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An Open-Access Fishery with Rational

Expectations

Abstract

How potential entrants to an open-access fishery form their expectations
determines the fishery’s adjustment path to a steady state but not the steady
state values themselves. It is well known that∼ in the standard model with
myopic expectations (those based on current values), boats enter the fishery only
when the fish stock is greater than its steady state stock. We show that, with
rational expectations (perfect foresight), however, boats may enter when the fish
stock is much lower than its steady state value if the boat fleet is sufficiently
small. This paper contrasts myopic and rational expectations within a general
dynamic model of an open-access fishery.
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flu~ OPEN-ACCESS FISHERY WlrH RATIONAL EXPECTATIONS

PETER BEReK A~ JEFFREY M. PERLOFF



AN OPEN-ACCESS FISHERY WITH RATIONAL EXPECTATIONS

Abstract

How potential entrants to an open-access fishery form their expectations

determines the fishery's adjustment path to a steady state but not the steady

state values thelDselves~ It is well known that~ in the standard model with

myopic expectations (those based on current values), boats enter the fishery

only when the fish stock is greater than its steady state stock. We show that,

with rational expectations (perfect foresignt), however, boats may enter when

the fish stock is much lower than its steady state value if the hoat fleet is

sufficiently small. This paper contrasts myopic and rational expectations

within a general dynamic model of an open-access fishery.



A~ OPEN-ACCESS FISHERY WITH RATfONA.L EXPECfATIONS

BY PETER BEReK k~D JEFFREY M~ PERLOFFI

I c I NTRODucrION

Since the stock of fish changes slowly~ a model of an open-access fishery

must explain the evolution of the fish stock and the boat fleet as well as

determine their equilibrium levels. 2 While the changes in the fish stock

are described by a biological rule J entry and exit from the fishing industry

are determined by how expectations are formed~ We examine a general model in

which entry and exit are proportional to the present value of expected profits

and compare two special cases of adaptive (myopic) expectations and rational

expectations.

Although both expectations mechanisms lead to the same equilibrium values,

they lead to different adjustment paths. Where expectations solely depend on

current values (myopic expectations), it is well known that boats enter the

fishery only when the fish stock is greater than its steady state stock. 3

With rational expectations, however, boats may enter when the fish stock is

much lower tnan its steady state value provided the boat fleet is sufficiently

small. This difference in adjustment is observable and) in principle, leads

to an obvious test on how agents form expectations.

Section 2 develops a general dynamic model for studying fisneries. In

Sectioi) 3, we show that the model standardly used in the literature is cquiva-

lent to a myopic, adaptive tations model. A rational expectations model

is dlYl!yzed in Section 4. Tile ~tandard and rational expections models ;:l((; com-

par~d In Section 5. Section 6 illustrates this conparlson using a simulation
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based on a Schaefer model of the Pacific halibut fishery. Section 7 presents

the conclusions.

2. At\I OPEN-ACCESS FISHERY

In this section, we develop a general dynamic version of Gordon's f12]

open-access fishery model which describes the evolution of the fish stock, x,

and the boat fleet, S, over time~ In the next two sections, we show that the

standard model and the rational expectations model are special cases of this

general model.

The change in the fish population, i, is its natural rate of growth, f(x),

less the fish catcho4 The natural growth fuoction~ f(e), is assumed to be

positive on the open interval (O,K), where K is the carrying capacity of the

fishing grounds (the largest possible fish population) and zero at x = 0 and

K.. 5 The function is assumed to be analytic and ft' < O. A version widely

used in en~irical studies is the logistic function popularized by Schaefer

[16]: gx(l - x/K), where g, a positive constant, is the ("intrinsictt
) growth

rate for small levels of x ..

It is commonly asslnned that each boat catches an amount of fish per unit

time Which is proportional to the stock of fish~6 By appropriate choice of

the units of measurement of boats, the proportionality constant may he set

equal to one so that the total catch per unit time is just sx. 7 Given these

assumption~, the growth rate of th8 population is

(1) i = f(x) - 5X.

The Llte of change of the boat fleet is assumed to be proportional to the

present value DE expected quasi rents, y. Letting &he th~ constant of

. 1 '- 8proportlona>-lLy,



( 2) '"s = oy~

Toe present value of expected quasi rents,

edepends on the real rate of interest, r~ and the expected quasi rents, Tf (z),

at each in5tant~ Ze Since the catch per boat is x, the revenue per boat is

px, given a fixed price, pe Taking per boat costs, c, as fixed per unit of

time, actual quasi rents are n(z) = px - c at time Zo

Equations (1) to (3) describe a very simple fishery model for general

expectations. In the next two sectioos t special cases of myopic and rational

expectations are examined.

3. lliE STAtJ.ffiARD MODEL

Following Smith [17, 18], virtually the entire dynamic fisheries litera-

ture has assumed that entry is proportional to current profits. Beddington,

Watts, and Wright [2], Berck [3J, Leung and Wang [14J, and others use this

model to examine extinction and other issues while Clark [7], Mohring [lSJ,

Smith t 17, 18), and Southey [I9J, among otners, compare this model to an

optimal exploitation model.

Since both fisheries and boats exist for long periods of time, a more

natufd t approach is to assurn~ that potential entr3nts hase their entry decision

on the present value of profits (quasi rents) where they use current profits

as a (adaptive) estim>1te aE future profits. That is, expected profits,

are equal to current profits, net), for all z > to Making this substi-

tution, equation (3) beCOff1eS



(4) yet) = net) = px - c
r r
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Substituting equation (4) into equation (2), we obtain

( 5) set) o::: - (px - c) ..r

Equation (5) is formally equivalent to the models of Smith (17] and others who

assume that entry is proportional to instantaneous profits where their constant

of proportionality is olr, in our terms. Equations (1) and (5) constitute

the standard model.

It has been shown (cf., Clark [7}) that the standard model has an equi­

librium at x:;: 0 and 5 ::: 0 described by x* ::: c/p and s* :;: f(x)/x, which for

fee) logistic is s* = gel - c/pK). The nature of the equilibrium is deter-

mined by finding the eigenvalues of a linearized version of the system (1) and

(5) about the equilibrium, (x*, 5*):

(6) (~) ::: (f t

(x*) - 5*

As .2£
r

where bx ::: x - x* and ~s = s - s*. This differential system is subject to

toe initial conditions that Xo and So are given.

The eigenvalues of this linearized system are

(7)

wh~re 3 :-: ft (x*) - s* and m ::: -x*pO. Li mi t i og the model to those in tvhich a

is negatIve (such as the logistic, where a := -gx*/K)) the equilibrium is a

stat)Le node if a2
+ 4m/r > 0 and a stable vortex (stable focus) if a2

+ 4,n/r < 0. 9
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4~ THE RATIONAL EXPECTf\TIONS rvlODEL

Entrepreneurs in the rational expectations or perfect foresight fishery

model base their entry decision on a correct estimate of all future ouasi

rents~ Since their decision depends not just on the current eatcn but also on

future ones, the rational expectations model is mathematically different from

the myopic model in a fundamental manner. In this section, we show that the

rational expectations model can be described by a three-equation, autonomous

differential equation system. By finding the eigenvalues of the Jacobian

matrix of the system linearized ahout its equilibrium, we show that the s01u-

tioo patns near the equilibrium are restricted to lie on a two-dimensional

manifold in the three-dimensional phase space. A phase space is then used to

show tne location of the manifold relative to the standard (x,s) plane.

Finally, we use standard methods for plane autonomous systems to char3cterize

toe equilibrium point.

In the rational expectations or perfect foresight model, ~e(z) ; n(z).

Tnus, the present value of expected profits, y, equals the present value of

realized profits, or

(8) yet) = ~ e-r(z - t) {px(z) - c]dz,

wnich) on taking the derivative with respect to time) uives,;,

(9) y ry - (px - c) ~

Of course, SOfTie information is Just in moving from eqlJ,Jti'Ji1 (8) to (9): only

(8) inclu\..L~s a value for yCO).
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As before, boats enter in proportion to the expected present value of

quasi rents,

(10) •s == oy,

and the equation for the evolution of the fish stock is, as before)

(11) x== f(x) - sx.

Toe rational expectations model is the three-equation system--equations (9),

(10), and (ll)--together with the initial conditions, Xo and So given" and

yeO) chosen to satisfy the integral equation (8)0

Tne first step in analyzing this model is to linearize equations (9), (10),

and (11) about their equilibrium. As in the standard model, the single non­

zero equilibrium, (x == s == y == 0), is given by x* == c/p, s* == f(x*)/x*, and,

additionally, y* == O. The linearized model is

(12) ==

f' (x*) - s*

o

-p

-x*

o

o

o

~

r

The Jacobian matrix in equation (12) is J, and its characteristic polynominal

i $,

(13) H(A) == ~3 - (a + r)~2 + arA + m,

where n a = f!(x*) - 5* and m = -x*p8. Toe $1 s of the real parts and

the eXlstence of imaginary parts of the eigenvalues of J [which are the roots

of H(),J J determine the nature of the equilibrium of the rational expecta-

tions
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PROPOSITION 1: There are two eigenvalues (possibly real) with negative

real parts and one positive eigenvalue.

The proof is shown in fOUf stepsp First, either all the roots are real or

there is one real root and a complex conjugate pair. This result is a simple

consequence of the Fundamental Theorem of Algebra (Albert [1]) p. 148) and can

also be shown from Tartaglia's formula for the solution of a cubic (Beyer [S]s

p. 9). Let Al be the real root; the other two roots may be real as well.

Second, there are either: (a) three positive roots, (b) one positive and

two negative roots, or (c) one positive root and a complex conjugate pair.

The product of the roots equals the negative of the determinant of J (Beyer

[S]t pp. 9-11) which is positive: A1AZA3 = -m > O. Therefore, none of the

roots can be zero. If all three roots are real, then (a) and (b) are the only

possibilities. If two of the roots, A2 and A3, form a complex conjugate

pair J then the remaining root must be positive because the product of a com-

plex conjugate pair is always positive. Since there is always one real posi-

tive root, let it be AI-

Tnird, there is exactly one positive real root; possibility (a), that

there are three positive roots, can be rejected. Descartes' rule of signs

states that the number of positive roots of H(X) cannot exceed the number of

variations in sign of the terms of He).) when A. is taken to be a positive

number (Davis [Ill, D. 228). The coefficients of the A3 , A) 30d constant

terms of H(A) [1, ar« 0), and m« 0), respectively} all hav~ determinate signs,
? -

but the sign of the coefficient on the ~~ term [-(a + r)] is indeterminate. If

a + r < 0, the sign ~ittern is (+,+,-,-); hhile, if a + r > 0, the pattern is

(+t-,-,-)e With either sign of a + r, there is exactly one change in the sign
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pattern so that there is at most one positive root. From the second point

above, there is at least one positive root, so there is exactly one positive

root.

Finally, if two of the roots are a complex conjugate pair, their real parts

are negative. The sum of the pairwise products of the roots of H is equal to

the coefficient of the linear term of H(o) (Beyer [5], p. 35):

Let zl be the real part and z2 be the imaginary part of the complex conju­

gate roots. Substituting into equation (14) and rearranging gives

2 2
zl + Zz

z1 < - 2A
1

wnich shows that z1' the real part of AZ and A3' is negative since zi, z~,

and Al are all positive. This step completes the proof.

Much is known about dynamical systems whose linear approximations about

tne equilibrium have eigenvalues as described in Propostion 18 The next propo-

sition summarizes the relevant properties.

PROPOSITION 2: For any large to' there exists in (xts,Y) space (1) a

real analytic t;vo-dimensional manifold, S, containing the eql1flibrium,

(X*,S*,O), such that any solution (x,s}y) \vhich is on S at to satisfies

(x,s,y) + (x*,s*,O) as t + m, and (2) a one-dimensional analytic manifold,

U, also containing the equilibriuiD sue!) that (x,s,y) .)- (x*)s*,O) as t -+ -co.

Further~ the eigenvector associated with ~l is tangent to U at (x*,s*,O).
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Rb\~\RK: Heuristically, U is an unstable manifold in the sense that solu-

tioos that start on U other than at the equilibrium diverge from the equi-

librium as t -+- 00.

Since the system (9)-(11) is analytic and one eigenvalue is positive while

the other two have negative real parts, this proposition follows from Theorems

4.1 and 5.1 and a corollary to Theorem 5~1 in Coddington and Levinson [91 and

Theorem 6.17 in Irwi n [13).

Tne next task is to locate the stable manifold, $, in (x,s,y) space.

Figure 1 is the phase diagram in (x,s,y) space. IO The figure measures y

vertically so that the horizontal plane is (x,s,O). The three separatrices

are described by: (1) x= 0, the plane (x,f'(x),Y); (2) 5 = 0, the plane

(x,s)O); and (3) ~ = 0, the plane (x,s,(px-c)/r). The intersection of these

three planes is the unique, nonzero equilibrium point E = Cx*,s*,y*) which, in

the Schaefer model, is (c/p,g(l - c/pkJ,O). The three separatrices divide the

phase space into eight sectors (numbered from 1 to 8 in Figure 1). Table I

gives the direction of travel of a solution patn in each of these sectors.

Since S is analytic, on a small enough neighborhood of E, a plane tangent

to S at E can approximate S arbitrarily closelyQ In this neighborhood of E,

the tangent plane enters only six of the sectors~ It does not intersect sec­

tors 3 and 8 because these are terminal isosectors (paths that enter these

sectors remaIn in theJj] and cannot reach E). For instance, sector 3 is terminal

b~C3u~e a trajectory c~nnot exit through its boundary which consists of parts

~ • 0or tnt::; y:::: , S ::: 0, 3nJ ; ::::: 0 planes. Since sector .J is beloW' (has smaller y

tiL±nJ the 5 ::: 0 ptane ,clnd y is negativ~ in sector 3, a trajectory cannot exit

th ruU~;f1 thi s plane. Th~ same type of argnrneot shows the trajectory cannot

c through tlle (Jt:h~~i th'O planes on the hOt;f1dary and shows that sector 8
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Fig uret. Rat ion atE xpeetat ion s r'110 del Ph a seD ia9r G m (Sch aefer Examp!e)

Note: r:- - ( * *' \ '*, - (S- [1- ~] n \,..... - X \ S ,y I -- P' 9 pK 7 u )

Reg ion 7 is not 5 hown. From t his ang Ie, reg ion 7 lie s be to \\1 S :: 0,
to the left of y=0, and to-rherightof x=0.
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TABLE I

Phases

Heurlstic
Sector x s y description

1 + + + Goes to 4 or to
8 tenninal

2 + + May directly
approach E or
goes to 1 or 3

3 + Trapped in this
region

4 + + Goes to 3 (ter-
minal) or to 5

5 + May directly
approach E or
goes to 6 or 8
(terminal)

6 Goes to 3 (ter-
minal) or to 7

7 Goes to 2 or to
8 (terminal)

8 + + Trapped in this
region
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is also terminal. The tangent plane must intersect sectors 2 or 5 since. as

Table I shows, these are the only sectors from which paths can actually

reach E and the lim (x,s,y) = Be
t+cn

Exclusion of the tangent plane from two sectors and inclusion in two

others almost places the plane in the phase space. It remains to show that

the plane does not include the line (c!p,s,O), the locus of zero present

value, and instantaneous profits~ A trajectory that begins on that line

(other than at E) at time to must enter sector 4 and then return to the line

through sector 5 at time t l • By definition,

- r( z - t 1 )
= y(tl) + J; e (px - c) dz.

1

But y(t1) = y(tO) and the integral is everywhere positive (px > c) on

sectors 4 and 5 which is a contradiction. Thus, the tangent plane cannot

include the zero profit line.

Since the tangent plane cannot intersect sectors 3 and B, it cannot be

parallel to the y = 0 plane so it must intersect the y = 0 plane. To avoid

entering the terminal sector 3, at least one point on the tangent plane must

be interior to sector 4. The equilibrium, E, gives us a second pointp A

third point must be in sector 2 or 5 by the earlier argument~ These points

fix the location of the tangent plane as shown in Figure 1. Since S is

arbitrarily close to the tangent plane on a small enough neighborhood of E) S

enters th8 saine sectors as the tan;ent plane on tha t nei ghborhoocL
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Thus, S is included in all sectors except 3 and 8~ In contrast, U lies

only in sectors 3 and 8. We first show that the tanget to U at E lies in

these sectors. Since Al is the only eigenvalue of J with a positive real

part J L(t) = bleAltVl (where b1 is nonzero and vI is the eigenvector correspond­

ing to the positive eigenvalue~ AI) is the solution to equation (12) tangent to

U. Since vI is an eigenvector, Let) = AIL(t) = AleAltblvl. Thus, if bI > 0,

each element of the vector Let) has the same sign as the corresponding element

of vl~ If b1 < 0, L(t) has the opposite sign.

By a process of elimination, it is possible to show that L(t) must be in

sectors 3 or 8. For example, a vector in sector 8 is displaced from the eQui­

librium (Ax,~s,AY) negatively in the x direction (AX < 0), positively in the s

direction (~S > 0), and positively in the y direction (~y > 0); so the sign

pattern of vI if it were in sector 8 would be (-,+.+). As shown in Table I,

the sign pattern of Let) in sector 8 is also (-,+,+), so vI can be in sec-

tor 8. Repeating this type of argument for the other seven sectors shows that

vI can only be in sectors 3 and 8. Since L is tangent to U at E, U is in

sectors 3 and 8 near E~ Furthermore, since sectors 3 and 8 are terminal sec~

tors, U is only in sectors 3 and 8.

PROPOSITION 3: No solution to equations (9)-(11) except E itself lies on

U or in sectors 3 or 8.

In sector 8, -(px-c) > 0, so y always grows at least as fast as ry; that

is, y grows at least exponentially. But no solution can hav2 this property

because the largest possible value for y is (pK-c1/r. A silDi13r argument (y

cannot be smaller tnan -e/r) can be used to eliminate sector 3.
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Althougn the solution space for system (12) appears to be three­

dimensional, the choice of yeO) condition for the original problem forces the

solution to lie on a two-dimensional manifold approximated by a plane near the

equilibrium point. The initial conditions, Xo and sO' by themselves do

not completely determine whether the starting point is on S or U or on neither

manifold. The position of L(O) in ~3 is also dependent on yeO) which is

determined by the integral condition (8). The following two propositions limit

L{O) to be (1) on S in a neighborhood of E and (2) glohallY7 not to be on

U - {E}.

PROPOSITION 4 (Local Asymptotic Stability Theorem): All solutions to

equations (8)-(11) in a small neighborhood of E lie on S.

The same theorems that guarantee the existence of Sand U guarantee that

there is a measure of distance oo~ and a ball of radius, ~, about E,

B~(E), such that, if L solves equations (9)-(11), L(tO) € B((E), and L(tO) ¢ St

then (1) the distance between Land S grows exponentially over time on B~(E)

and (2) the distance between Land U decreases. Let 28 be the minimum dis-

tance between the points at which paths beginning on U exit B((E) and the

boundaries of sectors 3 and 8. Clearly» 26 ~~. Let Wbe {w €1R3, distCU,w) < oJ.

Since E £ U, Wis an open set containing E. L(ta) € Wand L(tO) t S implies

that, for some T > to' L(T) exits B~(E) and, when it does~ it is closer to U

tnan the boundary of either sector 3 or 8 is to U. Thus, LeT) is in sector 3

or 8. Since no solution that enters sector 3 or 8 C3r} meet the integrat condi-

tian, yeO) must be chosen so that L(tO) E S. The stability of S completes the

proof.
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PROPOSITION 5: The equilibrium is a stable vortex point if A2 and

A3 are a complex conjugate pair and a stable node if A2 and A3 are negative

and real (the stable node is degenerate if A2 and A3 are eQual).11

Using Tartagliats solution of the cubic, the conditions when each possi­

bility occurs can be described~ Let

and

(15)

=
2 4 3 3 423 2 2 2 3-a r + 2a r - a r - 4mr + 6amr + 6a mr + 27m - 4a m

108

All the ~oots are real (stable node) if w3 ~ 0 (the two negative roots are

equal if w3 ;;:;: 0), and there is one real root and a complex conjugate pair

(stable vortex) if w3 > O. By taking the limits of w3 ' it is easy to

show that, as r -;.. 0 or a + 0, the equilibrium is a stable vortex; while,

as r -)- 00, a -.,. 0) or & -)- 0 (i.e$' IT! + 0), the equilibrium is a stable node.

A fishery is said to be extinct if the fish stock is zero from some time T

torward~ A fi~hery is asymptotically extinct if, for every t greater than

zero) there 1S a time T such that the fish stock is less than ~ at all times

£;,feater than T~ F,xtinction implies asymptotic extinction.
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PROPOSITION 6: Asymptotic extinction is impossible.

The proof is by contradiction. Let L(t) be within ~ of the x = 0 plane

for all t > T. Since y = I er(t-z) (px - c)dz and x < ~, yet) is at most

(p~ - c)/r which is negative for small~. In turn) s = oy ~ 0 (pe -c)/r, so

set) unifonml; 0 as t + 00. Thus, if L(t) leads to asymptotic extinction, it

must occur at x = 0 and s = O. Linearizing (9)-(11) at x = 0 and s = 0 [replace

x* and s* with zero in equation (12)] shows that x > 0; so x cannot remain within

( of zero which is a contradiction.

5. COMPARISON

Both models have the same equilibrium and neither model admits extinc­

tion.12 The rational expectations model differs from the standard (myopic)

model both in the character of its equilibrium and in the regions of the (x,s)

space where entry occurs. The two differences are summarized in Proposi-

tions 6 and 7.

PROPOSITION 7: For a given choice of parameters p, c, r, and 0, the

rational expect ions model may have a stable node while the myopic model has a

stable vortex point or vice versa.

To show these possibilities exist, it is sufficient to compare the condi-

tions detcrrnining the character of the equilibria for the t\t10 models. The

characteristics of the standard mudei1s equilibrium depends on the sign of the

discriminant in equation (7):

(16) 2 4m
11 :: a +-.

r
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If n ~ Ot the standard model has a stable node; otherwise) it has a stahle

vortex.

The characteristic of the rational expectations model depends on the sign

of w3 [see equation (15)]. If w3 ~ 0) the rational expectations model

has a stable node; while. if w3 > 0, it has a stable vortex. From inspec­

tion» it is obvious that equations (15) and (16) are not identical.

To show that the two approaches to equilibrium in the two models can dif-

fer» consider the following exercise. Suppose for each interest rate, f, we

choose 0 (and, hence, rn := -xpo) so that n in equation (16) remains con-

stant. Since the equilibrium in both the models are identical and independent

of both rand 0 [x* = c/p, s* := f(x)/x, and y* := oj, we can set these

parameters without affecting the equilibriume

We could, for example, set 0 so that, for each r, n < 0. so that the

standard model has a stable vortex. Solving equation (16) for m and substi­

tuting into equation (16) gives

(17)

As r + 00, w
3

becomes negati ve) and rational expectatioo5 model has

,1 stable node. By construction, as r -}- G'?) n remains constant SU that the

standard model's equltihrium is a stable vortex. If we let r + 0) ttlen n

remains constant ~hLle ~i'7 beCOllleS positiVe. Here, both morlels have a stable
.)

13vortex.
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PROPOSITION 8: The regions of the (x,s) plane in which entry occurs dif­

fer between the rational expectations and standard models. In the standard

model, entry will occur only when x > x*; while, in the rational expecta­

tions model, there are x < x* associated with 5 < 5* for which entry

occurs.

As Clark [7] and others have demonstrated, entry occurs in the standard

model to the right of the; = 0 line in (x,s) space. Thus, entry occurs only

if x > x* (where instantaneous profits are positive).

Entry occurs in the rational expectations model whenever the stable mani­

fold is above the 5 = 0 plane (see Figure 1). By projecting the part of the

stable manifold above the s = 0 plane (x,s,O) onto the 5 = 0 plane, we obtain

the set of (x,s) pairs for which quasi rents (y) are positive and, hence, for

which entry occurs in the rational expectations model. Since the stable mani­

fold is above s= 0 for some points in sector 1, there are points in s at

which 5 > 0 in the rational expectations model and not in the standard model.

An exmnple is shown in the next section.

6.. SIMULATIONS

The basic points raised by Propositions 7 and 8 can be illustrated using a

SChaefer model of the Pacific halibut fishery (area 2) and simulating its

behavior near the equilibrium, as shawn in Figure 2. Mohring [15) has esti­

m3ted the parameters of such a model .. 14 1ne growth rate at zero stock, g,

is 0.001925 per day; the natural carrying capacity, K~ is 17 .. 63 tens of

millions of pounds; and the catchability coefficient, a, is 0.001007 per

thousand skate soaks days. 15

Prior to 1930, there was minimal control of this fishery, so the stock at

the end of the 1929 season approximates the open-Ciccess equilibrium stock:
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Figure 2. Schaefer Model of Pacific Halibut
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16x* = 3.53 tens of millions of pounds. These figures imply that the equi-

libriwn effort, s*, is 1.52886 thousand skates per day~ For illustratioo, we

assume the real annual rate of interest is 3.65 percent (so that the daily

rate is 0.0001). We roughly estimate that the actual IS is 0.004598465. 17

In order to determine whether the adaptive and rational expectations

models have stable vortex or stable focus points, it is necessary to solve for

the eigenvalues under both models~ The eigenvalues of the rational expectations

(Al,AZ,A3) and standard (lll, l1Z) models are shown in Table rr. For low rates of

adjustment (0 ~ 04000000479), both models have real eigenvalues and, hence,

stable nodes. When 0.000000479 < 02 0.00000147, the rational expectations

model has a stable node (the roots are real), while the standard model has a

stable vortex (the roots are complex). For a larger 0, both models have a

pair of complex roots and stable vortex points.

Thus, for slow rates of adjustments, both models predict a direct approach

to equilibrium; for moderate rates of adjustment, the rational expectations

model predicts a direct approach while the standard model predicts a spiraling

approach (alternately over- and undershooting); and for fast rates of adjust-

ment, both models predict a spiraling approach. In the Pacific halibut exam­

ple, the rational expectations model has a stable node over a larger range of

values of o. 18This result need not be true in general.

It is also possible to calculate when entry occurs under both models. The

eigenvectors which correspond to the negativ0 eigenvalues CAZ and A3}

for this () are

(18)

1 +

v2 = -.42235 +

.91298 -

and .... v
.)

(
' 1· \

\ -.4223S--\.193Si)

\ .91298 + .19543Y



TABLE II

Pacific Halibut Fishery Area 2

0 ,\ L
..._--------

.004598465 .003246

.00001 .000378

.00000147 .000201

.000000479 .000149

I
N
~

I

-~000363

Standard model

-.000022

-.000193-.00088i -.000193+.00088i

-.000193-.00029i -.000193+.00029i-.000235

-.000362

-.000381

-.000251

-.0000716

.... 0000185

-.001766-.00288i -.001766+.00288i

-.000332-000032i -.000332+.00032i

RatIonal expectatlons model

.OUUllll,uuounOl
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The general solution to equation (12) is

( 19) L(t) ;;; sCt)-
3

;: t" b :\- t
f.., • e 1 Vi

i;:l 1

wnere v. is the eigenvector corresponding to the i
th eigenvalue of J and

1

b. is determined from the initial conditions. Since, as was shown above,
1

the only solutions lie in the stable manifold, bI must be zero. Thus, at

t ::;: 0,

(20)

- 3.53

Expanding (20), we find that

(21) (1 + i)b
Z

+ (1 - i)b3 = Xo - 3.S3~

and

Solving equations (21) and (22) simultaneously for b
Z

and b3 and substi­

tuting into equation (20) gives

(L~) YO ::0; 1.45966 - .68383XO + .62'H7Ss0.

Equation (23) determines pairs of vaLues of Xo and So which are con­

sistent with an initial present value of ~xpected quasi rents of Yo- That
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is, equation (23) is the equation for the plane which is tangent to the stable

mmlifold, S. This equation can be used to determine when entry occurs in the

rational expectations model near the equilibrium.

Figure 2 illustrates the Pacific halibut case. The rational expectations

model's zero entry line is the upward-sloping line which hits the x axis at

2.13 which was determined by setting YO ;:: 0 in equation (24). This line

represents the intersection of the plane tangent to the stable manifold and

the (x,s,O) plane (see Figure 1). Along this line near the equilibrium, there

is neither entry nor exit. Since this line is not coincident with the standard
e

model's vertical s = 0 line, the two models make different predictions about

entry and exit when the number of boats and the stock of fish are both low or

both high.

Table III shows the direction of the flows in the rational expectations

mid standard models for the six sectors in Figure 2 which are determined by

the X. = 0 line and ~ ;: 0 lines for the two models. Entry occurs (s is

positive) in sectors 3, 4, and 5 in the rational expectations model and

sectors 4, 5, and 6 in the standard model.

•In the standard model, entry occurs to the right of its vertical s = 0

line (where instantaneous profits are positive). Entry occurs if x > x*,

and exit occurs if x < x*. Thus, in the standard model, entry does not

depend on the number of boats (skates) currently in the industry.

In contrast, in the rational expectations model, entry and exit depend on

both the stock of fish and the number of boats. All dse the same, entry i:;

more likely to occur the smaller is s and the great.::r is x. It should be

noted) ho.,..e\j~r, that entry may occur even if x > x* if S IS sufficiently

smaller tha.n Sl,<.
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TABLE III

The (x,s) Phase Space

Rational expectatIons AdaptIve expectatIons
,~.

/.
Sector

1

2

3

4

5

6

•x

+

+

+

•
5

+

+

+

•
x

+

+

+

•s

+

+

+
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Figure 2 also shows a computer-generated simulation of the nonlinear model.

The adjustment path spirals as it approaches the equilibrium. Although the

path for toe adaptive expectations model is qualitatively the same, it ap-

proacnes the equilibrium value slower~

Tne (x,s,O) points in the simulation are close to the ones generated by

tne linear approximation, equation (23), as shown in Table IV. Until the

stock differs from the equilibrium value by 46 percent (x := 5.160), the simu­

lated set) and the linear approximation to set) are within 3 percent of each

other. Even when x := 5.160) the linear approximation of set) is within

18 percent of set). These differences are caused by deviations between the

true, nonlinear model and its linear approximation and-by errors in simulating

tne nonlinear system.

7. CONCLUSIONS

A model of ao open-access fishing industry must explain the evolution of

the stocks of fish and fishing vessels as well as determine their equilibrium

levels. As Spence [20J and others have shown, in some cases, ~tock adjust-

ments may taKe years.

In a general model of the rate of change of boats, entry is a function of

toe present value of expected profits. Traditionally, entry has been modeled

as a function of instantaneous profits. Within the context of our general

modal, the standard rn0del is equivalent to Jssuming that potential entrants

hi{'V-G myopic, adapt! ve expectations~

rn contrast, tfle lit(~rature has assumed that an optimal social policy

stlould look at the entire stream of profits (·vcr time; that is) perfect £ore-

SLght is used. It is peculiar, therefore, that these two models are ~o often
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TABLE IV

A Comparison of the (x,s,O) Values from the Linear Approximation
and from a Simulation of the Nonlinear System

S 5
x simulation linear approximation

3 .. 5299 1.5288 1 .. 5287

3.5306 1 .. 5295 1.5295

3.5254 1.5247 1.5238

3.5610 1.5571 1.5628

3.3210 1 .. 3343 1.2999

5.1600 2.8132 3.3147
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compared and contrasted since they differ in both objective functions and in

the form of expectations which are used. It is more enlightening to hold

constant the type of expectations used while comparing these two market

organizations.

Thus) we examined the properties of an open-access) rational expectations

(perfect foresight) model. Both the myopic» standard model and the rational

expectations model have the same equilibrium but differ in how they adjust.

One somewhat surprising result of our analysis is that. in both models,

the equilibrium may not be approached directly: overshooting and undershoot­

ing of the equilibrium level of ships may alternately occur (i.e., the equi­

librium point is a stable vortex). An important difference. however, is that

entry can occur at lower levels of fish stock and exit at higher levels in the

rational expectations model than in the standard model.

Simple simulations based on Schaefer models of the Pacific halibut suggest

that entry benavior under these two models will differ. Because the standard

model can be nested in a more general model, it should be possible to test for

the type of expectations used in ways analogous to those used in the macro­

economics literature. A simple, indirect test between myopic and rational

expectations consists of examining entry behavior at fish and boat stocks

below the equilibrium levels.

Tnough the rational expectations, open-access model differs fran the stan­

dard model in its approach to equilibrium while having the same equilibrium,

it differs from toe optimal solution on hath grounds. For noninfinite interest

rates, the optimal fish stock will be !~rger than in the op8n-access, rational

expectations mod~l; and the fisning fle~t is optimally adJust~d so that the
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equilibrium is directly approached (instead of possibly spiraling).19 In

the limit as interest rates become infinite. the standard, the rational expec­

tations~ and the optimal model all (degenerately) approach the same solution.

University of California. Berkeley
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FOOTNOTES

IGiaIUlini Foundation Paper No .. 672 (reprint identification only).

We wish to thank C. Cart\~ight for drawing the three-dimensional phase diagram.

We are also grateful to C.. Clark, F. Fisher, R.. Rosenman, V.. Smith) P.. Varaiya)

and an anonymous referee for helpful comments.

2Por exa~ple, Spence [20} provides empirical evidence that adjustment in

the whaling industry takes years ..

Swe restrict our model to fishing industries without crowding of boats:

entry hurts existing boat owners only to the degree that the fish stock is

reduced; boats do not physically interfere with each other ..

4The assumption that f(·) is solely a ftmction of x is made for expo­

sitional simplicity (cf., Schaefer [16]). In contrast, the Beverton-rlolt [4]

model assumes that natural growth is a function of the age classes of the

stock and not just the total stock. In such a model, gear can be selective

(e.g., one can harvest just one age class), a concept which is meaningless in

the simpler model used here.

SThis assumption is made for expositional simplicity and is not neces­

sary. An alternative model is one with "critical depensation" (see Clark [7],

ppa 10 and 17), where feR) is negative on (O,!), equals zero at ~t and is

positive on (~,K).

6See , for exarr~le, Clark [7], pp~ l4~17. Many err~irical studies based

on the Sch£:L~ter [16] model, such as Hchring [IS}, have tested and used this

specificati0n~

7The ca tch.aLili ty (scaling) coefficient is superflvous in the theoretica L

exposition; but) in the discussion of the simulations in Section 6, it is
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convenient to use a catchability coefficient, n. which is different than

one. Thus, in that section, the catch per unit time is QSX.

81£ the cost of building or converting boats increases with the speed of

entry (or exit), according to the quadratic cost function (1/20)52
+ F

(F is fixed cost), then the marginal cost of a new entrant is sloe Entry

will occur lIDtil the marginal cost equals the present value of expected quasi

rents. s/o = y, which gives us equation (2).

To the degree that entry in a fishery is the result of conversion (e.g.,

the gear is changed so that a new type of fish can be caught), it may be rea­

sonable to assume that the rate of entry equals that of exit as shown in equa­

tion (2). Smith [18] discusses this symmetry assumption; Clark~ Clarke, and

Munro [8] analyze an optimally managed fishery without exit; and Cremer [10]

examines irreversible investment in a nonrenewable resource model. We follow

the otherwise universal practice of assuming symmetry.

9See Clark [7], pp. 183-190 and 203-204 for a detailed explanation of

dynamic systems. A stable node implies that the equilibrium is directly ap­

proached (there is no overshooting). In a stable vortex (or stable focus,

spiral, or focal point) the characteristics approach the equilibrium as

t .... (x), but they do so by spiraling about it ..

IOFor the purposes of the graph, a Schaefer model is assumed which

implies that the intersection of the x ::: 0 and 5 ::= 0 planes is a straight line

with a negative slope in the (x,s,O) plane.

llIn a rational expectations macromodel with inventory, Blinder and

Fischer [6] have shOwn that there is a "business eyele" hhich is a similar

phenomenon to the spiraling approach paths (stable vortex) demonstrated here~

12Berck [3] shows that, given the very strong assli.rnptions made in this

paper, extinction does not occur in the standard modela



-31-

13By setting w3 ; 0 (for n = 0) and solving for a as a function of r,

we learn that there are at most 3 real negative roots. Thus, as r ranges from

o to 00, there can be at most 2 intervals of r where w3 < 0 and 2 where

w3 > 0. Since we have limit results as r goes to 0 or OOt we know there

are either 1 or 3 real negative roots. We conjecture (but have not yet proved)

that there is exactly one. Thus, where n = 0. the standard model has a stable

node, while the rational expectations model may have a stable node or stable

focus depending on values of r.

14Note that tv10hring [15] estimated a standard growth equation and treated

effort (boats or fishing lines) as exogenous. The fishery was regulated dur~

ing the estimation period. Unlike our simple example, Mohring [IS] (reason­

ably) allows p to vary with the catch.

lSlnstead of using boats, Mohring [IS] measured the number of skate

soaks (fishing lines) which is related to the number of boats: skates are

increased by increasing the number of boats. In the discussion of the Pacific

halibut fishery, s refers to skates.

16yhis approach is suggested by Clark [7), p~ 48. It assumes that no

technological change took place during the relevant time period.

17Using equation (2) and x* = 3053 tens of millions of pounds. we cal­

culate the cost per skate per year, c, to be $7,998. Since, in 1965, x was

10.6; a. was 0.001007; p was 22.5 cents per pound; the change in thousands of

skate soaks, s, per (average) day was O~2018 (from 1964 to 1965); and the fis11-

ing grounds were open roughly 100 days out of the year, we can use equation (2)

(giYen our assumed daily interest rate of 0.00(1) to obtain 8 ::;: CL OOO{;00899S.

~'ie suspect that the true 0 is higher since boats can be quickly converted

[rUB catching one type of fish to another.
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181n contrast, consider a Schaefer model of the antarctic fin whale.

Clark ([7], pp. 49-51) estimates that, for the antarctic fin whale, g = 0.08)

K = 400,000, and x* = 40,000. Here, the rational expectations model has mul-

tiple negative roots at 0 = 0.001996 and 0.0005528, while the standard model

has multiple roots at 0.0024.

Thus, for 0.001996 > 0 > 0.0005528) the rational expectations model has

a stable vortex; otherwise, it has a stable node. The standard model has a

stable vortex for 0 > 0.0024; while) for a smaller 0, it has a stable node.

Thus, the standard model has a stable node where the rational expectations

model spirals (0.001996 > 0 > O.0024)~

19Clark, Clarke, and Munro [8J show that, if capital is irreversible,

then toe optimal path will cycle (once) about the equilibrium.
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