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An Open-Access Fishery with Rational
Expectations

Abstract

How potential entrants to an open-access fishery form their expectations
determines the fishery’s adjustment path to a steady state but not the steady
state values themselves. It is well known that~ in the standard model with
myopic expectations (those based on current values), boats enter the fishery only
when the fish stock is greater than its steady state stock. We show that, with
rational expectations (perfect foresight), however, boats may enter when the fish
stock is much lower than its steady state value if the boat fleet is sufficiently
small. This paper contrasts myopic and rational expectations within a general
dynamic model of an open-access fishery.
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AN OPEN-ACCESS FISHERY WITH RATIONAL EXPECTATIONS
Abstract

How potential entrants to an open-access fishery form their expectations
determines the fishery's adjustment path to a steady state but not the steady
state values themselves. It is well known that, in the standard wodel with
myopic expectations (those based on current values), boats enter the fishery
only when the fish stock is greater than its steady state stock. We show that,
with rational expectations (perfect foresignt), however, boats may enter when
the fish stock is much lower than its steady state value if the hoa£ fleet 1is
sufficiently small. This paper contrasts myopic and rational expectations

within a general dynamic model of an open-access fishery.



AN OPEN-ACCESS FISHERY WITH RATIONAL EXPECTATIONS
BY PETER BERCK AND JEFFREY M. PERLOFF!

I. INTRODUCTION
Since the stock of fish changes slowly, a model of an open-access fishery
must explain the evolution of the fish stock and the boat fleet as well as

determine their equilibrium levels.z

While the changes in the fish stock

are described by a biological rule, entry and exit from the fishing industry
are determined by how expectations are formed. We examine a general model in
which entry and exit are proportional to the present value of expected profits
and compare two special cases of adaptive (myopic) expectations and rational
expectations.

Although both expectations mechanisms lead to the same equilibrium values,
they lead to different adjustment paths. Where expectations solely depend on
current values (myopic expectations), it is well known that boats enter the
fishery only when the fish stock is greater than its steady state stock.3
With rational expectations, however, boats may enter when the fish stock is
much lower tnan its steady state value provided the boat fleet is sufficiently
small. This difference in adjustment is observable and, in principle, leads
to an obvious test on how agents form expectations.

Section 2 develops a general dynamic model for studying fisheries. In
Section 3, we show that the model standardly wsed in the literature is saguiva-
lent to a myopic, adaptive expectations model. A rational expectatiocns model
is analyzed in Section 4. The ztandard and rational expections models are com-

-

parzd 1n Section 5. Secticn G illustrates this comparison using a simuiation
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based on a Schaefer model of the Pacific halibut fishery. Section 7 presents

the conclusions.

2. AN OPEN-ACCESS FISHERY

In this section, we develop a general dynamic version of Gorden's [12]
open-access fishery model which describes the evolution of the fish stock, x,
and the boat fleet, s, over time. In the next two sections, we show that the
standard model and the rational expectations model are special cases of this
general model.

The change in the fish population, X, is its natural rate of growth, f(x),
less the fish catcha4 The natural growth function, f(+)}, is assumed to be
positive on the open interval (0,K), where K is the carrying capacity of the
fishing grounds (the largest possible fish population) and zero at x = 0 and

K.S

The function is assumed to be analytic and f" < 0. A version widely
used in empirical studies is the logistic function popularized by Schaefer
f16]: gx(1 - x/K), where g, a positive constant, is the ("intrinsic") growth
rate for small levels of x.

It is commonly assumed that each boat catches an amount of fish per unit
time which is proportional to the stock of fish.6 By appropriate choice of
the units of measurement of boats, the proportionality constaat may be set

equal to one so that the total catch per unit time is just sx.7 Given these

assumptions, tne growth rate of the population is

(1) X = f{x} - sx.

Tne rate of change of the boat fleet is assumed to be proportional to the
present value of expected guasi rents, y. Letting § be the constant of

. 8
proportionality,



(2) s = §y.

Tne present value of expected quasi rents,

(3)  y=LetE Y e,

depends on the real rate of interest, r, and the expected quasi rents, ne(z),
at each instant, z. Since the catch per boat is x, the revenue per boat is
px, given a fixed price, p. Taking per boat costs, ¢, as fixed per unit of
time, actual quasi rents are w(z) = px - c at time z.

Equations (1) to (3) describe a very simple fishery model for general
expectations. In the next two sections, special cases of myopic and rational

expectations are examined.

3. THE STANDARD MODEL

Following Smith [17, 18], virtually the entire dynamic fisheries litera-
ture has assumed that entry is proportional to current profits. Beddington,
Watts, and Wright [2], Berck [3], Leung and Wang {14], and others use this
model to examine extinction and other issues while Clark {7], Mohring [15],
Smith {17, 18]}, and Southey [19], among others, compare this model to an
optimal exploitation model.

Since both fisheries and poats exist for loag periods of time, a wmore
natural approach is to assume that potential entrants base their entry decision
on the present value of profits {quasi rents) where they use current profits
as a mycpic {adaptive) estimatc of future profits. That is, expectsd profits,
m {z}, are equal to current profits, n(t), for all z > t. Making this substi-

tution, cguation (3) becomes



(t) - C
(4) y(t) = ﬂr = PX —

Substituting equation (4) into equation (2), we obtain
(8)  3(t) =% (px - o).

Equation (5) is formally equivalent to the models of Smith [17] and others who
assume that entry is proportional to instantaneous profits where their constant
of proportionality is §/r, in our terms. FEquations (1) and (5) constitute

the standard model.

It has been shown (cf., Clark [7]) that the standard model has an equi-
librium at x = 0 and s = O described by x* = ¢/p and s* = f(x)/x, which for
f(-) logistic is s* = g(1 - ¢/pK). The nature of the equilibrium is deter-
mined by finding the eigenvalues of a linearized version of the system (1) and

(5) about the equilibrium, {x*, s*):

Ax £r(x*) - s* -x* AX

~~
(o2
~
1
~

As é? 0 AS

where Ax = x - x* and As = s - s*. This differential system is subject to

tne initial conditions that Xy and sy are given.

The eigenvalues of this linearized system are

(7} u = B 3
where a = £'{x*) - s* and m = -x*p§. Limiting the model to those in which a
is negative (such as the logistic, where a = -gx*/K), the equilibrium is a

. 2 . , L 2 9
stable node 1f a” + 4m/r > 4 and a stable vortex (stable focus) if 2~ + 4du/r < 0.
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4. THE RATIONAL EXPECTATIONS MODEL

Entrepreneurs in the rational expectations or perfect foresight fishery
model base their entry decision on a correct estimate of all future quasi
rents. Since their decision depends not just on the current catcn but also on
future ones, the rational expectations model is mathematically different from
the myopic model in a fundamental manner. In this section, we show that the
rational expectations model can be describad by a three-equation, autonomous
differential equation system. By findiag the eigenvalues of the Jacobian
matrix of the system linearized about its equilibrium, we show that the solu-
tion patns near the equilibrium are restricted to lie on a two-dimensional
manifold in the three-dimensional phase space. A phase space is then used to
show tne location of the manifold relative to the standard (x,s) plane.
Finally, we use standard methods for plane autonomous systems to characterize
tne equilibrium point.

In the rational expectations or perfect foresight model, ne(z) = 7(z).
Thus, the present value of expected profits, y, equals the present value of

realized profits, or
(8 oy -t Jd
y(t) = [ e [px{z) - clde,
which, on taking the derivative with respect to time, cives

(9) y = ry - {px - c).

Of course, some information is lost in moving from equation {8) to {(9): only

(8) includes a value for y(0).
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As before, boats enter in proportion to the expected present value of

quasi rents,

(10) s = 8y,

and the equation for the evolution of the fish stock is, as before,

(11) x = £(x) - sx.

Tne rational expectations model is the three-equation system--equations (9),

(10), and (11)--together with the initial conditions, xy and s, given, and
y(0) chosen to satisfy the integral equation (8).

The first step in analyzing this model is to linearize equations (9), (10],
and (11) about their equilibrium. As in the standard model, the single non-

zero equilibrium, (X = § = y = 0), is given by x* = c/p, s* = £{x*)/x*, and,

additionally, y* = 0. The linearized model is

Ax frix*) - s% - X% 0 AX
(12) As | = 0 0 8 As | .
A} -p 0 r Ay

The Jacobian matrix in equation (12) is J, and its characteristic polynominal

1s,

(13) H{})

]

A - (a+ )2+ arx + m,

Y

where again a = £'{x*) - s* and m = -x*p8. Tne sigas of the real parts and
the existence of imaginary parts of the eigenvalues of J [which are the roots
of H(x} | determine the nature of the equilibrium of the rational expecta-

=z -~ S DI |
tions modei .,
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PROPOSITION 1: There are two eigenvalues (possibly real) with negative

real parts and one positive eigenvalue.

The proof is shown in four steps. First, either all the roots are real or
there is one real root and a complex conjugate pair. This result is a simple
consequence of the Fundamental Theorem of Algebra (Albert [1], p. 148) and can
also be shown from Tartaglia's formula for the solution of a cubic (Beyer [5],
p. 9). Let Ay be the real root; the other two roots may be real as well.

Second, there are either: (a) three positive roots, (b) one positive and
two negative roots, or (c) one positive root and a complex conjugate pair.

The product of the roots equals the negative of the determinant of J (Beyer
[5], pp. 9-11) which is positive: XAy = -m > 0. Therefore, none of the
roots can be zero. If all three roots are real, thea (a) and (b) are the only
possibilities. If two of the roots, Ay and A3 form a complex conjugate

pair, then the remaining root must be positive because the product of a com-
plex conjugate pair is always positive. Since there is always one real posi-
tive root, let it be xl.

Tnird, tnere is exactly one positive real root; possibility (a), that
there are three positive roots, can be rejected. Descartes' rule of signs
states that the number of positive roots of H(X) cannot exceed the number of
variations in sign of the terms of H()) when A is taken to be a positive
number (Davis [11], p. 228). The coefficients of the 13, X, and constant
terms of H(X) {1, ar{< 0), and m{< 0}, respectively] all have determinate signs,
but the sign of the coefficient on the 22 term [-{a + r}] is indetermipate. If
a + r < 0, the sign pattern is (+,+,-,-); while, if a + r > 0, the pattern is

{(+,-,-,-). With either sign of a + r, there is exactly one change in the sign
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pattern so that there is at most one positive root. From the second point
above, there is at least one positive root, so there is exactly one positive
root.

Finally, if two of the roots are a complex conjugate pair, their real parts
are negative. The sum of the pairwise products of the roots of H is equal to

the coefficient of the linear term of H(e) (Beyer [S], p. 35):
(14)  x1)z + AIA3 + A2A3 = ar < 0.

Let z; be the real part and z, be the imaginary part of the complex conju-

gate roots. Substituting into equation (14) and rearranging gives

2

wnich shows that Zys the real part of Ay and A3, is negative since z%, Z5,

and A, are all positive. This step completes the proof.
Much is known about dynamical systems whose linear approximations about
tne equilibrium have eigenvalues as described in Propostion 1. The next propo-

sition summarizes the relevant properties.

PROPOSITION 2: For any large t_, there exists in (x,s,y) space (1) a
real analytic two-dimensional manifold, S, containing the equilibrium,
{x*,s%,0), suct that any solution (x,s,y) which is on S at t, satisfies
{x,s,y) = (x%,5%,0) as t + =, and (2) s one-dimensional analytic manifold,
U, also containing the equilibrium such that (x,s,y) » {x%,5%,0) as t + -o,

Further, the eigenvector associated with Ay is tangent to U at (x*,s%,0).
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REMARK: Heuristically, U is an unstable manifold in the sense that solu-
tions that start on U other than at the equilibrium diverge from the equi-

librium as t + o,

Since the system (9)-(11) is analytic and one eigenvalue is positive while
the other two have negative real parts, this proposition follows from Theorems
4.1 and 5.1 and a corollary to Theorem 5.1 in Coddington and Levinson (9] and
Theorem 6.17 in Irwin [13].

Tne next task is to locate the stable manifold, S, in (x,s,y) space.

Figure 1 is the phase diagram in [x,s,y) space.10

The figure measures y
vertically so that the horizontal plane is (x,s,0). The three separatrices
are described by: (1) X = 0, the plane (x,f'(x),y); (2) s = 0, the plane
(x,s,0); and (3) y = 0, the plane (x,s,(px-c)/r). The intersection of these
three planes is the unique, nonzero equilibrium point E = (x*,s*,y*) which, in
tne Schaefer model, is (c/p,gll - ¢/pk],0). The three separatrices divide the
phase space into eight sectors (numbered from 1 to 8 in Figure 1). Table I
gives the direction of travel of a solution patn in each of these sectors.
Since S is analytic, on a small enough neighborhood of E, a plane tangent
to S at E can approximate S arbitrarily closely. In this neighborhood of E,
the tangent plane enters only six of the sectors. It does not intersect sec-
tors 3 and 8 because these are terminal isosectors (paths that enter these
sectors remain in thesn and cannot reach E). For instance, sector 3 is terminal
because a trajectory cannot exit through i1ts boundary which consists of parts
of tne y =0, § =0, and £ = 0 planes. Since sector 3 is below (has smaller y
than) the § = 0 plane and y is negative in scoctor 3, a trajectory cannot exit
through this plane. The same type of argnment shows the trajectory candot

escapes through the other two planes on the houndary and shows that sector 8
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~11~

TABLE I

Phases

Sector

Heuristic
description

Goes to 4 or to
8 terminal

May directly
approach E or
goes to 1 or 3

Trapped in this
region

Goes to 3 (ter-
minal) or to §

May directly
approach E or
goes to 6 or 8
(terminal)

Goes to 3 (ter-
minal) or to 7

Goes to 2 or to
8 (terminal)

Trapped in this
region
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is also terminal. The tangent plane must intersect sectors 2 or 5 since, as
Table I shows, these are the only sectors from which paths can actually

reach E and the lim (x,s,y) = E.

tro

Exclusion of the tangent plane from two sectors and inclusion in two
others almost places the plane in the phase space. It remains to show that
the plane does not include the line {c/p,s,0), the locus of zero present
value, and instantaneous profits. A trajectory that begins on that line
(other than at E)} at time tO must enter sector 4 and then return to the line
through sector 5 at time £ By definition,

-r{z - tl) (
px - c¢) dz.

Y(tﬂ) = y(tl) + f:l e
But y(tl) = y(to) and the integral is everywhere positive (px > ¢) on
sectors 4 and 5 which is a contradiction. Thus, the tangent plane cannot
include the zero profit line.

Since the tangent plane cannot intersect sectors 3 and 8, it cannot be
parallel to the y = 0 plane so it must intersect the § = 0 plane. To avoid
entering(the terminal sector 3, at least one point on the tangent plane must
be interior to sector 4. The equilibrium, E, gives us a second point. A
third point must be in sector 2 or 5 by the earlier argument. These points
fix the location of the tangent plane as shown in Figure 1. Since S is
arbitrarily close to the tangent plane on a small encugh neighborhood of E, S

enters the same sectors as the tangent plane on that neizghborhood.
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Thus, S is included in all sectors except 3 and 8. In contrast, U lies
only in sectors 3 and 8. We first show that the tanget to U at E lies in
these sectors. Since X, is the only eigenvalue of J with a positive real
part, L{t) = ble)‘ltvl (where bl is nonzero and Vi is the eigenvector correspond-
ing to the positive eigenvalue, xl) is the solution to equation (12) tangent to

U. Since v is an eigenvector, i(t) = llL(t) = 1. er1th v Thus, if b, > 0,

1 1°1° 1
each element of the vector L(t) has the same sign as the corresponding element
of vi. If b, <0, L(t) has the opposite sign.

By a process of elimination, it is possible to show that L({t) must be in
sectors 3 or 8. For example, a vector in sector 8 is displaced from the equi-
librium (Ax,As,Ay) negatively in the x direction (Ax < 0), positively in the s
direction (As > 0), and positively in the y direction (Ay > 0); so the sign
pattern of vy if it were in sector 8 would be (-,+,+). As shown in Table I,

the sign pattern of L(t) in sector 8 is alsc (-,+,+), so v, can be in sec-

1
tor 8. Repeating this type of argument for the other seven sectors shows that
v, can only be in sectors 3 and 8. Since L is tangent to U at B, U is in

sectors 3 and 8 near E. Furthermore, since sectors 3 and 8§ are terminal sec-

tors, U is only in sectors 3 and 8.

PROPOSITION 3: No solution to equations (9)-(11) except E itself lies on

U or in sectors 3 or 8.

In sector 8, -{px-c) > 0, so y always grows at least as fast as ry; that
is, y grows at least exponentially. But no solution can have this property
bezcause the largest possible value for y is (pK-cj/r. A similar argument {y

cannot be smaller tnan -c/r) can be used to eliminate sector 3.
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Althougn the solution space for system (12) appears to be three-
dimensional, the choice of y(0) condition for the original problem forces the
solution to lie on a two-dimensional manifold approximated by a plane near the
equilibrium point. The initial conditions, Xy and Sg by themselves do
not completely determine whether the starting point is on S or U or on npeither
manifold. The position of L(0) in ﬁg is also dependent on y(0) which is
determined by the integral condition (8). The following two propositions limit
L(0) to be (1) on S in a neighborhood of E and (2) globally, not to be on
U - {E}.

PROPOSITION 4 (Local Asymptotic Stability Theorem): All solutions to

equations (8)-(11) in a small neighborhood of E lie on S.

The same theorems that guarantee the existence of S and U guarantee that
there is a measure of distance on‘ﬁ? and a ball of radius, &, about E,
BE(E)’ such that, if L solves equations (9)-(11), L(to) € BE(E)’ and L(to) ¢S,
then (1) the distance between L and S grows exponentially over time on Bg(E)
and (2) the distance between L and U decreases. Let 28 be the minimum dis-
tance between the points at which paths beginning on U exit Bg(E) and the
boundaries of sectors 3 and 8. Clearly, 28§ < §. Let W be {w e'@?! dist(U,w) < &}.
Since E € U, W is an open set containing E. L(tO) e W and L(to) ¢ S implies
that, for some T > tys L(T) exits BE(E) and, when it does, it is closer to U
than tne boundary of either ssctor 3 or 8 is to U. Thus, L{T) is in sector 3
or 8. Since no solution that enters sector 3 or 8 can meet the integral condi-
tion, y(0) must be chosen so that L(to) € S. The stability of S completes the

proof.
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PROPOSITION S: The equilibrium is a stable vortex point if A, and

Ay are a complex conjugate pair and a stable node if Ay and Ay are negative

and real (the stable node is degenerate if AZ and AS are equal).11

Using Tartaglia's solution of the cubic, the conditions when each possi-

bility occurs can be described. Let

2
o a -ar+r
o e 9 ’
w. = 27m - 233 + SaZr + Sarz - Zr3
2 54 4
and
_ 3 2
Wy o= (wl) + (WZ)
(15)
- —azr4 + 2331"3 - a4r2 - 4mr3 + Gamr2 + éazmr + 27m2 - 433m

108 ¢

All the roots are real (stable node) if wy <0 (the two negative roots are
equal if Wy = 0), and there is one real root and a complex conjugate pair

( stable vortex) if wy > 0. By taking the limits of w;, it is easy to

show that, as r -~ 0 or a > 0, the eguilibrium is a stable vortex; while,
asr>w, a0, or §+0(i.e., m > 0), the equilibrium is a stable node.

A fishery is said to be extinct if the fish stock is zero from some time T
torward. A fishery is asymptotically extinct if, for every f greater than
zero, there is a time T such that the fisn stock is less than £ at all times

oreater than T. FExtinction implies asymptofic extinction.
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PROPOSITION 6: Asymptotic extinction is impossible.

The proof is by contradiction. Let L(t) be within £ of the x = 0 plane
for all t > T. Sincey = | er(t—z) (px -~ c)dz and x < £, y(t) is at most
(pt - c)/r vhich is negative for small £. In turn, s = 8y < § (pe -c)/r, so
s(t) uniforml{ 0 as t » o, Thus, if L(t) leads to asymptotic extinction, it
must occur at x = 0 and s = 0, Linearizing (9)-(11) at x = 0 and s = 0 [replace
x* and s* with zero in equation (12)] shows that x > 0; so x cannot remain within

£ of zero which is a contradiction.

5. COMPARISON

Both models have the same equilibrium and neither model admits extinc-

12

tion. The rational expectations model differs from the standard (myopic)

model both in the character of its equilibrium and in the regions of the (x,s)

space where entry occurs. The two differences are summarized in Proposi-

tions 6 and 7.

PROPOSITION 7: For a given choice of parameters p, ¢, r, and §, the
rational expections model may have a stable node while the myopic model has a

stable vortex point or vice versa.

To show these possibilities exist, it is sufficient to compare the condi-
tions detcrmining the character of the equilibria for the two models. The
characteristics of the standard mudel's equilibrium depends on the sign of the

discriminant in equation {7):

(16) n=a’ v -,
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If n >0, the standard model has a stable node; otherwise, it has a stable
vortex.

The characteristic of the rational expectations model depends on the sign
of w; [see equation (15)]. If wy <0, the rational expectations model
has a stable node; while, if Wy > 0, it has a stable vortex. From inspec-
tion, it is obvious that equations (15) and (16) are not identical.

To show that the two approaches to equilibrium in the two wmodels can dif-
fer, consider the following exercise. Suppose for each interest rate, r, we
choose & (and, hence, m = -xp8) so that n in equation (16} remains con-
stant. Since the equilibrium in both the models are identical and independent
of both r and 6§ [x* = ¢/p, s* = f(x)/x, and y* = 0], we can set these
parameters without affecting the equilibrium.

We could, for example, set § so that, for each r, n < 0, so that the
standard model has a stable vortex. Solving equation (16) for m and substi-

tuting into equation (16) gives

Wy = {}1632r4 + 322510 - 16(n - a’)r?

16a°(n - a%)

4r2
r

(17) - 16a 2y

+ 24a(n - a°) r

22
+ 27A£Ev:7§,2_,+ z4az(n - az) /1728,

r J

As 1 + o= Wy becomes negative, and the rational expectations model has
1 stable node. By construction, as r » =, n remains constant sou that the
standard model's egurlibrium is a stable vortex., If we let r » (0, then n
remains constant while w, becomes positive. Here, both models have a stable

13
vortex.,



-18-

PROPOSITION 8: The regions of the (x,s) plane in which entry occurs dif-
fer between the rational expectations and standard models. In the standard
model, entry will occur only when x > x*; while, in the rational expecta-
tions model, there are x < x* associated with s < s* for which entry

OCCurs.

As Clark [7] and others have demonstrated, entry occurs in the standard
model to the right of the s = 0 line in (x,s) space. Thus, entry occurs only
if x > x* (where instantaneous profits are positive).

Entry occurs in the rational expectations model whenever the stable mani-
fold is above the s = 0 plane (see Figure 1). By projecting the part of the
stable manifold above the s = 0 plane (x,s,0) onto the s=0 plane, we obtain
the set of (x,s) pairs for which quasi rents (y) are positive and, hence, for
which entry occurs in the rational expectations model. Since the stable mani-
fold is above s = 0 for some points in sector 1, there are points in s at
which $ > 0 in the rational expectations model and not in the standard model.

An example is shown in the next section.

6. SIMULATIONS
The basic points raised by Propositions 7 and 8 can be illustrated using a
Schaefer model of the Pacific halibut fishery (area 2) and simulating its
behavior near the equilibrium, as shown in Figure 2. Mohring [15] has esti-

14

mited the parameters of such a model. The zrowth rate at zero stock, g,

15 0.001925 per day; the natural carrying capacity, K, is 17.63 tens of

millions of pounds; and the catchability coefficient, a, is 0.00100G7 per
e . 15

thousand skate soaks days.

Prior to 1930, there was minimal control of this fishery, so the stock at

the end of the 1929 season approximates the copen-access equilibriwn stock:
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x% = 3.53 tens of millions of pounds.16 These figures imply that the equi-

librium effort, s*, is 1.52886 thousand skates per day. For illustration, we

assume the real annual rate of interest is 3.65 percent (so that the daily

rate is 0.0001). We roughly estimate that the actual § is 0.004598465.17
In order to determine whether the adaptive and rational expectations

models bhave stable vortex or stable focus points, it is necessary to solve for

the eigenvalues under both models. The eigenvalues of the rational expectations

(kl,Az,ks) and standard (ul,uz) models are shown in Table II. For low rates of

adjustment (§ < 0.000000479), both models have real eigenvalues and, hence,

stable nodes. When 0.000000479 < & < 0.00000147, the rational expectations
model has a stable node (the roots are real), while the standard model has a
stable vortex (the roots are complex). For a larger §, both models have a
pair of complex roots and stable vortex points.

Thus, for slow rates of adjustments, both models predict a direct approach
to equilibrium; for moderate rates of adjustment, the rational expectations
model predicts a direct approach while the standard model predicts a spiraling
approach (alternately over- and undershooting); and for fast rates of adjust-
ment, both models predict a spiraling approach. In the Pacific bhalibut exam-
ple, the rational expectations model has a stable node over a larger range of
values of §. This result need not be true in general.18

It is also possible to calculate when entry occurs under both models. The
eigenvectors which correspond to the negative eigenvalues (AZ and 23}

for this § are

1+ / 1 - i \
(1%) Vg = | --42255 % 119851 | and gy = | -.42255 - 1.19851} )
.91298 - .19543i \.91293 N .19543);/



TABLE II

Pacific Halibut Fishery Area 2
Rational expectations model Standard model
i M A Ay 1 My
. 004598465 .003246 -.001766-.002881  -.001766+.002881 -.000193-.019241  -.000193+,01924i
00001 .000378 -.000332-.000321  -.000332+.00032i -.000193-.000881  -,000193+.000881
.00000147 000201 -.000251 -.000235 -.000193-.000291  ~.000193+.00029i
.000000479 000149 -,0000716 -.000362 -,000193 -.000193
LO000a01 100114 -.000018S -.000381 -,000022 -,000363
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The general solution to equation (12) is

x(t) - x*
3
(19) L(t) =| s{t) -st| = ¢ b.eritv.
i=1 ! !
y(t)

. . . th
where v, is the eigenvector corresponding to the i eigenvalue of J and
bi is determined from the initial conditions. Since, as was shown above,

the only solutions lie in the stable manifold, b1 must be zero. Thus, at

t =0,
Xy - x* Xq - 3.53
(20) b2v2 + b3V3 =Sy - skt | = Sy - 1.52886] .
Yo Yo

Expanding (20), we find that

(z1) (1 + 1)b2 + (1 - i)b3 = x5 - 3.53,

and

(22) (-.42235 + 1,19851)b2 - (.42235 - 1.19851)§3 =Sy - 1.52886.

Solving equations {21) and (22) simultaneously for b, and b, and substi-

3

tuting into equation {20) gives
(23) yg = 1.45066 - .68383xy + 0241755,

Equation (23) determines pairs of values of x, and s, which are con-

0 U

sistent with an initial present value of expected quasi rents of Yo That
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is, equation (23) is the equation for the plane which is tangent to the stable
manifold, S. This equation can be used to determine when entry occurs in the
rational expectations model near the equilibrium.

Figure 2 illustrates the Pacific halibut case. The rational expectations
model's zero entry line is the upward-sloping line which hits the x axis at
2.13 which was determined by setting y, = 0 in equation (24). This line
represents the intersection of the plane tangent to the stable manifold and
the (x,s,0) plane (see Figure 1). Along this line near the equilibrium, there
is neither entry nor exit. Since this line is not coincident with the standard
model's vertical s = 0 line, the two models make different predictions about
entry and exit when the number of boats and the stock of fish are both low or
both high.

Table 11l shows the direction of the flows in the rational expectations
and standard models for the six sectors in Figure 2 which are determined by
the X = 0 line and s = 0 lines for the two models. Entry occurs (s is
positive) in sectors 3, 4, and 5 in the rational expectations model and
sectors 4, 5, and 6 in the standard model.

In the standard model, entry occurs to the right of its vertical s=0
line (where instantaneous profits are positive). Entry occurs if x > x¥%,
and exit occurs if x < x*. Thus, in the standard model, entry does not
depend on the number of boats (skates) currently in the industry.

In contrast, in the rational expectations model, eiitry and exit depend cn
both the stock of fish and the number of boats. All slse the same, entry is
more likely to occur the smaller is s and the greater is x. It should be
noted, however, that entry may coccur even if x > x* if s is sufficiently

smaller than s*.



-

TABLE III

The (x,s) Phase Space

Raticnal expectations Adaptive expectations

Sector X s X S
1 ” < = -
2 + - + -
3 + + + -
4 + + + +
5 - + - +
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Figure 2 also shows a computer-generated simulation of the nonlinear model.
The adjustment path spirals as it approaches the equilibrium. Altbough the
path for tne adaptive expectations model is gqualitatively the same, it ap-
proacnes the equilibrium value slower.

Tne (x,s,0) points in the simulation are close to the ones generated by
tne linear approximation, equation (23}, as shown in Table IV. Until the

stock differs from the equilibrium value by 46 percent (x = 5.160), the simu-

i

lated s(t) and the linear approximation to s{t} are within 3 percent of each
other. Even when x = 5.160, the linear approximation of s(t) is within

18 percent of s(t). These differences are caused by deviations between the

true, nonlinear model and its linear approximation and by errors in simulating

tne nonlinear system.

7. CONCLUSIONS
A model of an open-access fishing industry must explain the evolution of
the stocks of fish and fishing vessels as well as determine their equilibrium
levels. As Spence {20] and others have shown, in some cases, stock adjust-
ments may take years.,

In a general model of the rate of change of boats, entry is a function of

tne present value of expected profits. Traditionally, entry has bsen modeled
as a function of instantaneous profits. Within the context of our general
model, the standard model 1s equivalent to assuming that potential entrants
snve myoplic, adaptive cxpectations.

In contrast, the iiterature has assumed that an optimal social policy
should look at the entire stream of profits cver time; that 1s, perfect fore-

stght is used. It is peculiar, therefore, that these two models are <o often
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TABLE IV

A Comparison of the (x,s,0) Values from the Linear Approximation
and from a Simulation of the Nonlinear System

X simulition linear appioximation
3.5299 1.5288 1.5287
3.5306 1.5295 1.5295
3.5254 1.5247 1.5238
3.5610 1.5571 1.5628
3.3210 1.3343 1.2999
5.1600 2.8132 3.3147
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compared and contrasted since they differ in both objective functions and in

the form of expectations which are used. It is more enlightening to hold
constant the type of expectations used while comparing these two market
organizations,

Thus, we examined the properties of an open-access, rational expectations
(perfect foresight) model. Both the myopic, standard model and the rational
expectations model have the same equilibrium but differ in how they adjust.

One somewhat surprising result of our analysis is that, in both models,

the equilibrium may not be approached directly: overshooting and undershoot-

ing of the equilibrium level of ships may alternately occur (i.e., the equi-
librium point is a stable vortex). An important difference, however, is that
entry can occur at lower levels of fish stock and exit at higher levels in the

rational expectations model than in the standard model.

Simple simulations based on Schaefer models of the Pacific halibut suggest

that entry benavior under these two models will differ. Because the standard
model can be nested in a more general model, it should be possible to test for
the type of expectations used in ways analogous to those used in the macro-
economics literature. A simple, indirect test between myopic and rational

expectations consists of examining entry behavior at fish and boat stocks

below the equilibrium levels.

Though the rational expectations, open-access model differs from the stan-
dard model in its approach to equilibrium while having the <sawpe eguilibrium,
it differs from toe optimal solution on both grounds. For noninfinite interest
rates, the optimal fish stock will be iargetr than in the opsn-access, rationsl

expectations model; and the fisning fleet is optimally adjusted so that the
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equilibrium is directly approached (instead of possibly spiraling).lg In

the limit as interest rates become infinite, the standard, the rational expec-

tations, and the optimal model all (degenerately) approach the same solution.

University of California, Berkeley
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FOOTNOTES

Giannini Foundation Paper No. 672 (reprint identification only).

We wish to thank C. Cartwright for drawing the three-dimensional phase diagram.
We are also grateful to C. Clark, F. Fisher, R. Rosenman, V. Smith, P. Varaiya,
and an anonymous referee for helpful comments.

2For example, Spence [20] provides empirical evidence that adjustment in
the whaling industry takes years.

e restrict our model to fishing industries without crowding of boats:

entry hurts existing boat owners only to the degree that the fish stock is

reduced; boats do not physically interfere with each other.

4The assumption that f(+) is solely a function of x is made for expo-
sitional simplicity (cf., Schaefer [16]). In contrast, the Beverton-Holt [4]
model assumes that natural growth is a function of the age classes of the

stock and not just the total stock. In such a model, gear can be selective

(e.g., one can harvest just one age class), a concept which is meaningless in

the simpler model used here.

5This assumption is made for expositional simplicity and is not neces-

sary. An alternative model is one with "'critical depensation" (see Clark [7],

pp. 16 and 17), where f(-) is negative on (0,x), equals zero at x, and is
positive on (x,K).

6See, for example, Clark {7}, pp. 14-17. Many empirical studies based
on the Schazfer [16] model, such zs Mchring [15], have tested and used this
specificatinm.

T.p oy i N e . . )
fhe catchability {scaling) cosificient is superfiucus in the theoretical

exposition; but, in the discussion of the simulations in Section 6, it is
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convenient to use a catchability coefficient, «, which is different than
one. Thus, in that section, the catch per unit time is asx.

81f the cost of building or converting boats increases with the speed of
entry (or exit), according to the quadratic cost function (1/26)52 + F
(F is fixed cost), then the marginal cost of a new entrant is s/8. Entry
will occur until the marginal cost equals the present value of expected quasi
rents, s/6 = y, which gives us equation (2).

To the degree that entry in a fishery is the result of conversion (e.g.,
the gear is changed so that a new type of fish can be caught), it may be rea-
sonable to assume that the rate of entry equals that of exit as shown in equa-
tion (2). Smith [18] discusses this symmetry assumption; Clark, Clarke, and
Munro [8] analyze an optimally managed fishery without exit; and Cremer [10]
examines irreversible investment in a nonrenewable resource model. We follow
the otherwise universal practice of assuming symmetry.
9See Clark [7], pp. 183-190 and 203-204 for a detailed explamation of
dynamic systems. A stable node implies that the equilibrium is directly ap-
proached (there is no overshooting). In a stable vortex (or stable focus,
spiral, or focal point) the characteristics approach the equilibrium as
t + =, but they do so by spiraling about it.

10For the purposes of the graph, a Schaefer model is assumed which
implies that the intersection of the x = 0 and s = 0 planes is a straight line
with a negative slope in the (x,s,0) plane.

llIn a raticnal expectations macromodel with inventery, Blinder and
Fischer [6] have shown that there is a "business cycle" which is a similar
phenomencn to the spiraling approach paths (stable vortex) demonstrated here.

12

Berck [3] shows that, given the very strong assumptions made in this

paper, extinction does not occur in the standard model.
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DBy setting w; = 0 (for n = 0) and solving for a as a function of r,

we learn that there are at most 3 real negative roots. Thus, as r ranges from
0 to =, there can be at most Z intervals of r where Wy < 0 and 2 where
Wy > 0. Since we have limit results as r goes to 0 or =, we know there
are either 1 or 3 real negative roots. We conjecture (but have not yet proved)
that there is exactly one. Thus, where n = 0, the standard model has a stable
node, while the rational expectations model may have a stable node or stable
focus depending on values of r.

14Note that Mchring [15] estimated a standard growth equation and treated
effort (boats or fishing lines) as exogenous. The fishery was regulated dur-
ing the estimation period. Unlike our simple example, Mohring [15] (reason-
ably) allows p to vary with the catch.

15lnstead of using boats, Mohring [15] measured the number of skate
soaks (fishing lines) which is related to the number of boats: skates are
increased by increasing the number of boats. In the discussion of the Pacific
halibut fishery, s refers to skates.

16This approach is suggested by Clark {7], p. 48. It assumes that no
technological change took place during the relevant time period.
17Using equation (2) and x* = 3,53 tens of millions of pounds, we cal-
culate the cost per skate per year, ¢, to be $7,998. Since, in 1965, X was
10.6; o was 0.001007; p was 2Z.5 cents per pound; the change in thousands of
skate soaks, s, per (average) day was 0.2018 {from 1964 to 1965}; and the fish-
ing grounds were open roughly 100 days out of the year, we can use equation (2)
{given our assumed daily interest rate of (.0001) to obtain & = 0.0060008995.

e suspect that the true § is higher since boats can be quickly converted

trom catchineg one type of fish to another.
g yp
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181n contrast, consider a Schaefer model of the antarctic fin whale.

Clark ([7], pp. 49-51) estimates that, for the antarctic fin whale, g = 0.08,
K = 400,000, and x* = 40,000. Here, the rational expectations model has mul-
tiple negative roots at § = 0.001996 and 0.0005528, while the standard model
has multiple roots at 0.0024.

Thus, for 0.001996 > § > 0.0005528, the rational expectations model has
a stable vortex; otherwise, it has a stable node. The standard model has a
stable vortex for § > 0.0024; while, for a smaller §, it has a stable node.
Thus, the standard model has a stable node where the rational expectations
model spirals (0.001996 > & > 0.0024).

19

Clark, Clarke, and Munro [8] show that, if capital is irreversible,

then tne optimal path will cycle (once) about the equilibrium.
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