = b−1

b+1
e and the

marginal social benefit of emissions is the straight line labelled G (e, 0.5, trade), with slope
2 For this specification, the firm that invests would, in the absence of trade, not use emissions permits in excess

of 1b , so those permits would create no additional environmental damage. We can make one of two modifications
in order to use this functional form to study either the investment or the abatement decision: (i) choose the marginal
damages such that in equilibrium e < 1

b for all values of κ with or without trade (ii) perturb the marginal benefit
for the investing firm so that this firm has positive marginal benefits for 1b ≤ e < 1 (instead of 0 marginal benefits
as the example assumes). The appendix discusses this example further. In Figure 2 and Example 3 below, I use
the first modification, by making the marginal damage curve sufficiently high.
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1
3 1
b
b
+
−

1 e

1

$

1/b

G(e,0.5,no trade)

G(e,0.5, trade)

.

Figure 1: Dotted and dashed lines show marginal benefit of emissions with and without
investment, respectively. The two solid lines show the social marginal benefit of emissions

with and without trade for κ = 0.5

2b
b+1

> 1. Since 1+b
2

> 2b
1+b

we have G (e, 0.5, trade) > G (e, 0.5, no trade) for small e. For
all emissions levels e < b+1

3b−1 the social marginal benefit of emissions is higher when permits
are tradable. A necessary and sufficient condition for the optimal level of emission with trade
to exceed the optimal level without trade is for the latter to be less than b+1

3b−1 .

Example 2 Let ce (e, 0) = 1 − e as in the previous example, but set ce (e, 0) = b (1− e) with
b < 1. Some tedious calculation shows that for all 0 < κ < 1 trade reduces the social marginal
benefit of emissions and therefore reduces equilibrium emissions.

These two examples show that trade in permits might either encourage or discourage stricter
regulation.

Equation (2) and the first part of equation (8) have the same form, but they have different
arguments. They are identical if et = 0. The following proposition uses this fact to determine
the effect of trade on the equilibrium level of emissions, holding investment fixed; all proofs
are in the appendix.

Proposition 1 Assume that 0 < κ < 1, define e∗ = e∗ (κ) as the optimal level of emissions in
the absence of trade, and define et (e;κ) as the equilibrium level of purchases (under trade) per
non-investing firm for given e, κ. Assume that at e∗ (κ) the with-trade equilibrium is interior,
i.e. the two inequalities in (6) hold. A sufficient condition for trade in permits to decrease the
equilibrium level of emissions (i.e. to lead to stronger environmental regulation) is

∆ (κ, e∗ (κ) , s) ≡ cee(e
∗ + s, 0)− cee

µ
e∗ − (1− κ) s

κ
, 1

¶
< 0 (11)
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for all 0 ≤ s ≤ et (e∗ (κ) ;κ). A sufficient condition for trade to lead to weaker environmental
regulation is for inequality (11) to be reversed for all 0 ≤ s ≤ et (e∗ (κ) ;κ) .

The fact that trade in permits reduces abatement costs implies that the with-trade industry
marginal abatement cost curve cannot lie above the no-trade industry marginal abatement curve
for all levels of emissions. The insight in this section is that the two curves can cross, so that
there can exist intervals over which the with-trade marginal abatement curve does lie above the
no-trade curve. When such an interval exists, there is some marginal damage function D0 (e)

for which trade increases the optimal level of emissions.

4 The investment stage

This section establishes that when permits are not tradable, firms play a coordination game at
the investment stage, leading in general to multiple competitive investment equilibria (only one
of which is constrained optimal) and resulting regulatory uncertainty. In contrast, the unique
investment equilibrium when permits are tradable is socially optimal.

4.1 No trade in permits

When more firms invest (κ is larger), industry marginal abatement costs are lower, so the equi-
librium number of permits is lower (equation (3)). The representative firm takes κ as given.
The firm forms (point) expectations about this parameter, and these expectations are correct
in equilibrium. The firm’s belief about κ (equal to its equilibrium value) affects its optimal
investment decision. In the investment stage, a firm’s net benefit of investing equals the differ-
ence between the costs when it does not invest, −c(e(κ), 0), and the costs when it does invest,
−c(e(κ), 1) + φ. The benefit of investing is therefore

Πnt(κ) = c(e(κ), 1)− c(e(κ), 0)− φ. (12)

(The superscript nt is denotes “no trade”.) Differentiating this expression and using equation
(3) implies

dΠnt(κ)

dκ
=
(c1e − c0e)

2

S
> 0. (13)

A larger anticipated value of κ increases the incentive to invest: the investment decisions are
strategic complements.

The necessary and sufficient condition for multiple equilibria are

Πnt(0) = c(e(0), 1)− c(e(0), 0)− φ < 0 (14)

Πnt(1) = c(e(1), 1)− c(e(1), 0)− φ > 0. (15)
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The net cost of adopting if no other firm adopts is Πnt(0). Inequality (14) implies that a firm
does not want to invest if it knows that no other firm will invest (κ = 0); here the firm knows
that the environmental standards will be lax. The net benefit of adopting if all other firms adopt
is Πnt(1). Inequality (15) implies that it pays a firm to invest if all other firms do so; here the
firm knows that abatement standards will be strict.

If equations (14) and (15) hold there is an interior unstable equilibrium that satisfiesΠ(κu) =
0, where 0 < κu < 1. At κu a firm is indifferent between investing and not investing. This
equilibrium is unstable; for example, if slightly fewer than the equilibrium number of firms
invest (κ < κu), it becomes optimal for all other investors to change their decisions, and decide
not to invest. In summary, we have

Proposition 2 Inequalities (14) and (15) are necessary and sufficient for the existence of two
stable boundary equilibria (all firms or no firms invest) and one unstable interior equilibrium.
If either inequality fails, there exists a unique boundary equilibrium.

If φ is very small, it is always optimal to invest; it is never optimal to invest if φ is very large.
Multiplicity requires that φ is neither very large nor very small.

4.2 The equilibrium value of κ under tradable permits

As is the case without trade in permits, an increase in the number of adopters (larger κ) causes
the regulator to use stricter environmental standards (smaller e). Totally differentiating equa-
tion (8), using the second order condition St > 0, implies

de

dκ
=

c0eec
1
ee

κSt

µ
et

κc0ee + (1− κ) c1ee

¶
< 0. (∗) (16)

(A Referees’ appendix, available upon request, shows the derivations of equations marked by
(∗).)

A larger value of κ has an ambiguous effect on the purchases per non-adopter, et. Totally
differentiating equation (4), the equilibrium condition for quantity traded, implies

det

dκ
=
−∆

St

³
c0ee

κc0ee+(1−κ)c1ee

´
+ 1

κ

κc0ee + (1− κ) c1ee
c1eee

t. (∗) (17)

This equation shows that a sufficient condition for the purchases per non-adopter to increase
with the number of adopters is ∆(κ, e, et) < 0. From Proposition 1, this inequality also
implies that trade in permits leads to tighter environmental regulations, given κ.

The effect of investment on the equilibrium permit price is not obvious. For a given level
of permits, a higher level of investment obviously decreases the equilibrium price. However,
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a higher level of investment decreases the equilibrium level of permits. The first effect always
dominates, so higher κ reduces the equilibrium price of permits:3

dp

dκ
=

c0eec
1
eee

t

St (κc0ee + (1− κ) c1ee)

D00

κ
< 0. (∗) (18)

The cost incurred by the firm that invests, net of receipts from sales of permits, is

−c
µ
e− 1− κ

κ
et, 1

¶
+ φ− p

1− κ

κ
et.

The cost incurred by the firm that does not invest, net of payments from purchases of permits,
is

−c(e+ et, 0) + pet.

The benefit of investing (equal to the cost savings) when trade in permits is allowed is the
difference between these two costs:

Πt(κ) ≡ (−c(e+ et, 0) + pet)−
¡
−c
¡
e− 1−κ

κ
et, 1

¢
+ φ− p1−κ

κ
et
¢
=

c
¡
e− 1−κ

κ
et, 1

¢
− c(e+ et, 0)− φ+ p 1

κ
et.

(19)

(The superscript t denotes “trade”.) Using the equilibrium conditions (4) and (5) the derivative
of the benefit of adoption is4

dΠt

dκ
=

et

κ

dp

dk
< 0. (20)

This inequality states that under tradable permits, investments are strategic substitutes: an in-
crease in the number of other investors decreases the incentive for any firm to invest. The
monotonicity of Πt(κ) implies that for 0 < κ < 1 there is at most one root of Πt(κ) = 0. In
summary:5

Proposition 3 When permits are tradable, investment decisions are strategic substitutes; there
always exists a unique rational expectations competitive equilibrium. The equilibrium involves

3An informal argument explains this result. The equilibrium level of emissions is the same under the cap-and-
trade and the tax policy. The equilibrium permit price in the former equals the equilibrium tax in the latter. Since
greater investment reduces the industry marginal cost of abatement, it must reduce the equilibrium tax – and the
equilibrium permit price.

4The equality in (20) is easiest to derive using the first rather than the second line of equation (19). Note that
Πt(κ) depends on κ via the effect of κ on e, et, the ratio 1−κ

κ , and finally on p(κ). In view of the equilibrium
conditions (4) and (5), the effect via each of the first three channels is 0, so we are left with the effect of κ on
Πt(κ) via its effect on p.

5The first part of Proposition 7 of Requate and Unold (2003) describes the outcome under tradable permits or
taxes, in line with my Proposition 3. I include Proposition 3 so that the analysis here is self-contained, and in
order to make the point that investment decisions are either strategic complements or substitutes, depending on
whether the regulator uses command and control or cap and trade.
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the fraction 0 < κ < 1 of firms investing if and only if there is a solution to the equation
Πt(κ) = 0 for 0 < κ < 1. Therefore, an interior equilibrium exists if and only if

Πt(0) > 0 > Πt(1). (21)

If Πt(1) > 0 then the unique equilibrium is κ = 1, and if Πt(0) < 0 then the unique equilibrium
is κ = 0.

4.3 Trade’s effect on the incentive to invest

Homogenous firms all make the same investment decision under command and control emis-
sions policies. Therefore, firms are homogenous ex post, so there is no apparent efficiency loss
from the prohibition against trade. In contrast, with market based policies homogenous firms
are induced to make different investment decisions, leading to ex post heterogeneity and result-
ing gains from trade. In this sense, the possibility of trade creates the rationale for trade. Of
course, the assumption of ex ante homogenous firms is not realistic, but the point here is that the
anticipation of market based policies is likely to increase firm heterogeneity, via the investment
decision. Command and control policies are more likely to reinforce firm homogeneity.

In order to determine the relation between the levels of investment under command and
control and under market based policies, it helps to see how allowing trade changes the incentive
to invest, in a boundary equilibrium. Recall that e(0) and e(1) are the socially optimal levels
of emissions when κ = 0 and κ = 1, respectively; in these cases, trade plays no role since all
firms have the same abatement costs in the second period. Let et1 be the equilibrium level of
purchases per non-adopting firm in the hypothetical situation where κ = 1 and a “single firm”
(more formally: a set of firms of measure zero) deviates by not investing, and instead buys et1

permits at the equilibrium price p1. The deviating firm obtains the consumer surplus

CS ≡ c(e (1) + et1, 0)− c (e (1) , 0)− p1et1 > 0. (22)

The non-deviating firms (when κ = 1) each sell an infinitesimal amount to the deviating firms6,
receiving infinitesimal producer surplus. This fact and equations (12), (19) and (22) imply

Πt(1) = Πnt(1)− CS < Πnt(1). (23)

The possibility of trade decreases the benefit of investment when κ = 1, because a firm knows
that by deviating and not investing, it obtains consumer surplus.

6This fact implies that the equilibrium price is p1 = ce (e(1), 1) and et1 satisfies ce(e (1)+ et1, 0) = p1. Here
again I assume that the equilibrium is interior, so that the deviating firm abates at a positive level.
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Denote s as the equilibrium level of sales of an adopting firm in the hypothetical situation
where κ = 0 and a “single firm” deviates by adopting, and then selling s permits at price p0.
The deviating firm obtains the producer surplus

PS ≡ c (e (0)− s, 1)− c (e (0) , 1) + p0s > 0. (24)

Non-deviating firms (when κ = 0) each buy an infinitesimal amount7 and receive infinitesimal
consumer surplus. Therefore

Πt(0) = Πnt(0) + PS > Πnt(0). (25)

Inequalities (23) and (25) and the monotonicity of Πt(κ) and Πnt(κ) imply that the curves
must cross a single time. This fact means that there can be large differences between the
investment equilibria with and without trade. For example, the configuration Πnt(0) < 0 <

Πt(1) < Πnt(1) is possible. These inequalities imply that the unique equilibrium with trade
requires κ = 1, but there are two stable equilibria (κ = 0 and κ = 1) without trade. In addition,
it is easy to construct an example for which there is a unique interior equilibrium with trade, but
two boundary equilibria without trade. The only possibility that can be ruled out is that there is
a different unique boundary equilibrium with and without trade. For example, the case where
κ = 1 with trade and the unique equilibrium without trade is κ = 0 violates inequality (23).

4.4 Social optimality and the timing of actions

Several observations follow from the analysis above. First, (as is widely known) when permits
are tradable, the outcome produces the social optimum regardless of whether the regulator
announces the cap before or after firms decide on investment.8 To verify this claim, consider
the social planner who is able to choose both κ and e, allowing trade. This planner wants to
minimize environmental damages plus abatement and investment costs, W (e;κ) + κφ. (See
equation (7).) The first order condition for this problem at an interior solution is

dW (e;κ)

dk
+ φ = −Πt(κ) = 0. (26)

This first order condition is identical to the condition for an interior competitive equilibrium.
The second order condition for an interior equilibrium, dΠt(κ)

dk
< 0, is identical to the condition

that an interior competitive equilibrium is stable. The conditions for a boundary optimum are
the same as the conditions for boundary competitive equilibria.

7Therefore p0 = ce (e (0) , 0) and s satisfies ce (e (0)− s, 1) = p0.
8If the regulator announces an emissions tax before investment, there are in general multiple equilibria to the

investment game; see Proposition 6 in Requate and Unold (2003). This is the situation, noted in the Introduction,
where taxes and cap-and-trade are not equivalent.
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The second observation is that one of the competitive equilibria under command and control
policies is constrained optimal.

Definition 1 The “second best” (or “constrained optimal”) outcome is the socially optimal
level of investment and emissions under the constraint that all firms receive the same number
of permits and firms are not allowed to trade permits.

Proposition 4 (a) In the second best outcome, the planner chooses to have all or no firms invest
(κ = 1 or κ = 0 is constrained optimal). (b) The planner who can credibly commit to the level
of emissions before investment occurs, achieves the second best outcome.

Corollary 1 In the absence of trade, when the regulator announces the emissions ceiling after
investment, one of the competitive equilibria coincides with the second best outcome.

The third observation is that trade in permits eliminates regulatory uncertainty, regardless
of when the regulator announces the level of emissions permits. Without trade in permits,
regulatory uncertainty occurs only when the regulator cannot credibly announce the emissions
level at the investment stage. These claims rely on the uniqueness of the rational expectations
equilibrium with trade, the lack of uniqueness without trade, and Proposition 4.

Finally, trade in permits can increase or decrease the equilibrium level of emissions, re-
gardless of whether investment is fixed or endogenous, and regardless of whether the regulator
announces the abatement level before or after investment. This claim relies on Proposition 1
and on the fact that equilibrium investment without trade can be larger or smaller than equilib-
rium investment with trade.

Figure 2 shows an example of the equilibrium level of emissions as a function of investment
costs, φ, for three scenarios, using the abatement cost functions in Example 1 with b = 1.5

and marginal damage of pollution e. As the equilibrium value of κ ranges from 1 to 0 with
increasing investment costs, the level of emissions ranges from 0.4 to 0.5. The piece-wise linear
curve shows equilibrium emissions when these are tradable. The “interval of multiplicity”
(0.104, 0.127), shown by the heavy line segment, is the range of investment costs for which
there are two investment equilibria (at which e = 0.4 or e = 0.5) when emissions are not
tradable and the regulator announces the cap after investment. The interval of multiplicity
without trade includes all costs for which there is an interior equilibrium with trade.

When emissions are not tradable and the regulator announces emissions before firms invest,
Proposition 4 implies that equilibrium emissions is a step function (not shown). The vertical
line at φ = 0.117 shows the critical investment cost at which the step occurs For costs below
(respectively, above) this level, the regulator announces e = 0.4 (respectively, e = 0.5) and
all firms (respectively, no firms) invest. Under cap and trade the timing of the regulatory
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Figure 2: Piecewise linear curve: Equilibrium emissions with trade. Interval 0.104 < φ < .127:
region of multiple equilibria without trade when regulator announces emissions after investment.

Vertical dashed line: boundary of costs between regions where all or no firms invest when regulator

announces non-tradable emissions before investment. Abatement costs given in Example 1 with

b = 1.5 and marginal damages = e.

announcement is irrelevant. When the regulator announces a non-traded cap before investment,
the equilibrium level of emissions is lower than under cap and trade for low-intermediate costs
(.10667 ≤ φ ≤ .117). For high-intermediate costs (.117 < φ ≤ .125) emissions are lower with
trade. This qualitative comparison holds in general; with trade, emissions is a continuous non-
decreasing function of φ, and without trade (but credible announcements of emissions levels),
emissions is a non-decreasing step function of φ. Moreover, these two functions have the same
domain and range.

The figure illustrates the fact that one of the equilibria in the absence of trade, when the level
of permits is made after investment, is constrained optimal, as Corollary 1 states. It also shows
that taking into account the endogeneity of investment greatly increases the set of parameter
values under which trade has ambiguous effects on the level of equilibrium emissions.

5 Investment as a global game

There are number of ways in which uncertainty changes the equilibrium problem and might
yield a unique equilibrium in the absence of trade, even when the regulator announces the
emissions level after investment. This section examines the setting known as a “global game”,
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following Morris and Shin (2003) Previous applications of global games include models of
currency attacks (Morris and Shin 1998), bank runs (Goldstein and Pauzner 2005) and resale
markets (Karp and Perloff 2005).

Suppose that firm i has investment cost φi = φ̄ + xi where > 0 and xi is a random
variable with pdf p (x). The parameter φ̄ is unknown and all firms begin with a diffuse prior on
φ̄ (a uniform prior over the real line). After observing its private cost, a firm forms a posterior
belief on φ̄. As shrinks toward 0, each firm knows that with high probability all firms have
approximately the same costs, and they all know that all firms know this, and so on with higher
order beliefs.

The equilibrium to this game is a mapping from the signal φi to the action space: {invest, do not invest}.
There is a unique equilibrium to this game, and that equilibrium does not depend on p (x) or
. The unique equilibrium survives iterated deletion of dominated strategies. This equilibrium

can be calculated by determining the optimal action for an agent who receives signal φi and
believes that κ, the measure of agents who invest, is uniformly distributed over the interval
[0, 1]. Without loss of generality, suppose that a firm that is indifferent between investing and
not investing decides to invest.

Using Prop 2.1 in Morris and Shin (2003), a firm wants to invest if and only if its signal φi
satisfies

φi ≤ φc ≡
Z 1

0

(c(e(κ), 1)− c(e(κ), 0)) dκ. (27)

In equilibrium the fraction of firm that invest is

κc ≡
Z φc−φ̄

−∞
p (x) dx.

For φc − φ̄ 6= 0 (an almost-certain event) this fraction approaches 0 or 1 as → 0, depending
on whether φc − φ̄ is negative or positive.

Now consider the problem for the regulator who can choose κ in the first period and then
choose the emissions allowance in the second – maintaining the assumption that there is no
trade in emissions. This regulator obtains a signal φr = φ̄+ rxr where xr is a random variable
with density pr (xr). With slight abuse of notation, denote as φ the regulator’s expectation of
industry-wide average investment costs, conditional on its signal. Since the regulator’s payoff
is linear in investment costs, it minimizes expected total costs by choosing κ and e0 = e1 = e

to minimizeP (e, e, κ) defined in equation (1). As shown in the proof of Proposition 4, this
function is concave in κ; therefore, the optimal investment decision, denoted κs, is always on
the boundary. With the tie-breaking assumption that a planner who is indifferent chooses to
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invest, the decision is to set κ = 1 if and only if

φ ≤ φs ≡ c(e (1) , 1)− c(e(0), 0) +D(e(0))−D(e(1)). (28)

In both the competitive equilibrium and under the social planner who chooses κ directly,
there is a threshold signal, below which investment occurs. Even if the thresholds φc and φs

coincide, the equilibrium amount of investment under this social planner and in the competitive
equilibrium might nevertheless differ. The planner and firms might have different distributions
of signals; in addition, κs is always a boundary value, whereas it is possible that 0 < κc < 1.
However, as noted above, κc approaches a boundary 0 or 1 as approaches 0 (for φc − φ̄ 6= 0).
In addition, if both and r are small, both the firm and the regulator have approximately
the same posterior expectation of φ̄. Thus, if φc = φs, for any ∗ > 0, the probability that
|κc − κs| < ∗ (i.e., that the outcomes are “essentially the same”) can be made arbitrarily close
to 1 by choosing sufficiently small , r.9 In contrast, if φc 6= φs, for sufficiently small , r

there exist values of φ̄ at which |κc − κs| ≈ 1. These observations motivate the comparison of
the thresholds φc and φs. If φc = φs the equilibrium outcomes are “essentially the same” when
the firms and the regulator have essentially the same information ( and r are small). If φc 6=
φs the outcomes are likely to be different even if the firms and the regulator have essentially the
same information.

In this model the externality is associated with emissions, and only indirectly with invest-
ment. The competitive level of investment is socially optimal when the regulator uses market
based methods, such as tradable permits, to correct the emissions externality; the regulator does
not need a second policy instrument to target investment. The use of non-tradable permits re-
sults in a constrained optimum level of emissions, conditional on the level of investment. Why
then does the competitive level of investment not always result in the constrained optimal in-
vestment level, in the case of command and control policies chosen after investment? In the
common-knowledge scenario analyzed in the previous section, we saw that the answer was
simply that there can be multiple competitive equilibria. Corollary 1 shows that one of these
equilibria is constrained optimal (i.e., “second best”), so the other (when it exists) is not con-
strained optimal. However, we know that the strategic uncertainty in the global games setting
induces a unique equilibrium. Since there is a unique equilibrium in the global games set-
ting, the intuition from the tradable permits case seems applicable: If the planner corrects the
emissions externality, the market yields the correct level of investment. The fact that the pol-
icy intervention, under command and control, is only a constrained optimum, does not appear

9In this sentence, “the probability” is a conditional probability, conditioned on the event that nature chooses
φ from a finite connected subset of the real line that includes parts of the dominance regions. Without such
conditioning, “the probability” is not well-defined because agents have diffuse priors over φ.
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relevant. This reasoning leads to the conjecture that φc = φs, an equality that states that the
competitive equilibrium and the social planner’s outcome would differ significantly only if the
firms and the planner have different information (i.e., if or r are non-negligible).

The following proposition confirms this conjecture.

Proposition 5 The two thresholds (in the global game and in the social planner’s problem)
are equal: φc = φs. Therefore, when firms and the social planner have essentially the same
information, the competitive equilibrium and the constrained social optimum are “essentially
the same” (as defined above).

Example 3 Let the abatement costs be as in Example 1 and let emissions damages be D (e) =
δ
2
e2, with δ > b− 1. This inequality insures that for all κ, at the equilibrium level of emissions

a firm that invests has a positive marginal benefit of emissions. The threshold investment cost
in the global game and for the social planner is

φc = φs =
1

2
δ (b− 1) b+ δ + 1

b (b+ δ) (δ + 1)
.

This function is increasing in both b and δ. (The discontinuity in the step function in Figure 2
equals φs.) A larger value of b increases the reduction in abatement cost due to investment. A
larger value of δ decreases the equilibrium level of emissions for all κ. Either of these changes
makes investment more attractive, increasing the threshold level of investment costs.

It is worth emphasizing that, when firms and the planner have essentially the same infor-
mation, the global games equilibrium is (constrained) socially optimal. It is not true that the
global games equilibrium maximizes the expected payoff to the industry. The industry as a
whole would like to have all firms rather than no firms invest, given expected costs φ, if and
only if

φ ≤ φcartel ≡ c(e (1) , 1)− c(e(0), 0). (29)

Equations (28) and (29) show that φcartel < φs. Thus, the global games equilibrium does not
maximize the industry payoff; it maximizes society’s constrained payoff.

The model in this section treats the investment cost φ as the random variable, but there
are many other possibilities. The game described above involves private values of investment
costs, φi. We can also consider the situation where the payoff depends on the common value of
a parameter. For example, with the functions in Example 3, the value to the firm of investing,
for all κ, is an increasing function of δ, because a larger value of δ reduces the equilibrium emis-
sions allowance. Suppose that firms begin with diffuse priors over δ and then each receives a
private signal δi of this common value. With minor changes in assumptions about the distrib-
ution of the signal, we can apply Proposition 2.2 of Morris and Shin (2003) to show that there
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is a threshold equilibrium in this setting, a value δc such that firms invest if and only if δi ≥ δc.
There is also a threshold signal in the social planner’s problem, δs. The parameter δ, unlike φ,
affects the equilibrium level of emissions conditional on κ; δ consequently enters nonlinearly
the firm’s and the social planner’s payoff obtained by substituting in the equilibrium level of
e. However, as and r approach 0, the uncertainty with respect to δ is of no consequence in
either problem. There remains only the strategic uncertainty about other agents’ actions, aris-
ing from the lack of common knowledge; of course this uncertainty is the reason for the unique
equilibrium in the global game setting. Thus, provided that the firms and the regulator have
essentially the same information, the competitive equilibrium leads to approximately the same
outcome as the social planner’s problem; that is, δc = δs.

If there is a public signal about φ (or about δ in the linear example), the competitive equi-
librium might not be unique, and therefore might not duplicate the constrained socially optimal
equilibrium. In the presence of a public signal, uniqueness requires that the private signal is
“sufficiently more precise” than the public signal.

Comments on other types of uncertainty Two alternatives to the global games model stud-
ied above are worth considering briefly. First, suppose that firm i’s investment cost is a draw
from the known distribution p (φ). Unlike in the global game, the firm’s private information
tells it nothing about the other firms’ costs, since the distribution (and all its parameters) are
known at the outset. Brock and Durlauf (2001) provide an example of such a game. As the
support of p (φ) shrinks, firms become more similar, and the game approaches the deterministic
game in the previous section. However, if there is sufficient variability in the private cost, there
is a unique equilibrium.

To illustrate this claim, suppose that φ takes two values, φl and φh with equal probability,
with (known) mean φ̄; moreover, suppose that in the deterministic game there are multiple equi-
libria if φ = φ̄. At one extreme, let φl and φh be very close to φ̄. In this case, it is obvious
that there remain multiple equilibria in the game with uncertainty. At the other extreme, let
φl and φh be sufficiently far from φ̄ so that they both lie in “dominance regions”. In this case
it is obvious that there is a unique equilibrium to the investment game. This example illus-
trates a situation in which uniqueness requires a sufficient amount of uncertainty. In contrast,
in the global games setting, an arbitrarily small amount of uncertainty yields uniqueness. Her-
rendorf, Valentinyi, and Waldman (2000) examine another setting where heterogeneity leads to
uniqueness.

For the second alternative, suppose that firms think that with probability p they will face
command and control and with probability 1 − p they will face cap and trade in the second
period; this is the only source of uncertainty. For p close to 1 investment decisions are strategic
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complements as in section 4.1, and for p close to 0, actions are strategic substitutes as in section
4.2. At a critical level of p the nature of the game flips, and for lower values of p there is a
unique equilibrium to the investment game, instead of multiple equilibria.

6 Conclusion

The fact that market based pollution policies are generally more efficient than command and
control policies is widely understood. However, the argument in favor of market based policies
is sometimes exaggerated, and a different argument in favor of these policies is usually ignored.
Market based – compared to command and control – policies might result in either more or less
abatement, regardless of whether investment is fixed or endogenous and regardless of whether
the regulator announces the level of permits before or after firms invest.

However, market based policies do reduce regulatory uncertainty. Under command and
control policies, the lumpiness of investment and the fact that future environmental policies
(optimally) depend on previous levels of investment, imply that there can be multiple rational
expectations equilibria. From the standpoint of individual firms, this multiplicity looks like
regulatory uncertainty. Market based policies eliminate this multiplicity of equilibria.

Because command and control policies create incentives for firms to make the same invest-
ment decision, these policies tend to reinforce firm homogeneity. This ex post similarity may
make it appear that the prohibition against trade in permits is unimportant. In contrast, market
based policies encourage firms to make different investment decisions, thus creating or increas-
ing firm heterogeneity, and increasing the efficiency gains from trade. The possibility of trade
creates or increases the rationale for trade.

The potential regulatory uncertainty arises only when the regulator conditions emissions
level on the previous aggregate investment, i.e. on the current industry abatement cost curve.
If the regulator is able to credibly commit to an a level of (command and control) emissions
before investment, there is obviously no regulatory uncertainty, and there is consequently a
unique investment equilibrium. This competitive equilibrium involves all firms or no firms
investing and is constrained optimal.

The potential regulatory uncertainty, when command and control policies are conditioned
on past investment, depends on firms having common knowledge about market fundamentals.
Even a small amount of private information about a market fundamental, such as average invest-
ment costs or the slope of marginal damages, leads to a unique equilibrium in the investment
game. Importantly, this equilibrium is constrained socially optimal: it reproduces the invest-
ment and abatement outcome selected by the regulator who (in the absence of trade in permits)
can choose investment and emissions directly, or equivalently, the regulator who can choose
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the level of emissions permits before firms invest. Thus, in the “global games setting ” (i.e.
without common knowledge about market fundamentals) command and control policies create
no regulatory uncertainty, but they continue to result in inefficient investment and abatement
(relative to the first best).

These observations are interesting to the field of environmental economics, and regulatory
economics more generally. They are of particular interest given the discussion of climate
change policies occurring at all governmental levels. California’s AB32 is a striking example.
This law explicitly recognizes that future emissions levels will be conditioned on future contin-
gencies. It leaves open the possibility of using market based policies, without embracing those
policies. There is still opposition to market based policies, so economists should be clear about
what they do – and do not – achieve.
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Appendix: Proofs
Proof. (Proposition 1) Figure 3 shows the graph of G(e, κ, no trade) (the negatively sloped

solid curve) and the level of e∗. Trade decreases the equilibrium level of emissions if and
only if G(e∗, κ, trade) < G(e∗, κ, no trade), as shown by the curve labelled “A”. If G(e∗, κ,
trade) > G(e∗, κ, no trade), as shown by curve labelled “B”, trade increases the equilibrium
level of emissions.

Define
G̃(e, κ, s) ≡ (1− κ) ce(e+ s, 0) + κce

µ
e− (1− κ) s

κ
, 1

¶
,

the social marginal benefit of emissions given e, κ and permit purchases of level s (per non-
investing firm). Using this definition, G̃(e, κ, s) = G(e, κ, trade) for s = et (e, κ), and
G̃(e, κ, s) = G(e, κ, no trade) for s = 0.

Thus,

G(e;κ, no trade)−G(e;κ, trade) = G̃(e, κ, 0)− G̃(e, κ, et) =

−
R et
0

∂G̃(e,κ,s)
∂s

ds = − (1− κ)
R et
0

³
cee(e+ s, 0)− cee

³
e− (1−κ)s

κ
, 1
´´

ds.

(30)

Evaluating this expression at e = e∗ (κ) implies the sufficient conditions in the Proposition.

Discussion of Proposition 1 In Figure 3, in the absence of trade the equilibrium level of
emissions is e∗ and the industry marginal cost equals x. In order to determine the effect of
introducing trade, consider the following question: If the per firm endowment of permits were
set to e∗, and firms were allowed to trade, would the price of permits be higher or lower than
x? If the market price is higher under trade, e.g. if the price equals y > x in Figure 3, then the
industry marginal cost curve with trade must lie above the industry marginal cost without trade
in the neighborhood of point e∗. In that case, the industry marginal cost with trade “resembles”
the curve labelled B in Figure 3, and the optimal level of permits under trade is greater than
e∗. If the market price is lower under trade, e.g. if the price equals z < x when e = e∗, then
the industry marginal cost curve under trade must lie below the industry marginal cost without
trade (at least in the neighborhood of point e∗). In that case, the industry marginal cost with
trade “resembles” the curve labelled A in Figure 3, and the optimal level of permits under trade
is less than e∗. In short, trade in permits shifts down the industry marginal cost curve (to a
location such as A in Figure 3) if and only if the equilibrium price, under trade, is lower than
the industry marginal cost without trade. That marginal cost equals a convex combination of
the two types’ marginal abatement costs.
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Figure 3: Comparison of emissions level for given 0 < κ < 1, without trade (solid curve) and
with trade (curves labelled A and B).
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Figure 4 helps in describing the circumstances under which the equilibrium (with-trade)
permit price is greater or less than the industry marginal cost without trade, holding the aggre-
gate level of permits fixed at e∗. The figure graphs the demand function for permits and two
possible supply functions, labelled “high” and “low”, representing different assumptions about
the abatement technology. The firms that did not make the investment buy permits, so their
marginal cost falls with et. Firms that made the investment sell permits. Under the “low” sce-
nario, investment causes a large fall in marginal abatement costs. Under the “high” scenario,
investment causes a smaller fall in marginal abatement costs. Firms that do not invest have the
same marginal cost in both scenarios, so Figure 4 shows a single demand curve. In the absence
of trade (et = 0), the two types of firms have marginal abatement costs a (0) and a (1).

For simplicity, Figure 4 embodies two assumptions. First, κ = 0.5; second, the intercept of
the adopter’s marginal cost, a (1), is the same in the high and the low scenario; the linearity of
the curves is not significant. The social marginal benefit of emissions without trade is a(0)+a(1)

2

for this particular value of e and for κ = 0.5. If the investor’s marginal benefit curve is “low”,
the equilibrium price is lower than a(0)+a(1)

2
. This possibility corresponds to curve A in Figure

3. Here the volume of trade is high, and the price is low when permits are tradable. In this
case, trade reduces the equilibrium level of e, for given κ. Trade has the opposite effect in the
“high” scenario. There the volume of trade is low and the price is high; trade increases the
equilibrium level of e for given κ.

For this linear example, trade increases the social marginal benefit of emissions, thereby
reducing the equilibrium level of emissions, if and only if the investors’ marginal cost curve is
steeper than the non-investors’ curve. Figure 1 and Example 1 insure that this relation holds
for sufficiently small e. In that example, the slope of the noninvestors’ marginal cost curve is
1, and the slope of the investors’ curve is b > 1 for e < 1

b
.

This graphical analysis helps to understand why trade might either increase or decrease
the equilibrium aggregate level of emissions, for a given κ. The optimal level of emissions
depends on a comparison of marginal damages and the aggregate marginal abatement cost. In
the absence of trade, the aggregate marginal abatement cost is simply a convex combination of
the marginal abatement costs of investor’s and non-investors, and therefore (given κ) it depends
only on the level of the marginal abatement costs of the two types of firms. With trade, firms’
emissions do not equal their endowment. Trade equalizes marginal costs for the two types of
firms, and the equilibrium level of marginal costs depends on the slopes (not just the levels) of
the two marginal costs, as Figure 4 illustrates.

Propositions 2 and 3 are merely summaries of results shown in the text, so formal proofs
are not shown.
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Proof. (Proposition 4) Part (a) follows from the concavity of the planner’s objective func-
tion: social costs P (e0, e1, κ), given in equation (1), subject to the constraint that e0 = e1.
Using the fact that e is chosen optimally, equation (3), and the fact that investment decreases
marginal abatement costs (ce(e, 0) − ce(e, 1) > 0) the second derivative of P (e0, e1, κ) with
respect to κ is

(ce(e, 0)− ce(e, 1))
de

dκ
< 0.

Therefore, the planner’s objective is concave in κ; the optimal κ is either 0 or 1.
The constraint mentioned in part (b) is that trade in permits is not allowed. To establish

part (b), suppose that the constrained optimal level of investment is κ = 1. (The proof is similar
when it is optimal to have κ = 0.) This hypothesis implies

−c(e (0) , 0) +D(e (0))−D(e (1)) > −c(e (1) , 1) + φ (31)

. This inequality states that the difference, under no investment and under full investment, in
the sum of the abatement cost and environmental damages, exceeds the cost of having all firms
invest, φ. If the planner credibly announces e∗ (1) at the investment stage, the individual firm
does not care what other firms do, and does not invest if and only if

−c(e (1) , 1) + φ > −c(e (1) , 0). (32)

Both inequalities (31) and (32) hold if and only if

D(e (0))− c(e (0) , 0) > D(e (1))− c(e (1) , 0). (33)

Inequality (33) is false because by definition e (0) minimizes social costs conditional on κ = 0.

Proof. (Corollary ) The corollary is trivial when there are two multiple competitive equi-
libria, because these are both on the boundary, as is the second best outcome. The proof of
Proposition 4b establishes the corollary when there is a unique competitive equilibrium.

Proof. (Proposition 5) The statement requires that the right sides of inequalities (27) and
(28) are equal. Use integration by parts to write

φc =
R 1
0
(c(e(κ), 1)− c(e(κ), 0)) dκ =

((c(e(κ), 1)− c(e(κ), 0))κ) |10 −
R 1
0
κ (ce(e(κ), 1)− ce(e(κ), 0))

de∗

dκ
dκ.

(34)

Define
g (κ) ≡ (1− κ) ce (e (κ) , 0) + κce (e (κ) , 1) .
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Equation (2) states that g (κ) = D0 (e (κ)). Use this relation and make a change of variables in
the equation defining φs to write

φs = c(e (1) , 1)− c(e(0), 0) +D(e(0))−D(e(1)) =

c(e (1) , 1)− c(e(0), 0)−
R e(1)
e(0)

D0 (e) de =

c(e (1) , 1)− c(e(0), 0)−
R 1
0
D0 (e) de

∗

dκ
dκ =

c(e (1) , 1)− c(e(0), 0)−
R 1
0
g (κ) de

∗

dκ
dκ.

(35)

Subtracting these two equations give

φc − φs =

((c(e(κ), 1)− c(e(κ), 0))κ) |10 −
R 1
0
κ (ce(e(κ), 1)− ce(e(κ), 0))

de∗

dκ
dκ−³

c(e (1) , 1)− c(e(0), 0)−
R 1
0
g (κ) de

∗

dκ
dκ
´
=

c(e(0), 0)− c(e(1), 0) +
R 1
0
ce (e (κ) , 0)

de∗

dκ
dκ =

c(e(0), 0)− c(e(1), 0) +
R e(1)
e(0)

ce (e (κ) , 0) de = 0.
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Referees’ appendix: derivation of "starred" equations

Derivation of equation (16) (the effect of k on the equilibrium level of emissions with
trade): I begin by showing how κ affects the volume of trade for given e. Differentiating
equation (4) with respect to et and κ, holding e fixed, implies10

∂et

∂κ
=

c1ee
κc0ee + (1− κ) c1ee

µ
et

κ

¶
> 0. (36)

If there are more adopters (larger κ) then each non-adopter buys more permits, holding fixed the
aggregate supply of permits, e. Hereafter I use the definition of ∆ = ∆ (k, e, et) from equation
(11), i.e. we set s = et. Differentiating the planner’s first order condition, equation (8) implies

de

dκ
=

(1− κ)∆∂et

∂κ
− (c0e − c1e) +

et

κ
c1ee

St

=
(1− κ)∆∂et

∂κ
+ et

κ
c1ee

St

The second equality uses equation (4). Using equation (36) to eliminate ∂et

∂κ
and simplifying

produces equation (16).

Derivation of equation (17) (the effect of k on equilibrium purchases per non-adopter) I
begin by totally differentiating equation (4), again setting s = et and using the definition of
∆ (k, e, et) from equation (11).

det

dκ
=
−
³
∆ de

dκ
− c1ee

et

κ2

´
c0ee + c1ee

1−κ
κ

=

³
−∆c0eec

1
ee

κSt

³
et

κc0ee+(1−κ)c1ee

´
+ c1ee

et

κ2

´
c0ee + c1ee

1−κ
κ

The second equality uses equation (16). I obtain equation (17) from simplification.

The effect of investment on the equilibrium price of permits I begin with an intermediate
result. Differentiating equation (4) (holding κ fixed) implies

det

de
= − κ∆

κc0ee + (1− κ) c1ee
.

10Recall the meaning of superscripts. These indicate that the function is evaluated at arguments corresponding
to the type of firm (non-investor or investor). For example c1ee = cee

³
e− (1−κ)et

κ , 1
´

.
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Substituting this result into the expression for c0ee + St yields

c0ee + St =

c0ee +
³
− (1− κ) c0ee

³
1 + det

de

´
− κc1ee

³
1− 1−κ

κ
det

de

´
+D00

´
=

κc0ee

³
1− 1−κ

κ
det

de

´
− κc1ee

³
1− 1−κ

κ
det

de

´
+D00 =

∆κ
³
1− 1−κ

κ
det

de

´
+D00 =

∆κ
³
1 + (1−κ)∆

κc0ee+(1−κ)c1ee

´
+D00 =

∆κc0ee
κc0ee+(1−κ)c1ee

+D00

(37)

With slight abuse of notation, write p = p(κ) = p(e(κ), κ). Totally differentiating equation (5)
and using equations (16), (17), and (37) implies

dp
dk
= c0ee

³
de
dκ
+ det

dκ

´
=

c0ee

Ã
c0eec

1
ee

κSt

³
et

κc0ee+(1−κ)c1ee

´
+

∆
St

c0ee
κc0ee+(1−κ)c1ee

+ 1
κ

(κc0ee+(1−κ)c1ee)
c1eee

t

!
=

c0eec
1
eee

t

St(κc0ee+(1−κ)c1ee)

³
c0ee
κ
+
³
−∆

³
c0ee

κc0ee+(1−κ)c1ee

´
+ St

κ

´´
=

c0eec
1
eee

t

St(κc0ee+(1−κ)c1ee)

³
c0ee+S

t

κ
− ∆c0ee

κc0ee+(1−κ)c1ee

´
=

c0eec
1
eee

t

St(κc0ee+(1−κ)c1ee)

³
∆c0ee

κc0ee+(1−κ)c1ee
+ D00

κ
− ∆c0ee

κc0ee+(1−κ)c1ee

´
c0eec

1
eee

t

St(κc0ee+(1−κ)c1ee)κ
D00 < 0

(38)
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