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ABSTRACT 

Genetically modified (GM) food crops have the potential to raise agricultural productivity in Asian 
countries, but they are also associated with the risk of market access losses in sensitive importing 
countries. We study the potential effects of introducing GM food crops in Bangladesh, India, Indonesia, 
and the Philippines in the presence of trade-related regulations of GM food in major importers. We focus 
on GM field crops (rice, wheat, maize, soybeans, and cotton) resistant to biotic and abiotic stresses, such 
as drought-resistant rice, and use a multi-country, multi-sector computable general equilibrium model. 
We build on previous international simulation models by improving the representation of the productivity 
shocks associated with GM crops, and by using an improved representation of the world market, 
accounting for the effects of GM food labeling policies in major importers and the possibility of 
segregation for non-GM products going toward sensitive importing countries. 

The results of our simulations first show that the gains associated with the adoption of GM food 
crops largely exceed any type of potential trade losses these countries may incur. Adopting GM crops also 
allows net importing countries to greatly reduce their imports. Overall, we find that GM rice is bound to 
be the most advantageous crop for the four countries. Second, we find that segregation of non-GM crops 
can help reduce any potential trade loss for GM adopters, such as India, that want to keep export 
opportunities in sensitive countries, even with a 5 percent segregation cost. Lastly, we find that the 
opportunity cost of segregation is much larger for sensitive importing countries than for countries 
adopting new GM crops, which suggests that sensitive importers will have the incentive to invest in 
separate non-GM marketing channels if exporting countries like India decide to adopt GM food crops.  

Keywords: genetically modified food, international trade, segregation, Asia 
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1.  INTRODUCTION  

In the last 11 years, the global production of genetically modified (GM) crops has increased dramatically. 

Yet more than 95 percent of the area devoted to GM crops is located in only four countries: the United 

States, Argentina, Canada, and China (James 2006). During the same period, a group of countries with 

consumer opposition to GM food, led by the European Union (EU) and Japan, have implemented 

stringent policies regulating the approval and import of GM crops and the marketing of GM food. In the 

context of increased international agricultural trade, the regulations of those importers and the lack of 

demand for GM food in those countries have likely limited the expansion of agricultural biotechnology to 

many developing countries. 

For several years, a number of Asian countries have been actively developing programs of 

research on agricultural biotechnology, focusing on GM crops with potentially beneficial agronomic traits 

(Runge and Ryan 2004). Some of these countries have developed biosafety regulatory frameworks, but 

until now only a few have approved one or more GM crops. Recent studies have shown that the 

introduction of Bt cotton (GM cotton resistant to insects) in India and China has generated revenue gains 

for farmers overall (e.g., Pray et al. 2002; Bennett et al. 2004). But those two countries approved only the 

large-scale production of GM cotton, in part because unlike other GM crops, the main products of cotton 

are not used for food and thus are not subject to food safety approval, traceability, and labeling 

regulations or GM-free private standards in major importing countries. In particular, neither Japan nor the 

EU directly regulates textile products derived from GM cotton.  

In fact, the fear of export loss is a major driver in the reluctance to use GM technology in 

developing countries (Paarlberg 2002; Gruere 2006). That fear may be driven by large traders in 

exporting countries afraid to lose market access. Following a detection of unapproved U.S. GM rice in 

EU and Japanese markets, prompting rapid import bans, Thailand and Vietnam, two of the largest rice 

exporters, announced that they would remain GM-free and would not approve any GM rice. Rice 

exporters in India have argued against field-testing of GM rice for similar reasons. But the fear is also 

patent in countries importing current or potential GM crops. In many cases such fears are largely 

exaggerated and based on misinformation or a poor knowledge of the global trade system by 

biotechnology governing bodies. Paarlberg (2006) shows that African countries have virtually no export 

to lose from adopting current GM crops. Smythe, Kerr, and Davey (2006) show that despite claims by 

GM crop opponents, major exporters that adopted GM crops in the 1990s have experienced no loss in 

export value or volume; rather, their exports have been diverted to other markets. Several ex ante 

simulation models have also shown that China or Sub-Saharan Africa are bound to gain largely from 

adopting GM food or feed crops even with bans in large importing nations (Huang et al. 2004; Anderson 
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and Jackson 2005). Lastly, the fear is also based on the mistaken idea that segregating GM and non-GM 

crops is infeasible or prohibitively costly. In fact, virtually all large GM-food- or feed-producing countries 

(the United States, Canada, Argentina, Brazil, South Africa) produce alternative non-GM crops, and even 

organic crops for domestic and/or international markets.  

In this context, many Asian countries that have invested in research and regulations on GM food 

crops are confronted with what they see as three possible alternatives: (1) allow the production of GM 

food crops with the risk of losing potential exports; (2) reject the commercialization of any GM food 

crop; or (3) produce both GM and non-GM crops separately at a marketing cost.  

The purpose of this paper is to provide an integrated economic assessment of these three 

strategies focusing on India, Bangladesh, Indonesia, and the Philippines—four countries that the 

agricultural biotechnology and trade literature has largely ignored. More specifically, the paper has two 

main objectives. First, the study assesses the impacts of large importers’ regulations (such as the EU and 

Japan) on the potential benefits of adopting particular GM crops in the four countries. Second, we 

evaluate the opportunity cost of GM/non-GM segregation for such crops under the external constraints 

previously defined. We focus on four major traded commodities—rice, wheat, maize, and soybeans—but 

we also include cotton and its derived cottonseed. For each crop, we select a set of biotic or abiotic stress 

resistance traits (such as insect resistance or drought resistance) according to the status of research, and 

the productivity and income potential they promise in these four countries.  

We build on previous literature using computable general equilibrium models by improving the 

representation of trade policies and refining the assumptions on the productivity effects of biotechnology. 

First, we account for the “trade filter” effect of GM food marketing policies in GM-food-sensitive 

countries, which allow the importation of products for intermediate consumption (as exceptions to the 

labeling policies) but not products for final consumption. Second, we include the option of costly 

segregation of non-GM crops for export, and we model GM crop adoption as a factor-biased productivity 

shock based on disaggregated data on agricultural constraints. These assumptions help us to obtain robust 

estimates of the economic effects of adopting GM crops in Bangladesh, India, Indonesia, and the 

Philippines under current trade regulations, and they allow us to derive the opportunity cost of segregation 

of GM and non-GM crops.  

The paper is organized as follows. In the next section we briefly review the literature on global 

trade modeling of GM food introduction. Then, we describe the methodology employed to derive 

productivity shifts with the adoption of particular GM crops in the four countries. In the fourth section we 

explain the specificities of our trade model and present our scenarios. The results of the simulations are 

presented in section 5 and discussed in section 6. We close the paper with a few policy conclusions.  
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2. PREVIOUS LITERATURE 

Since 2000, many papers have used multi-country computable general equilibrium (CGE) models to 

simulate the introduction of GM crops under various international scenarios. In their review of the applied 

economic literature on GM crops in developing countries, Smale et al. (2006) found 14 articles following 

this approach and focusing on developing countries. Each paper uses a modified version of a CGE model 

based on the Global Trade Analysis Project (GTAP) database (Hertel 1997) that includes vertical and 

horizontal linkages in the economy to examine the effects of GM technology adoption on multiple sectors 

and regions. The papers and approaches differ in their assumptions about the productivity effects of the 

technology, in their assumptions about the rate of adoption, and according to the scenarios they depict 

concerning trade policies, consumer perceptions, and market assumptions. In this section, we do not 

provide a complete review of the literature; instead we concentrate our attention on some of the relevant 

CGE studies on GM crop adoption in developing nations, particularly those that focus on Asian countries.  

First, at a global scale, Nielsen, Robinson, and Thierfelder (2001) studied the introduction of GM 

oilseeds and grains in seven regions. They modeled the technology with a 10 percent Hicks-neutral 

productivity shift of primary factors, with costless segregation of GM and non-GM food in all countries 

and consumer price sensitivity differences. They find that the total welfare (as measured in terms of 

absorption) would increase by $12 billion with the adoption of GM maize and oilseeds in selected 

countries, but it could be reduced by $1 billion if consumers had a preference for non-GM food. Nielsen 

and Anderson (2001) later used a 5 percent productivity shift with the adoption of GM grains and oilseeds 

and ran three scenarios: first, the adoption of GM crops with no trade constraints; second, a ban of GM 

crops in western Europe; and third, a shift in consumer preference away from GM crops in western 

Europe. They obtain a lower range of global welfare effects with $9.9 billion in the first scenario, $3.4 

billion in the second with a trade ban, and $8.5 billion in the case of the preference shift. Although most 

of the relative welfare loss with trade restriction or demand change is attributed to Europe, these two 

studies demonstrate the importance of European policies on potential gains from GM crop technology.  

Several papers focus on China. Anderson and Yao (2003) simulated the introduction of GM rice, 

cotton, maize, and oilseeds in a number of countries with or without China, using a 5 percent Hicks-

neutral productivity shift. They also include a scenario that eliminates the Chinese voluntary export 

restraint on textile. The results show that China would largely benefit from introducing GM rice before 

any other crop, and that a voluntary export restraint removal would multiply by 20 the benefits from Bt 

cotton. Huang et al. (2004) analyzed the effects of GM cotton and GM rice introduction in China, based 

on regional farm-level survey data, adding labeling costs, loss of demand in export markets, and dynamic 

adoption, but without adoption of these crops in other countries. Their results show that China can 
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continue to benefit from an extended adoption of Bt cotton, but that it would benefit even more from the 

introduction of GM rice, whose formal approval decision has been postponed by regulatory authorities in 

the last few years.  

Other studies focus on Sub-Saharan Africa. Anderson and Jackson (2005) use a factor-biased 

productivity shift to look at the effect of GM coarse grains, oilseeds, wheat, and rice in Sub-Saharan 

Africa with and without trade restrictions. They show that Sub-Saharan Africa would gain as much with 

or without a GM ban in the EU, but that imposing a moratorium on GM imports and production in the EU 
would result in significant losses worldwide. Anderson, Valenzuela, and Jackson (2006) evaluate the 

effect of Bt cotton introduction in Sub-Saharan Africa with and without World Trade Organization trade 

reform and show that the effects of GM cotton adoption could exceed those of a trade reform for Sub-

Saharan African countries.  

Lastly, a few studies focus on the effect of GM rice introduction in multiple countries. Anderson, 

Jackson, and Nielsen (2004) provide an analysis of GM rice and golden rice (nutritionally enhanced) 

adoption in multiple countries, using factor-biased productivity shifts and running various trade scenarios. 

They show that golden rice could provide a much bigger boost to countries adopting it due to its assumed 

effect on overall labor productivity in all sectors. Focusing on productivity-enhancing traits, Hareau et al. 

(2005) evaluate the effects of three different GM rice events (Bt, herbicide tolerant, and drought tolerant) 

with factor-biased productivity shifts, accounting for intranational differences in land type, providing a 

convincing approach to productivity modeling. Their results show that if the benefits of the three 

technologies are similar overall, the distribution of benefits highly depend on the particular trait.  

Table 1. Ranges of welfare effects ($ million/yr) experienced by India, China, and the world overall 
obtained by selected CGE studies of the introduction of GM crops 

India Crop 
India does not adopt, 

others do 
India adopts, 

others do 

China, with 
adoption of GM 

crops 

World 

Maize and soybeans 0 to 3 1265 to 1277 804 to 839 -1287 to 9859 
Cotton -26 to -41 710 to 822 314 to 563 856 to 2610 
Rice -18 to -23 458 to 709 190 to 4155 -5452 to 4887 
Golden rice n.a. 2528 7209 17438 
Maize, soybeans, 
rice and wheat 

n.a. 654 to 669 832 to 841 -946 to 7506 

Sources: Ranges of estimates obtained from a combination of Anderson and Yao (2003); Anderson and Jackson (2005); 
Anderson, Jackson, and Nielsen (2004); Anderson, Valenzuela, and Jackson (2006); Hareau et al. (2005); Elbehri and 
MacDonald (2004); Huang et al. (2004); and Nielsen and Anderson (2001). 

Table 1 provides ranges of estimates of the welfare effects India, China, and the world overall 

would see under the adoption of GM crops, drawn from previous literature under various scenarios. The 

large variance in results is naturally due to the diversity of scenarios and assumptions, in particular 

regarding productivity shifts and international trade. Still, a few general lessons can be drawn from 
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observing these results. First, India seems to be better off adopting GM crops than rejecting them when 

other countries adopt them. Second, apart from the specific study on golden rice, it is difficult to draw 

general lessons about the relative advantage of different GM crops. Third, the world can lose with GM 

food or feed crop adoption under certain scenarios.  

In their review of the literature focusing on research methodologies, Smale et al. (2006) note that 

CGE studies of GM crop introduction have progressively improved over time with a better representation 

of productivity shifts, from Hicks-neutral productivity shifts based on relatively general assumptions to 

factor-biased productivity shifts based on specific trait and regional differences (e.g., Elbehri and 

McDonald 2004; Hareau et al. 2005; Huang et al. 2004), and more complex trade policy representation 

(e.g., van Meijl and van Tongeren 2004; Anderson et al. 2006). Overall the improvement of the 

assumptions on productivity shifts has translated into a relative diminution of the results in terms of 

global welfare effects for current GM crops.  

In this paper, we build on previous analysis by proposing an incremental improvement in three 

regards. First, as explained in the next section, we provide regionally based productivity in the countries 

we focus on. Second, as explained in section 4, we provide a more complex representation of the 

international market regulations. Third, we combine our analysis for our countries of study with 

assumptions on other countries reflecting the observed effects derived in published papers.  

At the same time, we focus on four countries—India, Bangladesh, Indonesia, and the 

Philippines—that have largely been excluded from previous reports. Only Hareau et al. (2006) studied the 

effects of GM rice in these and other Asian countries, taking into account land type and technology 

differences but excluding trade restrictions. Most other studies only aggregated developing nations of 

Asia into China, India, and the rest of Asia. We aim to provide additional insights into the possible effects 

of GM food in these four populous countries of Asia. 
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3. PRODUCTIVITY MODELING  

Predicting the effect of a future technology is not trivial; it necessarily relies on a careful analysis of 

available information based on the current situation, and on the determination of plausible scenarios. In 

the setting of global trade modeling, one single parameter standing for a productivity shift of a country or 

region will represent a complex agro-economic process that implicitly should derive from the local 

agronomic constraints, the local agronomic practices, the local likelihood of adoption of the new 

technology (based on its availability, price, input markets, and extension systems), and the local 

adaptation of the new technology.  

In this paper, we attempt to take one step forward in this direction by modeling GM technology 

introduction with factor-biased productivity shifts (including yield, chemical use, and labor effects) using 

spatially disaggregated estimates of technology potential and adoption rates combined into national 

aggregate effects of technology in India, Bangladesh, Indonesia, and the Philippines. We also use expert 

data to formulate scenarios of adoptions accounting for plausible differences across types of land. This 

overall process is intended to help reduce uncertainties and replace what may appear as arbitrary 

productivity shifts by more consistent and plausible ones. In this section, we explain the successive steps 

of the method used to derive our assumed productivity shifts in the four countries of study. 

A) Collection of Expert and Secondary Data on Constraints and Technology Potential 

We conducted a series of consultations and focus group meetings with scientific, agricultural, and 

regulatory experts in India and Bangladesh in July 2005 and Indonesia and the Philippines in September 

2005 on the potential effects of biotechnology improvements to resist biotic and abiotic stresses. In total, 

10 meetings were held in five cities in India (Delhi, Bombay, Bangalore, Hyderabad, and Calcutta), two 

meetings in two locations in Bangladesh (Dhaka and Mymensingh), four meetings in Indonesia (in Bogor, 

Java), and four meetings in the Philippines (in Luzon). In each such meeting we discussed the status of 

research, agricultural constraints for major crops of interest, the potential of biotechnology to address 

those constraints, and other issues related to regulatory approval and consumer acceptance of transgenic 

crops.1 We also asked the participants at these meetings to fill out questionnaires in order to elicit 

subjective estimates of potential yield and input effects of future new technologies (as done for rice in 

Evenson, Herdt, and Hossain 1996). In parallel, we obtained existing national and international studies of 

GM technology, productivity constraints, and technology potential publicly available for these and other 

countries.  

                                                      
1 We do not provide an analysis of the outcomes of the meetings in this paper, but we plan to provide more explanations in a 

longer report. The results of the consultations conducted in Bangladesh are summarized in Gruere et al. (2006).  
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B) Obtaining the Range of Potential Technology Yield Effects in Affected Areas2 

The discussions in our meetings helped us decide to focus on four types of traits—insect resistance, 

virus/disease resistance, drought resistance, and salt tolerance applied specifically to rice, wheat, maize, 

and soybeans in each country. Each GM crop/trait combination is modeled based on its effect on yields 

and use of chemical inputs (mainly pesticides) and its assumed effect on labor. We would have liked to 

include the cost of seeds as a third factor, but we later realized that we did not have the proper data to 

incorporate it into the global model. Yet we can justify the exclusion of seed premiums by using 

exogenous partial adoption rates. As a consequence our results will be inclusive of the benefits of 

developers and not only producers.  

In this subsection we describe more specifically the case of yield effects, for which we use 

triangular distribution of estimates, but our derivations of the input effects also follow the same general 

procedure. Combining expert estimates on constraints and productivity potential and secondary data on 

yield constraints, we derived expected yield effects in rainfed versus irrigated land in Bangladesh, 

Indonesia, and the Philippines and in each water basin region of India. Triangular distributions of yield 

constraints (or yield gap) and of the potential effects of using transgenic crops from the questionnaires 

and meetings are aggregated by taking the “minmin” and “maxmax” values and by averaging the most 

likely values (excluding clear outliers). We compute average ranges of potential effects by averaging over 

the most likely values of yield constraints (or yield gap) from different data sources, with the minimum 

and maximum values retained. The ratio of expected yield effects on yield constraints derived from 

experts’ data is used as a proxy for the expected efficacy of the technology. This efficacy rate is 

multiplied by the yield gap associated with the constraint to obtain the range of most likely yield effects 

of the technology.  

C) Affected Land and Production Type by Water Basin Projection 

The resulting yield effect is multiplied by the production share for each subregion represented by a 

particular type of land (and water basin in India) in order to obtain a weighted average of the total yield 

effects for each country. To do so, we used 2015 projections of irrigated and rainfed areas by water basins 

in India and in each of the other three countries from a baseline simulation of the IMPACT-Water model 

developed at IFPRI. IMPACT-Water is a multi-market partial equilibrium model of agricultural 

production and trade at the water basin level that projects the evolution of land and agriculture. The 

combination of yield effect by subregion and share of each subregion in each country generates national 

average yield effects of each technology assuming a 100 percent adoption rate. 

                                                      
2 In this section, we focus on our derivations of the yield effects. The derivations of the input effects were mostly based on a 

combination of primary and secondary data per crop/trait combination, but did not involve range calculations.  
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For the case of crops resistant to abiotic stresses—i.e., drought- and salt-tolerant crops—we also 

estimated the share of affected areas in each subregion in order to account for the fact that not all land is 

affected by drought or soil salinity constraints. To do so, we used categorical indicators of drought and 

salinity constraints by areas of production, type of land, and water basin based on a satellite imagery and 

agricultural study developed by the spatial team of IFPRI.3 The measure of drought is based on the 

annual variation (around a three-decade average) of the length of growing period computed for each of 

the 30 years from 1961 through 1990 (Fischer et al. 2002). The soil salinity index is based on a Fertility 

Capability Classification approach (Smith et al. 1998; Sánchez, Couto, and Buol 1982) applied to the 

mapping units of the Food and Agriculture Organization (FAO) Soil Map of the World. (FAO 1995). The 

results allowed dividing the land into 10 types of categories of risk based on the share of saline land in 

each spatial unit.  

By filtering these indicators with production area in each spatial unit, we obtained the share of 

affected areas in each subregion. We then built categorical yield responses to the risk of drought or 

salinity. For instance, in the case of drought, the IFPRI spatial team was able to classify delimited areas of 

land in four categories: no risk, low risk, medium risk, and high risk. We attributed probability of risk for 

each category (using a linear approximation) to obtain expected damage or expected yield potential due to 

drought in a particular subregion. The output is a weighted average of damage in each subregion 

representing the national effect of abiotic-stress-resistant crops with a 100 percent adoption rate among 

producers affected.  

D) Adoption: Expert Data and Secondary Data on High-Yield Varieties Adoption  

There are two ways to model adoption: it can be done endogenously or exogenously. To our knowledge, 

all previous simulation models used exogenous adoption rates. In this study, we also use exogenous rates, 

but we vary the initial adoption rates according to the type of land and subregion. In particular, we assume 

that producers in rainfed areas will not have the same adoption rate as producers in irrigated areas. 

Generally speaking, producers in irrigated areas tend to have better access to new technologies, but at the 

same time, rainfed producers may benefit more from certain technologies.  

In addition, regional differences matter, and in a country like India certain states tend to be the 

first to provide and adopt new technologies and have a higher proportion of technology adopters. To 

account for that fact, we correct the production share of each Indian region by a proportional factor linked 

to historical data on the adoption of high-yielding varieties of each crop obtained from IndiaStat. Instead 

of assuming that a GM crop will be adopted in all regions the same way, we let certain regions be 
                                                      

3 The detailed mapping methodology, using an entropy approach to spatial disaggregation, is explained in detail in You and 
Wood (2006). Abiotic stress indicators were developed by Liang You, Stan Wood, and Cynthia Rossi, following a methodology 
explained in detail in IFPRI (2005) for India and Bangladesh. 
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relatively larger adopters of the crop. The adoption rate in each subregion is then multiplied by each yield 

and area factor to obtain a total expected yield effect of the technology in 2010, 2015, and 2020. 

E) Obtaining Land Type Aggregate Effect and National Effects 

The aggregate national effect of the technology is computed with the following formula: 

.lt w lw lw lw
l w

yα β σ λ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑  where l stands for type of land (irrigated or rainfed), w for the water basin, and t 

for time; α is the exogenous adoption rate per type of land (for abiotic stress it represents the adoption 

among producers affected) and period; β is the proportional spatial correction of adoption rate based on 

observed rates of adoption of high-yielding varieties in each water basin; σ is the share of production of 

the crop in the subregion; y is the yield effect in each subregion; and λ is the share of production under 

rainfed or irrigated conditions affected by a specific abiotic stress. Ten water basins are used to represent 

India, while the three other countries are represented by one unit each, and therefore only disaggregated 

according to the type of land and time.  

F) Assumptions for the Major Technologies in the Countries of Interest 

Table 2. Absolute productivity effects and initial adoption assumed for Bangladesh  

Bangladesh % Yield effects % Input effects % Initial adoption 
Technology Min ML Max Chemicals Labor IR RF Total 
DR rice 0.13 1.13 4.89 0 0 7.8 34.4 9.76 
ST rice 0.39 0.57 0.81 0 0 2.96 1.9 2.88 
Bt rice 0.39 0.82 1.17 -14.62 -2.56 40 20 36.56 
DR wheat 0.25 0.83 1.52 0 0 8 27.4 14.75 
Bt maize 0 1.38 2.50 -10 -1.88 0 25 25 
DR maize 0 1.75 5.25 0 0 0 7 7 
VR maize 0 2.25 5.25 -6 -1.13 0 15 15 

Source: Authors. 
Notes: ML = most likely, DR = drought resistant, ST = salt tolerant, VR = virus or disease resistant, IR = irrigated land, RF = 
rainfed land. 
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Table 3. Absolute productivity effects and initial adoption assumed for India 

India % Yield effects % Input effects % Initial adoption 
Technology Min ML Max Chemicals Labor IR RF Total 
DR rice 0.30 2.58 6.69 0 0 24.55 18.4 22.43 
ST rice 0.37 1.97 3.76 0 0 9.95 4.06 7.91 
Bt rice 0.30 1.03 2.13 -9.5 -2.31 60 10 27.6 
VR rice 0.11 0.43 0.87 -0.97 -0.4 30 5 13.8 
DR wheat 0.16 1.83 2.94 0 0 1.55 8.20 5.86 
ST wheat 0.15 0.67 1.13 0 0 6.3 2.51 3.84 
VR wheat 0.44 3.51 8.50 -1.47 -1.10 25 5 14.73 
Bt maize 1.61 3.29 5.76 -1.46 -1.02 25 5 14.57 
DR maize 0.34 2.20 3.06 0 0 1.79 15.42 8.92 
VR maize 0.37 1.30 2.59 -0.37 -0.18 10 5 7.39 
VR soybeans 0 0.83 4.58 -0.97 -0.68 15 8 9.66 

Source: Authors. 
Notes: ML = most likely, DR = drought resistant, ST = salt tolerant, VR = virus or disease resistant, IR = irrigated land, RF = 
rainfed land. 

Table 4. Absolute productivity effects and initial adoption assumed for Indonesia 

Indonesia % Yield effects % Input effects % Initial adoption 
Technology Min ML Max Chemicals Labor IR RF Total 
DR rice 0 0.46 1.27 0 0 4.5 36.4 7.75 
Bt rice 0.49 1.23 2.46 -7.57 -4.34 50 20 43.38 
VR rice 0.01 0.51 1.17 -1.70 -1.28 15 5 12.79 
Bt maize 0.15 0.35 0.79 -3.00 -1.50 15 15 15 
DR maize 0.10 2.15 4.24 0 0 2.3 34.1 28.06 
VR maize 0.03 0.06 0.12 0 -0.06 5 2 2.38 
IR soybeans 3 8.25 18 -13.5 -1.25 0 30 30 
DR soybeans 0.09 1.89 3.73 0 0 0 23 23.15 
VR soybeans 0.6 5.48 18.0 -18 -3.00 0 30 30 

Source: Authors. 
Notes: ML = most likely, DR = drought resistant, IR = insect resistant, VR = virus or disease resistant, IR = irrigated land, RF = 
rainfed land. 

Table 5. Absolute productivity effects and initial adoption assumed for the Philippines 

Philippines % Yield effects % Input effects % Initial adoption 
Technology Min ML Max Chemicals Labor IR RF Total 
DR rice 0.08 1.36 3.72 0 0 3.8 33.6 13.11 
Bt rice 0 0.68 1.01 -20.50 -3.20 40 15 32.02 
VR rice 0 0.61 1.23 -10.01 -1.52 20 5 15.21 

Source: Authors. 
Notes: ML = most likely, DR = drought resistant, VR = virus or disease resistant, IR = irrigated land, RF = rainfed land. 

The assumptions derived from this process for the four countries of study are presented in 

absolute terms at the national level in tables 2, 3, 4, and 5. The tables present the assumed effects of each 

technology projected in 2015, as these are the ones used as reference for the simulation model.4 The 

parameters presented in the tables include minimum, most likely, and maximum value of the total yield 

effect, the total chemical effects, and the total labor effects at the national level under the initial adoption 

                                                      
4 We also derived the effects and adoption for each crop in 2010 and 2020, but we did not use them in the simulations 

presented in this paper. We may decide to use them later within a dynamic modeling approach.  
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rate presented in the last three columns.5 For instance, the introduction of Bt maize (insect resistant) in 

Bangladesh (fifth row of Table 2) at an adoption rate of 25 percent only in rainfed areas would result in a 

most likely 1.38 percent yield increase, a 10 percent reduction of chemicals, and a 1.88 percent labor 

reduction in maize at the national level. The introduction of drought-resistant rice in India (first row of 

Table 3) at an initial adoption rate of 22.43 percent, corresponding to 24.55 percent of irrigated land and 

18.4 percent of rainfed land, in 2015 would most likely result in a 2.58 percent increase in total rice 

production in India.  

The results show that certain crops are more promising than others, and that all crops will likely 

not be adopted at the same proportional rate in each country or under each type of land. Drought-resistant 

crops are not designed to increase existing yield levels, but rather to help crops survive under drought 

conditions, acting like crop insurance. But at the aggregate level, they will provide a boost in average 

yields, therefore acting as yield-enhancing technologies for growers affected by drought. Because of the 

lack of relevant data, we assumed that crops resistant to abiotic stresses do not affect labor and chemical 

use, while crops resistant to biotic stresses generate labor and chemical productivity increases. 

Bangladesh has lower initial adoption rates in certain crops because we presume that the technology will 

take a longer time to spread than in India and other countries.  

To translate these data into usable inputs into the multi-market CGE model, we computed the 

aggregated relative productive effects of the composite GM crops. To do so, for each crop, we first 

summed the national productivity effects associated with each trait, and we divided these estimates by the 

sum of the adoption rates of each trait. For example, in the case of the most likely relative yield effects of 

rice in Bangladesh, we added the most likely absolute yield effects of the three traits used for rice (shown 

in the first three rows in Table 2) and divided it by the sum of the respective three total adoption rates 

(shown at the end of the same rows in Table 2). The ratio obtained is 2.52/49.2, which is equal to 5.12 

percent.6 

These relative parameters are presented in Table 6, but it is important to note that they are not all 

meaningful even if they are directly derived from estimated adoption and yield and input effects 

following the methodology described in this section. For example, it does not make sense to consider the 

effects of 100 percent national adoption of a drought-resistant variety when the productivity effects of 

such a variety will be effective in only 10 percent of the land. Moreover, these numbers would represent 

the effects of composite GM crops, which may be developed in the future but are not the main focus of 

current research programs. 

 
                                                      

5 The total adoption rates are derived as weighted averages of irrigated and rainfed land based on the IMPACT-Water 
model. 

6 The same method is used to derive relative input effects.  
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Table 6. Aggregate relative productivity factors and adoption rates of the composite GM crops for 
the countries of study used in the simulation model 

% Input effects Crop Country % Yield effects 
Chemicals Labor 

Initial adoption 

Rice Bangladesh 5.12 -29.72 -5.2 49.2 
 India 8.38 -14.59 -3.78 71.74 
 Indonesia 3.44 -14.50 -8.79 63.92 
 Philippines 4.39 -60 -7.82 60.34 
Wheat Bangladesh 5.63 0 0 14.75 
 India 24.6 -6.02 -4.5 24.43 
Maize Bangladesh 10.55 -31.37 -5.9 51 
 India 21.99 -5.93 -3.89 30.88 
 Indonesia 5.63 -6.6 -3.43 45.44 
Soybeans India 8.59 -10.04 -7.04 9.66 
 Indonesia 18.79 -37.88 -5.11 83 

Source: Authors’ computations. 

For other countries and existing crops, the productivity shifts and adoption rates are derived from 

various farm-level and industry- or trade-level studies in each country. Our assumptions are shown in 

Table 7 with relative yields, input effects, and the initial adoption rates both under a first shock in the 

current GM-producing nations (noted I) and under a second, later shock, with larger adoption rates in a 

number of countries and a few added countries (noted II). For simplicity, and to isolate the effects of GM 

crops on certain countries, we assume that the adoption rates of countries that are already adopters in 

period I do not change in period II and we maintain the same productivity effects across periods. For 

maize, soybeans, and cotton, we use available ex post estimates, therefore only representing currently 

available traits that are pest resistant (maize, cotton), herbicide resistant (soybeans, maize, cotton), or both 

(maize, cotton) depending on the country. For rice, we assume that China will be a technology leader, but 

because of the lack of data, we only assume that China adopts Bt rice. For wheat, we assume that China 

and Argentina will use herbicide-resistant varieties.7   

                                                      
7 Some of the productivity assumptions shown in Table 7 (e.g., wheat and soybeans) are not completely comparable to the 

ones shown for our countries of study in Table 6 simply because the traits are not the same, and because the relative productivity 
effects shown in Table 6 represent composite (multi-trait) GM varieties rather than simple varieties. 
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Table 7. Relative productivity effects and initial adoption rates assumed for other countries  

% Input effects % Initial adoption Crop Country % Yield effects 
Chemicals Labor I II 

Rice China IR 7.03 -65 -9.1 0 80 
Wheat China  7 0 -7.7 0 50 
 Argentina  7 0 -7.7 0 50 
Maize USA  9 -1.5 -5 52 52 
 Argentina IR 5 0 -5 40 40 
 South Africa IR 32 0 -5 16 16 
 Philippines IR 34 -52 -5 4 25 
 Canada IR 5 0 -5 40 40 
 EU (Spain) IR 6.3 0 -5 5 5 
 Tanzania and 

Uganda IR 
32 0 -5 0 25 

Soybeans Argentina HT -0.3 -43.2 -7.7 98 98 
 Brazil HT -3 -3 -7.7 41 41 
 USA HT 0 0 -5 87 87 
 Canada HT  0 0 -5 50 50 
Cotton China IR 7 -67 -6.7 70 90 
 USA IR+HT 11 -21 -2 81 81 
 Australia HT 0 -21 -2 40 40 
 India IR 34 -41 5 15 25 
 Mexico IR 9.7 -77 -5 61 61 
 Argentina IR 33.1 -46 -5 20 20 
 Brazil IR 33.1 -46 -5 4 4 
 South Africa IR 15.5 -23 -5 79 79 
 Tanzania and 

Uganda IR 
15.5 -23 -5 0 30 

Sources: Authors’ assumptions based on Elbehri and McDonald (2004); Qaim and Matuschke (2005); Marra, Pardey, and Alston 
(2002); and James (2005). 
Notes: IR = insect resistant, HT = herbicide tolerant. 

GM cotton is included because of its importance in developing countries and the fact that it is 

associated with increased cottonseed and cottonseed oil production, which are used for feed or food in a 

number of countries. Apart from current GM-adopting countries, we decided to add limited adoption of 

cotton and maize in Tanzania and Uganda as a supplementary experiment to our shock in Asia. Because 

these two countries do not export large volumes of either commodity we do not expect that they will 

influence the results of other countries too much, but we are interested in comparing their relative welfare 

changes with the ones in the countries of study. 
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4. TRADE MODELING AND SCENARIOS 

The methodology we propose to apply in our study is based on a multi-country, applied general 

equilibrium framework. A modified version of the MIRAGE model (Bchir et al. 2002)8 is used to 

simulate a range of scenarios on the productivity effect, trade restrictions, and segregation options. This 

model is based on the GTAP 6.1 database, which represents the world as of 2001. For this application, we 

divide the economy into 21 regions, including GM-producing countries, sensitive importing countries, 

and other important countries, and 19 sectors, including the relevant production sectors, as well as the 

chemical sector. The MIRAGE model includes an updated representation of trade policies and unilateral, 

bilateral, and multilateral trade preferential agreements (using MacMap-HS6; 2001 data).  

We first modify the MIRAGE model by dividing the five production sectors into GM and non-

GM substitutes for all GM-adopting countries. Second, with this structure, the model is changed to allow 

for the use of specific productivity shocks only on GM products in each GM sector for each adopting 

country. The model is also modified to allow for the ban of GM and/or non-GM imports in selected 

countries only from GM-producing nations going toward final consumption to reflect the current effects 

of labeling policies (Gruere 2006). We also allow the model to block imports from GM-producing 

countries going toward both final and intermediate consumption for selected food crops in certain 

scenarios. Lastly, the model is changed to allow for the introduction of a segregation cost for non-GM 

crops going from GM-adopting countries to sensitive importing ones.  

To calibrate the model, we use the assumed parameters provided in section 3 regarding the 

productivity shocks and the proposed initial adoption rates. However, because of the relative aggregated 

level of the GTAP database, we make four adjustments on the shocks and scenarios to the particular 

sectors we are interested in.  

First, on the product side, we use proportional weights derived from FAOSTAT national 

production data in 2001 to reduce the adoption rates for maize taking into account its contribution to the 

GTAP coarse grains sector, for cotton to the GTAP plant-based fiber sector, and for soybeans and 

cottonseed to the GTAP oilseeds sector.  
Second, we use a similar approach by reducing the productivity shock proportionally to account 

for the share of pesticide costs in the aggregated GTAP chemical sector for each GM crop concerned in 

each country. For cotton, this adjustment is done by weighing the share of pesticide costs in total 

chemical costs used in cotton production based on a survey of national production budgets (ICAC 2004). 

For all other GM crops, we use a two-step approach, first deriving the share of fertilizer in chemical use 

                                                      
8 The MIRAGE model was developed at the Centre d’Etudes Prospectives et d’Informations Internationales (CEPII) in 

Paris. Full description of the model is available at the CEPII website (www.cepii.fr). 
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from FAOSTAT 2001, and second by using general data on the share of insecticides in total pesticide use 

at the continental level (Yudelman, Ratta, and Nygaard 1998).  

Third, for the case of countries adopting both GM cotton (and therefore cottonseed, an oilseed) 

and GM soybeans (another oilseed), we derive the productivity effect of a composite oilseed good. This is 

done by computing a weighted average of the respective productivity effects (yields, labor, chemical) of 

cotton and soybeans, using the expected share of GM cotton and GM soybeans in total oilseeds as 

respective weights. 

Fourth, for scenarios allowing the segregation of non-GM maize and soybeans, we adjust the 

segregation cost imposed for non-GM crops going to sensitive importing regions by accounting for the 

share of imports of these two crops into the coarse grains and oilseed sectors in 2001, respectively (using 

FAOSTAT bilateral database 2001).  

 After this data adjustment, under each set of scenarios, the model is calibrated to incorporate the 

assumed productivity shocks in all selected GM-adopting nations. Then under each scenario, we run the 

model only once to simulate a comparative static shock, and we use a perfect competition representation 

of the economy for simplification. Further refinements of our simulations could include dynamics and 

imperfect competition modeling.  

Table 8. GM-adopting countries and their producing GM sectors under each scenario set 

Set of 
scenarios 

Rice Wheat Maize Cotton fibers Oilseeds (soybeans 
and cottonseed) 

A -None- -None- Argentina, Canada, 
EU, Philippines, 
South Africa USA 

Argentina, 
Australia, China, 
India, Mexico, 
South Africa USA 

Argentina, 
Australia,a Brazil, 
Canada, China,a 
India,a Mexico,a 
South Africa,a USA 

B -None- -None- Argentina, 
Bangladesh, 
Canada, EU, India, 
Indonesia, 
Philippines, South 
Africa, Tanzania-
Uganda, USA  

Argentina, 
Australia, 
Bangladesh, 
China, India, 
Indonesia, 
Mexico, South 
Africa Tanzania- 
Uganda, USA  

Argentina, 
Australia,a 
Bangladesh, Brazil, 
Canada, China,a 
India, Indonesia, 
Mexico,a South 
Africa,a Tanzania-
Uganda,a USA  

RICE Bangladesh, 
China, India, 
Indonesia, 
Philippines 

-None- -None- -None- -None- 

WHEAT -None- Argentina, 
Bangladesh, 
China, India 

-None- -None- -None- 

a Country producing only GM cottonseed and no GM soybeans as part of its oilseeds. 
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We define four distinct sets of scenarios as shown in Table 8. The first set, noted A, aims to 

represent 2005 GM-adopting nations and GM crops, namely maize, cotton, and oilseeds (soybeans and 

cottonseed),9 and it is run as a benchmark to compare with other types of shocks, using initial adoption 

rates defined in the I column of Table 7. The second set, noted B, includes the same GM crops adopted in 

the same countries, at a higher initial adoption rate in some countries (e.g., cotton in India, maize in the 

Philippines). In addition, Bangladesh, India, Indonesia, and Tanzania and Uganda also adopt some of 

these GM crops. The initial adoption rates for these countries are defined in tables 2 through 5 and in the 

II column of Table 7. The third set, titled RICE, represents the case of the adoption of GM rice in the four 

countries of study and in China (using initial adoption rates defined in the relevant tables of section 3). In 

our consultation meetings, we found that local experts in the four Asian countries agreed that GM rice 

would enter their country only if China adopted it first. Lastly, the fourth set is named WHEAT and 

presents the introduction of GM wheat in Bangladesh, India, China, and Argentina, which are also 

assumed to be leaders in technology adoption. The initial adoption rates for rice and wheat are defined in 

tables 2 through 5 and in the II column of Table 7.  

We deliberately separate the case of current GM crops from the case of largely 

noncommercialized GM food crops (rice and wheat) for two reasons. First, we want to singularize the 

effect of adopting GM rice and GM wheat, two major food crops, from the current crops that are mostly 

used for animal feed and nonfood products. Second, we apply specific scenarios to these two last cases 

reflecting potential complete rejection in sensitive importing countries in the short run (which will not 

happen for GM crops of set A and B that are all currently traded).  

                                                      
9 We do not include canola explicitly in our model due to the lack of sufficient data on its productivity effect in adopting 

countries.  
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Table 9. Features of each scenario for GM-adopting countries under each set of assumptions 

 

 

 

 

 

 

 

 

 

 
a The sensitive 

countries are the European Union, Rest of Europe, Japan, South Korea, and Australia/New Zealand 

b These scenarios are run for the RICE and WHEAT sets only. 
.

Scenario number 
and title 

Productivity shock on 
GM crops 

Ban toward intermediate 
consumption in sensitive 

countriesa of 

Ban toward final 
consumption in sensitive 

countriesa of 

Segregation of non-GM 
product exported toward 

sensitive countriesa 

  Non-GM GM Non-GM GM  
0. Base 
 

No No No No No No 

1. Productivity shock 
 

Yes No No No No No 

2a. Import ban, no 
segregationb 

Yes Yes Yes Yes Yes No 

2b. Import filter, no 
segregation 

Yes No No Yes Yes No 

3a.i. Import ban, 
costless segregationb 

Yes No Yes No Yes Yes 

3a-ii. Import ban, 5% 
segregation costsb 

Yes No Yes No Yes Yes 

3b-i. Import filter, 
costless segregation 

Yes No No No Yes Yes 

3b-ii. Import filter, 5% 
cost segregation 

Yes No No No Yes Yes 
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Each set of scenarios comprises five to eight individual scenarios, as shown in Table 9. Scenario 

0 is run as a benchmark without GM production. We will not show its result, but it serves as a basis for 

the measured welfare changes in the other scenarios. Scenario 1 simulates a productivity shock associated 

with the adoption of GM crops and no trade restriction, that is, assuming all countries import and 

consume GM and non-GM crops with no differentiation.  

Scenarios 2a and 2b include the same productivity shock with trade restrictions. Scenario 2a is 

run only for the RICE and WHEAT sets, and represents the short-run effect of the adoption of new GM 

varieties, namely, the import ban of GM and non-GM crops from the adopting countries in sensitive 

countries. Scenario 2b is run for all sets, and represents current trade restrictions on GM imports in 

sensitive countries. Current marketing regulations, private standards, and consumer reactions in these 

countries act as a trade filter. Products to be used for final consumption are not purchased or approved, 

but products for intermediate consumption (such as animal feed) can enter the market in sensitive 

countries because the corresponding final products are not necessarily subject to labeling requirements 

(e.g., meat in the EU, soy oil in Japan; for more on labeling, see Gruere and Rao 2007).  

Lastly, scenarios 3a-i, 3a-ii, 3b-i, and 3b-ii allow for the segregation of non-GM products in GM-

adopting countries to export to sensitive importing countries. The four scenarios are proposed to study the 

implication of segregation costs under trade ban or trade filter. 3a-i is run with costless segregation of 

non-GM but a ban of GM toward both final and intermediate consumption; 3a-ii is the same scenario with 

the addition of a 5 percent basic segregation cost.10 Similarly, scenario 3b-i represents the case of a trade 

filter in sensitive countries but costless segregation of non-GM toward the final consumption; 3b-ii adds a 

5 percent segregation cost. As explained above, these costs have been adjusted according to differences in 

bilateral trade flows to account for the relative weight of concerned crops (e.g., maize) in aggregated 

sectors (coarse grains) imported by sensitive countries from GM-producing countries. 

                                                      
10 We choose to impose a 5 percent cost for two reasons: first, it corresponds to a median value in the literature on 

segregation cost (where estimates vary from a few percentage points to 10 to 15 percent); and second, it corresponds to the 
premium reported on the market for non-GM products. For instance, maize traders in South Africa reported in June 2007 that 
identity-preserved non-GM maize was sold for a 5 percent price premium compared with GM maize (personal conversation with 
GRAIN South Africa).  
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5. SIMULATION RESULTS 

What can be expected from the adoption of a GM technology? As noted before, the adoption of a GM 

technology often implies an increase in yields (productivity of land) and in the productivity of labor, 

which are equivalent to an augmentation of endowments of these productive factors. Thus, if we consider 

the theory of growth in open economies, it can be concluded that in terms of national welfare, the overall 

impact of GM crop adoption is ambiguous, as it can be decomposed into three effects: 

• A technical gain effect. The direct effect of technical progress or augmented endowment on 
welfare is positive as it entails an expansion of the production possibility frontier. Under constant 
terms of trade, this generates an increase in national welfare. 

• A term-of-trade effect. In general (see, e.g., de Melo and Grether 1997), technical progress or 
augmented endowment in a single country (or not in all countries) leads to a deterioration of 
terms of trade unless this is a marked anti-trade growth, which reduces export supply. But in the 
case of a pro-trade growth (e.g., productivity gains in the specialized export market), export 
supply is increased and export prices are reduced.  

• A land supply effect. In the MIRAGE model, the land supply is endogenous. Technical progress 
in a country, resulting in increased yields or augmented endowment of land, for example, implies 
that production techniques are more land intensive. As a consequence, the labor/land or 
capital/land ratios decrease, which leads to a decline in the marginal productivity of land and its 
real remuneration. The land supply is a function of this remuneration, and consequently it is 
reduced. This is true in particular in countries where land supply is relatively elastic such as 
Australia/New Zealand or Argentina.  
The two first effects are traditional effects of the theory of international trade; the third one is 

specific to the MIRAGE model.  

According to the theory of international trade, the second effect (terms of trade) can be negative 

and greater than the first effect; this is the famous case of “immiserizing growth,” first illustrated by 

Bhagwati (1958).  

We present the results in terms of welfare effects, defined as the equivalent variation (or real 

income) between each scenario and the base (0) for each set. Both absolute values in millions of dollars 

per year ($ million/year) and percentage (%) of total real income are shown for each region in each 

scenario. We also provide additional data on production, imports, and exports in the appendix (see tables 

A1, A2, A3, and A4) to explain the results obtained in some of the scenarios.  

A) GM Maize, Oilseeds, and Cotton 

Table 10 shows the results for set A. Rows representing GM-adopting nations are shaded in the table and 

their names are in boldface. This case represents the adoption of current GM crops, namely, soybeans, 

maize, and cotton. The global welfare gain with the adoption of these crops and without trade restrictions 

amounts to $4.4 billion, which lies within the ranges obtained in other studies presented in Table 1. The 
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global welfare gain declines to $2.7 billion with a trade filter applied in sensitive countries, but it rises 

back up to $4.2 billion with costless segregation. With 5 percent segregation costs, the global welfare gain 

lies in between the costless segregation and trade restriction scenarios at $3.7 billion. These results 

already bring forward three lessons: (1) trade restrictions and consumer resistance reduces the gain in 

global welfare  by about $1.7 billion; (2) the global opportunity cost of a non-GM segregation system for 

these crops is about $1.4 billion; (3) the global welfare gain would be greater even with a 5 percent cost 

of segregation than with no segregation. 

The adoption of GM crops consistently results in an increase in welfare in all adopting countries 

except Australia/New Zealand and Argentina. Australia and New Zealand partially adopt Bt cotton (at a 

relatively low level) and experience losses in terms of trade (see the previous second effect). Argentina 

experiences a significant loss, which can be explained partially by our productivity assumptions and by its 

loss in competitive edge in the vegetal oil sector in the global market. At the domestic level, Argentina 

experiences a degradation of the returns to land (see the previous land supply effect), accompanied by less 

production of oilseeds and therefore less vegetal oils, because we assume the yield effects of GM 

soybeans to be negative. At the international level, it also exports much less vegetal oils at a lower export 

price. The adoption of GM soybeans and cottonseed in many countries increases oilseed production, 

which reduces prices and contracts the international oilseed market. As a result, most countries reduce 

their exports of oilseeds and indirectly vegetal oils. At the same time, trade diversion occurs in the vegetal 

oil market, where Argentina loses market share to the United States, Brazil, and the Rest of Asia. 

Traditional importers of Argentinean oil such as India, by producing more cottonseed, also import much 

less oil.  

The largest relative gains from GM crop adoption are experienced by India (+0.07 percent), 

followed by China and Mexico, because of the relative importance of the targeted crops in these 

countries. All adopters except Mexico and China experience a relative decline in the total welfare gain 

with trade restrictions. The exception of Mexico and China is related to the fact that they only adopt Bt 

cotton at a relatively high level and they import commodities at a reduced price (maize in Mexico, cotton 

in China) under trade restrictions. This has to be related to diverted trade: sensitive countries import less 

of these products and the export supply of these products is redirected to nonsensitive countries. The 

cotton sector is affected differently than the other two sectors with a trade filter, because these restrictions 

affect only products going toward final consumption and most cotton is used for intermediate 

consumption, and because no importer is regulating GM cotton imports. Simulation data (Table A.1) 

show that Mexico and China export less cotton under the second scenario but produce and import about 

the same amount. Costless segregation helps most GM-adopting countries, offsetting a large share of the 
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relative losses with trade policies. Overall, the presence of a 5 percent segregation cost reduces their gains 

but still allows them to be better off than with no segregation.  

Sensitive countries largely account for most of the relative decline in global welfare under trade 

restrictions, and are better off with costless segregation. Among the five regions, only Japan is worse off 

with costly segregation than with trade restrictions. This means that Japan would be better off only if the 

segregation costs for non-GM products stay under 5 percent. Europe and South Korea suffer apparent 

welfare losses under scenario 2b, due to the implementation of restrictive trade policies.11  

 

                                                      
11 However, these apparent market losses may not be actual welfare losses, as we do not account for the fact that consumers 

in these countries may prefer non-GM food and be willing to pay more to avoid GM food. 
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Table 10. Change in welfare effects ($ million/yr and %) under each scenario of set A: adoption of GM maize, soybeans, and/or cotton 

Scenario set A  
Bold regions adopt GM maize, soybeans, 
and/or cotton  

1. Productivity shock  2b. Import filter, no 
segregation 

3b-i. Import filter, 
costless segregation 

3b-ii. Import filter, 5% 
cost segregation 

Region  $ million % $ million % $ million % $ million % 
Australia and New Zealand -50.344 -0.015 -52.728 -0.016 -49.286 -0.015 -46.446 -0.014 
China 341.905 0.044 347.346 0.045 346.006 0.045 346.887 0.045 
Japan 430.112 0.014 264.797 0.009 415.619 0.014 256.777 0.008 
South Korea 353.145 0.122 -521.276 -0.180 200.850 0.069 50.076 0.017 
Rest of Asia 136.167 0.024 148.412 0.026 136.944 0.024 139.517 0.025 
Indonesia 40.679 0.041 42.957 0.044 41.027 0.042 41.105 0.042 
Philippines 29.171 0.046 28.974 0.046 29.154 0.046 28.892 0.046 
Bangladesh -0.208 -0.001 -0.225 -0.001 -0.257 -0.001 -0.212 -0.001 
India 254.173 0.068 249.856 0.067 254.652 0.068 252.632 0.068 
Canada 41.054 0.008 38.621 0.007 41.677 0.008 43.370 0.008 
United States 1856.187 0.022 1854.162 0.022 1859.333 0.022 1867.961 0.022 
Mexico 332.332 0.069 335.539 0.070 332.712 0.069 333.291 0.069 
Rest of Latin America 104.308 0.021 120.628 0.024 105.751 0.021 108.942 0.021 
Argentina -277.653 -0.122 -287.039 -0.127 -280.236 -0.124 -279.267 -0.123 
Brazil 26.257 0.007 9.484 0.002 28.717 0.007 13.538 0.003 
European Union 494.483 0.008 -113.287 -0.002 423.483 0.006 274.592 0.004 
Rest of Europe 41.120 0.006 -7.286 -0.001 38.933 0.006 24.331 0.004 
North Africa and Middle East 249.477 0.031 251.109 0.031 249.622 0.031 249.319 0.031 
Rest of Sub-Saharan Africa -2.965 -0.002 29.318 0.018 -1.306 -0.001 -0.498 0.000 
South Africa 19.721 0.023 19.353 0.022 19.936 0.023 19.406 0.022 
Tanzania and Uganda 0.460 0.003 0.725 0.005 0.469 0.003 0.404 0.003 
World 4419.583 0.018 2759.440 0.011 4193.798 0.017 3724.616 0.015 

Source: Authors’ results from simulations.  
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Lastly, the results obtained in the region titled Rest of Sub-Saharan Africa are quite remarkable. 

In this region, which neither adopts nor restricts GM crop imports, the welfare effects vary largely across 

scenarios, from -$3 million in scenario 1 to -$1 million for the scenarios with segregation in sensitive 

countries, and reaching a maximum of +$29 million in scenario 2b, with trade filtering and no 

segregation. This means that these countries benefit from the combination of GM maize, soybeans, and 

cotton with restrictive policies in Europe. As importers they benefit from the lower import prices they can 

obtain due to the excess surplus in other countries. This phenomenon is also true for other nonproducing 

and nonsensitive countries, such as Tanzania/Uganda, Indonesia, Rest of Latin America, Bangladesh, and 

North Africa/Middle East, who all share maximum gains under scenario 2b.  

The welfare results for set B are presented in Table 11. In this case, more countries are producing 

GM crops and some of the adopting GM-producing countries also increase their rate of adoption. As a 

consequence, the gain in global welfare increases to $5.1 billion. The global gain follows the same pattern 

as in set A, reaching the lowest level under scenario 2b with trade filtering and no segregation, and 

intermediate levels under scenarios 3b-i and 3b-ii. Applying a trade filter results in a relative reduction of 

gains of 32.5 percent, a difference smaller than the one obtained in set A (-37 percent). The largest 

relative gains with GM adoption (scenario 1) are derived in Tanzania/Uganda (+0.32 percent), then in 

India (+0.22 percent), and the Philippines (+0.19 percent). On the other hand, Argentina loses a little 

more, mainly because of the increased oilseed production in India, reducing its vegetal oils exports even 

more than under set A. China’s relative gains also decline between set A and set B mostly due to a change 

in the competitiveness of its textile industry. 

The four countries of study gain from GM adoption, but experience different relative changes in 

gains across scenarios. By adopting GM maize at a low rate, Bangladesh experiences a small gain, despite 

increasing its production of cereals. These gains do not vary significantly across scenarios, but as a net 

food importer Bangladesh is slightly better off under trade restrictions. India’s extension of Bt cotton 

adoption, with adoption of GM maize and soybeans, increases its gains from $254 million in set A to 

$826 million in set B. Trade restrictions reduce these gains by only about $4 million. India gains slightly 

more under scenario 3b-i (costless segregation) than under scenario 1, but the difference is insignificant in 

relative terms. India is still slightly better off with 5 percent segregation costs than with trade restriction. 

Indonesia adopts GM maize and soybeans, which results in gains reaching $110 million, or 0.12 percent 

of total real income. Indonesia remains a net importer of coarse grains and oilseeds, which may explain 

why it gets slightly larger gains under the most restrictive scenario (2b) that result in lower import prices. 

But the difference is about $1 million and less than 1 percent of the gains it obtains with the adoption of 

GM crops. Lastly, the Philippines extends its adoption of GM maize, and multiplies by four its welfare 

gains obtained under set A to reach $120 million. Like Indonesia, the Philippines is not a net exporter of 

any of these crops, and imports a number of agricultural commodities. As a result the gains do not change 

much under the four scenarios. 
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Table 11. Change in welfare effects ($ million/yr and %) under each scenario of set B: extended adoption of GM maize, soybeans, and/or 
cotton 

Scenario set B 
Same as set A plus Bangladesh, Indonesia, India, 
Philippines, and Tanzania/Uganda adopt GM maize, 
cotton, and/or soybeans 

1. Productivity shock  2b. Import filter, no 
segregation 

3b-i. Import filter, 
costless segregation 

3b-ii. Import filter, 5% 
cost segregation 

Region $ million % $ million % $ million % $ million % 
Australia and New Zealand -53.062 -0.016 -55.449 -0.017 -51.994 -0.016 -49.154 -0.015 
China 242.399 0.031 247.754 0.032 246.380 0.032 247.285 0.032 
Japan 435.365 0.014 271.491 0.009 420.792 0.014 261.864 0.009 
South Korea 360.583 0.125 -515.855 -0.178 208.357 0.072 57.709 0.020 
Rest of Asia 143.124 0.025 155.671 0.027 143.888 0.025 146.457 0.026 
Indonesia 113.213 0.115 114.480 0.116 113.553 0.115 113.639 0.115 
Philippines 120.197 0.191 120.010 0.191 120.179 0.191 119.918 0.191 
Bangladesh 1.008 0.003 1.015 0.003 0.959 0.003 1.004 0.003 
India 825.588 0.221 821.383 0.220 826.075 0.222 824.106 0.221 
Canada 39.428 0.007 37.009 0.007 40.051 0.007 41.738 0.008 
United States 1848.543 0.022 1846.500 0.022 1851.711 0.022 1860.343 0.022 
Mexico 333.683 0.070 336.899 0.070 334.060 0.070 334.641 0.070 
Rest of Latin America 103.975 0.021 120.600 0.024 105.416 0.021 108.608 0.021 
Argentina -282.945 -0.125 -292.327 -0.129 -285.527 -0.126 -284.556 -0.125 
Brazil 27.534 0.007 10.876 0.003 30.029 0.008 14.790 0.004 
European Union 506.163 0.008 -106.192 -0.002 435.085 0.007 286.030 0.004 
Rest of Europe 43.566 0.006 -5.092 -0.001 41.346 0.006 26.728 0.004 
North Africa and Middle East 256.574 0.032 258.226 0.032 256.716 0.032 256.414 0.032 
Rest of Sub-Saharan Africa -2.877 -0.002 30.122 0.019 -1.217 -0.001 -0.420 0.000 
South Africa 20.568 0.024 20.198 0.023 20.782 0.024 20.254 0.023 
Tanzania and Uganda 44.558 0.322 44.262 0.319 44.558 0.322 44.523 0.321 
World 5127.184 0.021 3461.578 0.014 4901.200 0.020 4431.919 0.018 

Source: Authors’ results from simulations. 
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The largest relative losses with trade restrictions are still borne by the sensitive importers, 

particularly South Korea. Under set A, South Korea was losing about $874 million with the introduction 

of trade restrictions (compared with scenario 1). Under set B it loses about the same amount, $875 

million. The other sensitive regions experience small relative losses. Once again, Japan is slightly better 

off in a case with trade restrictions and no segregation than under cases of costly segregation, because 

even with the filter it is able to import the targeted products (that are mostly used for intermediate 

consumption) at a lower price than in these other scenarios.  

Lastly, we find the same pattern as in set A for the non-GM-producing and nonsensitive region 

Rest of Sub-Saharan Africa (and to a lesser extent Rest of Latin America and Rest of Asia), with 

maximum gains under the most restrictive scenario (2b). In this case, Sub-Saharan African countries 

experience small losses ($1–$3 million) under all scenarios but 2b, under which they gain $30 million.  

B) GM Rice Adoption 

Table 12 shows the changes in welfare effects for set RICE. In this case, five countries adopt GM rice: 

China, India, Bangladesh, the Philippines, and Indonesia. Currently GM rice is being tested in China and 

India but has not been approved for cultivation in those two countries. The United States approved the use 

of herbicide-tolerant rice in 2006, but it is not cultivated because of fears of export losses. Iran has 

reportedly approved the cultivation of Bt rice, and it could be the only country producing GM rice at a 

small scale. We decided to neglect limited potential GM rice production in those two countries in order to 

isolate the shock with the adoption of GM rice in five Asian countries that are all relatively large 

producers and consumers of rice. In this set, we added scenario 2a, which corresponds to the short-run 

effect of GM rice adoption, i.e., a complete ban in sensitive countries. We also added scenarios 3a-i and 

3a-ii, which are the equivalent of 3b-i and 3b-ii but with blocking of GM rice toward both final and 

intermediate consumption. 
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Table 12. Change in welfare effects ($ million/yr and % total) under each scenario with GM rice adoption in selected Asian countries  

GM rice adopted in bold regions 1. Productivity 
shock 

2a. Import ban, 
no segregation 

2b. Import filter, 
no segregation 

3a-i. Import ban, 
costless 
segregation 

3a-ii. Import ban, 
5% segregation 
cost 

3b-i. Import 
filter, costless 
segregation 

3b-ii. Import 
filter, 5% 
segregation cost 

Region $ million % $ million % $ million % $ million % $ million % $ million % $ million %
Australia and New Zealand -5.543 -0.002 -4.311 -0.001 -6.075 -0.002 -4.954 -0.002 0.405 0.000 -5.799 -0.002 -0.545 0.000
China 4640.502 0.597 4617.579 0.594 4632.954 0.596 4627.666 0.596 4640.500 0.597 4636.040 0.597 4649.711 0.598
Japan 529.709 0.017 -292.492 -0.010 211.181 0.007 93.964 0.003 -131.621 -0.004 357.851 0.012 153.150 0.005
South Korea 191.106 0.066 -159.492 -0.055 165.182 0.057 21.943 0.008 -182.653 -0.063 177.587 0.061 -10.040 -0.004
Rest of Asia -8.469 -0.002 -0.942 0.000 -5.830 -0.001 -6.432 -0.001 0.166 0.000 -7.474 -0.001 -1.285 0.000
Indonesia 1106.760 1.121 1102.298 1.116 1105.090 1.119 1105.502 1.119 1106.368 1.120 1106.210 1.120 1107.251 1.121
Philippines 638.752 1.017 637.598 1.015 638.458 1.016 638.240 1.016 638.041 1.016 638.619 1.017 638.466 1.016
Bangladesh 452.620 1.194 452.809 1.195 452.720 1.194 452.688 1.194 452.781 1.195 452.664 1.194 452.751 1.195
India 3258.806 0.874 3241.439 0.869 3252.751 0.872 3252.359 0.872 3250.822 0.872 3256.347 0.873 3255.455 0.873
Canada 10.288 0.002 10.886 0.002 10.547 0.002 10.539 0.002 16.322 0.003 10.406 0.002 16.171 0.003
United States 104.256 0.001 101.579 0.001 104.912 0.001 103.186 0.001 105.300 0.001 104.639 0.001 106.919 0.001
Mexico 6.097 0.001 5.180 0.001 5.877 0.001 5.661 0.001 8.742 0.002 5.987 0.001 9.105 0.002
Rest of Latin America 28.080 0.006 33.134 0.007 29.391 0.006 30.174 0.006 36.137 0.007 28.682 0.006 34.414 0.007
Argentina -1.783 -0.001 -1.456 -0.001 -1.798 -0.001 -1.631 -0.001 -10.168 -0.005 -1.789 -0.001 -10.346 -0.005
Brazil -0.814 0.000 -0.416 0.000 -0.714 0.000 -0.623 0.000 -30.130 -0.008 -0.764 0.000 -30.282 -0.008
European Union 350.235 0.005 -61.022 -0.001 194.811 0.003 165.029 0.003 -58.655 -0.001 276.452 0.004 67.100 0.001
Rest of Europe 38.648 0.006 14.850 0.002 27.266 0.004 26.207 0.004 7.794 0.001 32.631 0.005 14.721 0.002
North Africa and Middle East 105.535 0.013 106.017 0.013 106.496 0.013 105.398 0.013 105.340 0.013 105.899 0.013 105.857 0.013
Rest of Sub-Saharan Africa 74.142 0.046 73.451 0.045 74.408 0.046 73.691 0.046 74.676 0.046 74.235 0.046 75.264 0.047
South Africa 13.386 0.015 13.250 0.015 13.402 0.015 13.308 0.015 12.493 0.014 13.389 0.015 12.583 0.014
Tanzania and Uganda 1.587 0.012 1.565 0.011 1.600 0.012 1.568 0.011 1.538 0.011 1.591 0.012 1.563 0.011
World 11533.902 0.047 9891.504 0.04011012.627 0.04510713.482 0.04410044.200 0.041 11263.402 0.046 10647.985 0.043
Source: Authors’ results from simulations. 
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First, Table 12 shows that the global welfare gain with the adoption of GM rice is much larger 

than under the two previous sets, ranging from $9.9 billion to $11.5 billion per year. Trade restrictions in 

the form of an import ban in sensitive countries reduce the gain by 14 percent, less than in sets A and B. 

In other words the gain with GM rice adoption is about seven times larger than any potential loss 

experienced due to trade restrictions. Segregation at a 5 percent cost reduces the global gain by about 6 

percent. Interestingly, segregation at a 5 percent cost also results in a lower global gain than a trade filter, 

which indicates that, provided rice is accepted in intermediate consumption, segregation would increase 

the global welfare gain if it does not cost too much.  

The major welfare gains occur in the five adopting countries. First, China, with a relatively large 

adoption rate, gains more than $4.6 billion per year (or 0.6 percent of total real income). This total is 

slightly larger than that obtained in Huang et al. (2004), because we do not explicitly reduce the gain from 

GM crops due to the price of seeds. Therefore the gain presented here includes the returns to the 

developers and adopting producers together. In the GTAP database used in this study, China’s rice 

imports are just slightly inferior to its exports, making it a small net exporter. This may explain why an 

embargo on rice slightly reduces China’s gain, a trade filter reduces it a little less, and the welfare gain 

with costless segregation is close to that in the first scenario. But at the same time, China obtains slightly 

higher gains with costly segregation in sensitive countries than under other scenarios.  

India also obtains a large positive gain from adoption, exceeding $3.2 billion, or 0.87 percent of 

total welfare. But India is a net exporter of rice and therefore it gains less with trade restrictions and more 

with segregation. Interestingly, in opposition to the widespread belief that GM rice would result in 

extremely important losses for the economy, the net reduction in welfare gain with a complete ban of rice 

in sensitive countries amounts to only $17 million, representing only 0.5 percent of the total gain with 

GM rice adoption. This can be explained by the fact that India does not export as much to Europe (about 

16 percent according to the original GTAP database) as it does to other regions, such as North Africa and 

the Middle East (47 percent) and other African countries (19 percent), and that trade diversion occurs 

with selective bans. Bilateral trade flows show that under scenario 2a, Indian rice is slightly diverted from 

Europe to South and North America and African countries. In total, under the trade ban, India produces 

16 percent more than without GM rice, which is less than under other scenarios. It reduces total rice 

exports by 6 percent but still reduces its total rice imports by more than 50 percent (see Table A.3 in the 

appendix). Under scenario 2b, India’s welfare is reduced by a much smaller amount. Segregation allows 

an increase in welfare by a few million dollars even at 5 percent costs.  

Bangladesh obtains the largest relative gain with the adoption of GM rice, with an additional 1.2 

percent gain in total welfare per year, which is equivalent to more than $450 million per year. Rice 

production increases by 7.5 percent under all scenarios, which allows the country to reduce rice imports 
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by more than 27 percent. The trade ban results in a significant relative reduction in exports, but this loss is 

limited as the absolute value of its rice exports is small ($1 million in the GTAP database) compared with 

its imports ($74 million). As a net importer, Bangladesh is slightly better under the most restrictive trade 

scenarios, because they are associated with relatively lower import prices, particularly for non-GM rice.  

Indonesia also obtains very significant gains from GM rice adoption, exceeding $1.1 billion per 

year, or 1.1 percent of total welfare. Indonesia is also a large net importer of rice. With GM rice, 

Indonesia increases its production by 20 percent and reduces its imports by 66 percent. A total trade ban 

in the short run has a small effect on Indonesia’s welfare with a reduction of $4 million. Indonesia is 

slightly better off with a trade filter, and with segregation, but the differences are very small relative to the 

total gains.  

The Philippines increases its welfare by 1 percent (or about $640 million) annually by adopting 

GM rice. Originally a net importer, the introduction of GM rice results in a production increase of about 

17 to 19 percent under all scenarios, and reduces imports by more than half. The changes across scenarios 

are very small, resulting from production and import differences with price changes.  

The relative loss experienced by sensitive importers from a total ban on rice coming from GM-

adopting countries explains almost the entirety of the difference in global welfare across scenarios. In the 

group, Japan loses the most from a total ban and gains the most from a trade filter and costless 

segregation. Once again Japan’s welfare rapidly declines with an increase in the segregation costs. Europe 

loses a small relative amount under the total ban but still gains under all other scenarios as a net importer 

of rice. Apart from that, we do not find the same result as in set A or set B for the Rest of Sub-Saharan 

Africa region. Although it gains more in absolute value than in sets A or B, the gains are very similar 

across scenarios.  

C) GM Wheat 

Lastly, Table 13 shows the results obtained with the WHEAT set, in which China, Argentina, India, and 

Bangladesh adopt GM wheat. The global gain is much less than with GM rice adoption, ranging between 

$1.6 billion and $2.3 billion annually. It is important to note that although Argentina, India, and China are 

relatively large producers of wheat, other countries of North America, Europe, or Oceania dominate the 

global wheat market. Global real income decreases only minimally with trade restrictions (2a or 2b) 

compared with the simple productivity shock (1), but reduces more significantly with the introduction of 

costs of segregation (3a-ii and 3b-ii). For comparison with previous scenarios, trade restrictions reduce 

welfare gains by 1.3 percent, while costly segregation reduces welfare gains by up to 30 percent. Most of 

the relative losses with costly segregation occur in sensitive countries, mostly Japan and South Korea, 

who have to pay more for imports of wheat. These same importers incur only relatively small reductions 
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in welfare gains with trade bans because they are able to source their imported wheat from other 

countries, notably North America and Australia.  

China increases its welfare by 0.09 percent (or $690 million) with GM wheat. The country 

increases its wheat production by 9 percent and reduces its imports by more than 40 percent. Trade 

restrictions do not affect its welfare gains significantly; however, adding a cost of segregation does 

increase China’s total welfare gains, because it results in a small increase in exports to other countries (as 

shown in Table A.4). China exports about $42 million of wheat and imports 10 times more. The costly 

segregation scenario divides the market into GM (or mixed) and pure non-GM, and the non-GM export 

price to sensitive countries goes up significantly, while the GM price is slightly reduced, which could 

explain the observed gain. 
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Table 13. Change in welfare effects ($ million/yr and %) under each scenario with GM wheat adoption in selected Asian countries 

GM wheat adopted in bold regions 1. Productivity 
shock 

2a. Import ban, 
no segregation 

2b. Import filter, 
no segregation 

3a-i. Import ban, 
costless 
segregation 

3a-ii. Import ban, 
5% segregation 
cost 

3b-i. Import 
filter, costless 
segregation 

3b-ii. Import 
filter, 5% 
segregation cost 

Region $ million % $ million % $ million % $ million % $ million % $ million % $ million %
Australia and New Zealand -21.171 -0.006 -15.979 -0.005 -21.168 -0.006 -19.967 -0.006 -14.365 -0.004 -21.170 -0.006 -15.683 -0.005
China 687.831 0.089 684.036 0.088 687.814 0.089 686.492 0.088 698.860 0.090 687.825 0.089 700.282 0.090
Japan 57.924 0.002 51.499 0.002 57.909 0.002 56.454 0.002 -175.323 -0.006 57.921 0.002 -173.753 -0.006
South Korea 15.359 0.005 -2.521 -0.001 15.341 0.005 10.894 0.004 -196.794 -0.068 15.354 0.005 -192.110 -0.066
Rest of Asia 14.773 0.003 13.795 0.002 14.773 0.003 14.498 0.003 20.953 0.004 14.773 0.003 21.251 0.004
Indonesia 4.298 0.004 4.010 0.004 4.298 0.004 4.219 0.004 5.310 0.005 4.298 0.004 5.396 0.006
Philippines 9.137 0.015 8.905 0.014 9.137 0.015 9.066 0.014 8.809 0.014 9.137 0.015 8.885 0.014
Bangladesh 10.373 0.027 10.556 0.028 10.376 0.027 10.389 0.027 10.502 0.028 10.374 0.027 10.485 0.028
India 945.243 0.254 940.520 0.252 945.192 0.254 944.655 0.253 942.633 0.253 945.235 0.254 943.277 0.253
Canada -28.410 -0.005 -26.277 -0.005 -28.403 -0.005 -27.921 -0.005 -22.045 -0.004 -28.408 -0.005 -22.576 -0.004
United States 14.295 0.000 20.180 0.000 14.303 0.000 15.747 0.000 18.114 0.000 14.297 0.000 16.527 0.000
Mexico 2.482 0.001 2.045 0.000 2.480 0.001 2.376 0.001 5.418 0.001 2.481 0.001 5.531 0.001
Rest of Latin America 10.706 0.002 10.417 0.002 10.713 0.002 10.698 0.002 16.589 0.003 10.710 0.002 16.609 0.003
Argentina 215.369 0.095 212.716 0.094 215.229 0.095 214.158 0.094 205.847 0.091 215.309 0.095 206.997 0.091
Brazil 76.945 0.019 77.349 0.019 76.965 0.019 77.110 0.019 47.503 0.012 76.953 0.019 47.346 0.012
European Union 75.661 0.001 73.376 0.001 75.558 0.001 74.940 0.001 -146.386 -0.002 75.629 0.001 -145.686 -0.002
Rest of Europe 10.819 0.002 9.076 0.001 10.598 0.002 10.170 0.002 -8.411 -0.001 10.745 0.002 -7.841 -0.001
North Africa and Middle East 132.897 0.017 131.585 0.016 132.923 0.017 132.591 0.016 132.540 0.016 132.907 0.017 132.896 0.017
Rest of Sub-Saharan Africa 16.940 0.011 16.743 0.010 16.943 0.011 16.869 0.010 17.803 0.011 16.941 0.011 17.880 0.011
South Africa 9.201 0.011 9.234 0.011 9.204 0.011 9.226 0.011 8.399 0.010 9.202 0.011 8.376 0.010
Tanzania and Uganda 0.616 0.004 0.538 0.004 0.616 0.004 0.597 0.004 0.563 0.004 0.616 0.004 0.584 0.004
World 2261.288 0.009 2231.802 0.009 2260.801 0.009 2253.260 0.009 1576.519 0.006 2261.127 0.009 1584.675 0.006
Source: Authors’ results from simulations.
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Bangladesh is also a large importer of wheat, and only adopts GM wheat at a partial scale in this 

set of scenarios, for a small overall production, which is reflected by the small gains. Overall, Bangladesh 

produces 4 percent less wheat, imports a little less wheat, and exports less wheat. Thus, under our 

assumptions, Bangladesh absorbs less wheat overall and is not able to compete with India and the other 

GM wheat producers.  

India is the main winner from GM wheat adoption, with gains of more than $940 million per year 

(or 0.25 percent of total real income). As a net exporter India gains more under scenarios 1 and 3a/3b and 

less with complete trade restriction under scenario 2a or 2b. Once again, the loss with a complete ban in 

sensitive countries is negligible ($5 million) compared with the gains with the adoption of GM wheat. 

Costless segregation does not make much difference with the trade filter scenario, which can be 

understood by the fact that virtually all wheat is used in intermediate consumption and not final 

consumption in importing sensitive countries. Costly segregation reduces the gain slightly but still allows 

India to be better off than under a complete ban. Argentina follows the same pattern as India with a 

smaller absolute gain with GM wheat. 
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6. DISCUSSION 

The results of our multi-market CGE simulations vary across regions and scenarios, but they share a 

number of similarities that can help us draw a few general lessons. First, our simulations show once again 

that the adoption of GM crops can be translated into significant economic gains in the large majority of 

regions and in the presence or absence of trade restrictions in certain sensitive countries. Only a few 

regions experience net losses with the adoption of GM crops due to large changes in export-sensitive 

sectors. However, these rich countries have adopted restrictive policies in response to consumer concerns 

based on risk perceptions, lack of trust in safety authorities, and environmental or ethical reasons that can 

be translated into a consumer willingness to pay to avoid GM food products (not accounted here), so these 

real income losses might not be actual welfare losses. The results also show that adopting GM crops 

generates relatively larger gains for developing countries with rural economies. For example, the second 

set of simulations with current GM crops shows that Tanzania and Uganda would gain more relatively by 

adopting GM maize and cotton at a relatively low rate than any other country or region.  

Second, our simulations show that although trade regulations can affect the gains from GM crops, 

the effect is relatively small compared with the gains under the adoption of GM crops. Applying a trade 

filter that allows only products for intermediate consumption to be imported, which reflects the regulatory 

situation faced by current GM crops, reduces the gains of exporting GM-adopting countries. Similarly a 

complete ban of rice or wheat from GM-producing countries by sensitive countries would result in lower 

gains for GM crop exporters. Yet, even with these barriers, most GM-adopting countries still gain from 

the adoption of GM crops, because the relative losses they experience with trade restriction are very small 

compared with the productivity gains experienced domestically, even with partial adoption. Table 14 

shows the relative change in gains out of the total gain from GM crops under the most restrictive 

scenarios of each set. Even if globally the gains are reduced by up to 38 percent overall, we find that the 

gain reduction is closer to 1 percent in most cases for our countries of study and China, and does not 

exceed 6.7 percent of total gains. Interestingly, in certain cases trade restriction even results in a relative 

increase in gains for certain net importers or nonadopters.  
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Table 14. Relative effect of trade restriction on total gains from GM crop adoption for selected 
countries in different sets of scenarios 

Set Set A Set B Rice Wheat 
Scenarios compared 1 vs. 2b 1 vs. 2b 1 vs. 2a 1 vs. 2a 
China 1.6% 2.2% -0.5% -0.6% 
Bangladesh n.a. 0.7% 0.0% 1.8% 
India -1.7% -0.5% -0.5% -0.5% 
Indonesia n.a. 1.1% -0.4% -6.7% 
Philippines -0.7% -0.2% -0.2% -2.5% 
World -37.6% -32.5% -14.2% -1.3% 

Source: Simulation results.  
Note: n.a. = not adopting GM crops in this scenario. 

Third, the use of segregation for non-GM crops can help offset some of the relative losses from 

trade restrictions. Differences between the trade scenario and the hypothetical case with costless 

segregation provide benchmark values for the opportunity cost of segregation, defined as the most a 

country could spend on segregation to avoid losing compared with trade restrictions with no segregation. 

Estimates of these opportunity costs are reported for selected countries in tables 15 and 16 in the cases of 

rice and wheat (as well as in Table A.6 in the appendix for set A and B crops). 

Table 15. Opportunity cost ($ million/yr) of the segregation of non-GM rice for adopting and 
sensitive countries 

Type of country Country Segregation of non-GM rice 
for final consumption only  

Segregation of non-GM rice for final 
and intermediate consumption 

GM producers 
 China 3.1 10.09 

 India 3.6 10.92 

 Indonesia -1.9 3.2 

 Bangladesh -0.06 -0.12 

 Philippines 0.16 0.64 

Total GM producers 4.9 24.73 

Sensitive countries 

 Australia/NZ 0.28 -0.64 

 Japan 113.67 198.53 

 South Korea 12.47 137.55 

 EU 81.64 226.05 

 Rest of Europe 5.37 11.36 

Total sensitive countries 213.43 572.85 
WORLD   

Global 250.78 821.98  
Source: Authors’ derivations. 
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Table 16. Opportunity cost ($ million/yr) of the segregation of non-GM wheat for adopting and 
sensitive countries 

Type of country Country Segregation of non-GM wheat 
for final consumption only  

Segregation of non-GM wheat for final 
and intermediate consumption 

GM producers 
 China 0.01 2.46 

 India 0.04 4.14 

 Bangladesh 0 -0.17 

 Argentina 0.08 1.44 

Total GM producers 0.13 7.87 

Sensitive countries 

 Australia/NZ 0 -3.99 

 Japan 0.01 4.96 

 South Korea 0.01 13.42 

 EU 0.07 1.56 

 Rest of Europe 0.14 1.09 

Total sensitive countries 0.23 17.04 

WORLD   

Global 0.33 21.46 

Source: Authors’ derivations. 

These results show that exporting GM-producing countries, such as India, have a positive but 

relatively limited opportunity cost of segregation. The results also show that most of the global benefits of 

segregation would occur in importing sensitive countries (as shown in tables 15, 16, and A6) rather than 

exporting GM-producing countries. This means that traders in sensitive countries will likely have a larger 

incentive to set up segregation systems in GM-adopting countries than the exporters in those latter 

countries themselves. Consequently, these results suggest that the adoption of new GM crops may not 

necessarily require high investment by traders willing to keep their market in sensitive countries. Because 

the immediate cost of bans will largely be borne by importers, they will have a clear incentive to invest in 

segregation. 

More generally, by simulating costly segregation scenarios we show that in many cases, GM-

crop-adopting countries will still gain from segregation even with a 5 percent cost (e.g., India for rice), 

while in other cases, such countries will gain only if the cost of segregation is lower (e.g., India for 

wheat). As expected, segregation for export is not a silver bullet to avoid trade losses—it all depends on 

the cost of doing so. Competitive transition economies (like India) that are already able to supply high-

quality agricultural products (including niche market products) to sensitive importing countries should be 
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able to take advantage of this option in an efficient way, particularly if the cost of entry is partially 

assumed by importers. Smaller developing countries may have less incentive and support to set up 

segregation systems, unless such setup is driven domestically by a strong niche market for non-GM 

products.  

Fourth, the case of importing developing nations is different. With the examples of Bangladesh or 

Indonesia, we saw that large importers will not become net exporters with limited adoption of GM crops. 

Their opportunity cost of segregation is negligible and even negative in some cases, when segregation 

results in slight increases in import prices relative to no segregation. But thanks to the increase in 

production associated with GM crops, they can dramatically reduce their imports of agricultural 

commodities to feed their large populations. For such countries, the effect of trade restriction is limited to 

the changes in prices. They can be slightly better off overall under the most restrictive trade policies 

because the price of GM and especially non-GM products decreases under those scenarios compared with 

no trade restrictions. But these relative differences are minimal and most often negligible in comparison 

with the overall gains with the adoption of GM crops.  

Fifth, the results obtained in countries of Sub-Saharan Africa, although not the focus of this 

paper, are quite interesting. The example of Tanzania and Uganda shows that the adoption of current GM 

crops would result in relatively higher gains than in any other countries. Our results also show that the 

rest of Sub-Saharan Africa is bound to gain significantly with the adoption of current GM crops elsewhere 

if there are trade restrictions in sensitive countries. This means that contrary to the general belief in many 

of these countries, trade restriction in sensitive countries can in fact be beneficial to them. Of course, 

these results are true only if these countries agree to import GM food products. Currently many of them 

do not regulate GM products, adopting an implicit position of don’t ask/don’t tell, while a few others do 

not allow imports of any GM product while waiting for their biosafety regulations to be implemented 

(Gruere 2006).  

In general, our results are comparable to previous work, except in the case of GM rice. We obtain 

larger gains for GM rice than previous studies, whether in China or globally. It is not always easy to 

compare results with those of other studies, because the studies do not necessarily use comparable 

models. For instance, Huang et al. (2004) focus only on China, without including adoption in other 

countries, but they also use a more detailed representation of the rice sector and of the economy. We do 

not explicitly reduce the gains from GM crops due to the price of seeds. Therefore the gains presented 

here include the returns to the developers and adopting producers together. In contrast, Huang et al. 

(2004) include higher seed costs in their analysis, which may contribute to their lower welfare gains.12 At 

                                                      
12 We did not have the relevant data to make assumptions about the costs of seed in the total production cost in all adopting 

countries, so instead we justify our restriction by shocking them with exogenous small adoption rates. 
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the same time, our simulations include the adoption of GM rice in a larger number of countries, therefore 

resulting in larger global welfare effects than other studies. Lastly, because we impose factor-biased 

productivity shocks that can result in large efficiency gains in certain critical sectors, our results may be 

different from what one would get by the imposition of a Hicks-neutral 5 percent shock in all producing 

nations.  

Table 17. Welfare gains in $ million per percentage point actual adoption of GM rice and wheat 

Crop Country 1 2a 2b 3a-i 3a-ii 3b-i 3b-ii 

Rice China 58.01 57.72 57.91 57.85 58.01 57.95 58.12 
 Bangladesh 9.19 9.2 9.2 9.2 9.2 9.2 9.2 
 India 45.42 45.18 45.34 45.34 45.31 45.39 45.38 
 Indonesia 17.31 17.24 17.29 17.3 17.31 17.31 17.32 
 Philippines 10.59 10.57 10.58 10.58 10.58 10.58 10.58 

Wheat China 13.76 13.68 13.76 13.73 13.97 13.76 14.01 
 Bangladesh 0.70 0.72 0.70 0.70 0.71 0.70 0.71 
 India 38.69 38.5 38.69 38.67 38.59 38.69 38.61 
 Argentina 4.31 4.25 4.3 4.28 4.12 4.31 4.14 

Source: Authors’ derivations. 

Despite the differences with previous studies, we believe that our results are plausible. Still, as in 

any simulation model, the results depend on the assumptions of the model and scenarios. One of the 

critical factors is the yield effect. To verify the validity of the results we ran two sets of additional 

simulations using the minimum and maximum values for yields in the four countries of study (tables 2 

through 5). We do not present all the results, but the case of selected scenarios under set B is presented in 

the appendix in Table A.5. As expected, the welfare effects are consistently lower for GM-adopting 

countries with the minimum yield effect than with the most likely yield effect. The shock with a 

maximum yield effect also results in slightly higher welfare gains for GM-adopting countries and overall, 

which means that the immiserizing growth effect is not visible for adopting nations. 

A second critical factor is the adoption rate. To provide a consistent idea of the welfare gains 

experienced by our countries of study in the case of GM rice and wheat, we divided the total annual gains 

by the adoption rates. The results are shown in millions of dollars per percentage of actual adoption in 

Table 17. In the case of rice, the gains range between $9 million and $60 million per percentage point 
depending on the country. India and China experience larger gains than the three other countries because 

the GM rice varieties they adopt provide larger relative gains in yields and because their rice sectors 

largely exceed the ones in other countries. Still, all these gains are significant. For instance, each 

percentage point of GM rice—as represented by the vector of traits defined in section 3—produced in 
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India will yield an estimated $45 million per year. This is quite remarkable. In the case of wheat, India 

derives a much higher gain from GM wheat ($38 million per percentage point) compared with other 

countries because of its higher productivity effect, and Bangladesh experiences only a really small gain 

compared with the other countries for the same reason and a much smaller wheat sector. These 

differences may also partially be the result of the repercussion of GM crop adoption on other factors and 

on overall efficiency.  
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7. CONCLUSIONS 

The introduction of transgenic crops is perceived as a relative success by some, as revealed by their 

reported adoption by millions of farmers in countries across the world, but it is perceived as a relative 

failure by others, in part because of its limitation to a few countries, crops, and traits, and because of 

consumer concerns in a number of countries. One of the reasons for the limitation of transgenic, or 

genetically modified, crops to certain traits and countries is related to market sensitivity, international 

trade risks, and the fear of export losses.  

In this paper we study the potential effects of introducing GM commodity crops in Bangladesh, 

India, Indonesia, and the Philippines—four Asian countries with large rural poor populations—in the 

presence of potential trade restrictions. We focus on GM field crops resistant to biotic and abiotic stresses 

that have not all been approved yet, such as drought-resistant rice, and use a multi-country, multi-sector 

computable general equilibrium model. We build on previous international simulation models by 

improving the representation of the productivity shocks with GM crops, taking into account regional or 

land type disparities, and by using an updated representation of the world market, accounting for the trade 

filter effects of labeling policies and the possibility of segregation for non-GM products going toward 

sensitive importing countries. Our scenarios of simulations also include current GM crop adopters and 

plausible leaders in the adoption of GM food crops.  

The results of our simulations first show that the gains associated with the adoption of GM crop 

combinations largely exceed any type of potential trade losses. In most countries and scenarios, the gains 

with GM technology, even at partial adoption rates, exceed the losses with trade by a factor of 14 or more. 

Second, we find that segregation can help reduce any potential trade loss for GM adopters that want to 

keep export opportunities in sensitive countries, but its advantage will depend on the segregation cost. 

Our results also show that the opportunity cost of segregation is much larger for sensitive importing 

countries than for exporting countries adopting new GM crops. This suggests that importers will likely 

have the incentive to invest in segregation chains for non-GM supplies to mitigate their expected losses 

due to the introduction of GM crops in exporting countries.  

Our results also show that GM rice is bound to be the most advantageous crop for the four 

countries of study. For instance, we find that a 1 percentage point increase in the adoption of GM rice in 

India, combining different traits in different regions, could result in gains exceeding $45 million per year, 

with or without trade blocks in sensitive countries. Provided it is adopted, GM rice would also result in 

large production increases that would significantly decrease rice imports in countries with dense 

populations, such as Bangladesh or Indonesia. More generally, the relative gains with GM crop adoption 

are much larger for developing nations than for developed nations.  
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Therefore, our results demonstrate that, as in other countries, fears of trade losses related to the 

use of GM food crops in these Asian countries are plainly overstated in the current regulatory situation. It 

is certain that trade barriers could multiply with the adoption of similar trade-distorting regulations in a 

larger set of countries. A number of developing countries are intending to introduce stringent labeling 

requirements that could result in additional trade losses. Moreover, the Biosafety Protocol almost adopted 

generalized information requirements for GM commodities that would have incurred high costs on global 

commodity trade especially for developing countries that are members of the Protocol (Gruere and 

Rosegrant 2008). But the possible restrictions would likely result in economic losses for those particular 

countries, without being compensated by real consumer satisfaction, especially in the poorest and more 

populous countries of Asia. Still, in the current regulatory environment where enforced regulations are 

concentrated in a few importers, Bangladesh, India, Indonesia, and the Philippines are bound to gain 

greatly from adopting GM commodity crops.  

At the end of this study, one question remains: What explains the discrepancy between our and 

others’ results showing the lack of real commercial risks and the fear of export losses in these various 

countries? Responding to this question would require delving into the political economy of biotechnology 

decision making in each of these countries, which is not the purpose of this study. Part of our team is 

conducting research on this particular issue, focusing on the role of various special interest groups, 

including traders, activists, and large importing companies in sensitive countries, in spreading the fear of 

commercial risks in different countries of Asia and Africa. As our results show, importers in sensitive 

countries would value segregation, but they would likely prefer to oppose the introduction of GM crops to 

avoid paying the cost of segregation. Our results further show that some importing nations of Sub-

Saharan Africa would gain from the adoption of current GM crops in other countries if there are trade 

restrictions in sensitive countries, as they would benefit from trade diversion and lower import prices. Yet 

many of them reject imports partially because they lack proper regulations but also because they fear they 

would affect their exports to sensitive countries. More needs to be done to investigate these contradictions 

and the role of different political actors in spreading exaggerated and perhaps irrational fears. 

Even if our simulations are based on improvements in assumptions and scenarios, they are still 

subject to a number of limitations. First, as with any ex ante simulation, the productivity effects are still 

largely uncertain and their level affects the results significantly. A sensitivity analysis on the yield factors 

for the countries of study showed that larger yield gains result in higher welfare gains ceteris paribus. 

More sensitivity analysis, particularly on the input factors in these and other countries, as well as on the 

segregation costs, would help provide a more complete picture of the range of possible effects of GM 

crops in the four countries of study. 
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Second, our simulation would gain by adopting a dynamic rather than a comparative static 

framework. Local expert meetings and elicitation provided some insight into the potential evolution of 

adoption in the countries of study. Accounting for the crop/trait-specific regulatory lag, extension lags, 

and adoption dynamics would help improve the plausibility of our results.  

Third, despite our effort to reduce obvious biases linked to the overaggregation of the GTAP 

database with the use of proportional factors, our model would be better served with structural 

differentiation within the relevant sectors. For instance, we use the share of maize in coarse grains in the 

reference database for calibration, but the model would perform more consistently with a structural model 

dividing the coarse grains sector into maize and other crops under all scenarios. Similar improvement 

could be made in the chemical sector, used as input, within the oilseed sector, or within each country at 

the regional level. Ultimately, a structural representation accounting for product and regional specificities 

could help derive disaggregated benefits per product and strata of the population in a particular region. 

More generally, it is necessary to keep in mind that the results of our global simulations, like the 

ones of other papers, do not account for the positive or negative effects of technology adoption on the 

environment and potential other externalities it may generate on other activities of the economy. On the 

one hand, the reduction of chemical inputs may provide benefits for farmers’ health and/or the 

environment; on the other hand, pest resistance building may affect other types of agriculture, and 

potential gene flows could affect natural biodiversity in specific cases. Our implicit assumption 

throughout the paper is that the GM crops we focus on are released after assessment and approval by the 

biosafety regulatory authorities in the relevant countries, on the conclusion that their potential risks are 

negligible or at least manageable under particular practices. Naturally, any possible external costs 

incurred by adopters would have to be compared with the large expected income gains we found in the 

four Asian countries we focused on. 
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APPENDIX: ADDITIONAL TABLES  

Table A.1. Percentage changes in production, export, and import volumes for selected set A scenarios in GM-adopting countries  
(numbers corresponding to GM-adopting region and sector are shown in bold) 

Set A Scenario Australia / 
New Zealand

Canada Mexico United
States

Argentina Brazil European 
Union 

China India Philippines South Africa

1 -3.3 -4.5 -6.0 9.0 5.5 -1.6 -0.7 -0.6 0.0 1.1 0.1 
2b -3.5 -4.5 -6.0 9.0 5.6 -1.7 -0.7 -0.5 0.0 1.1 0.2 

Coarse 
grains 

3b-ii -3.3 -4.5 -6.0 9.0 5.5 -1.6 -0.7 -0.6 0.0 1.1 0.1 
1 -3.3 -22.5 -28.3 20.8 4.8 -3.8 -3.7 -0.1 2.1 -3.4 33.0 

2b -2.9 -22.5 -28.3 20.8 4.8 -3.7 -3.7 -0.1 2.1 -3.6 33.1 
Cotton 

3b-ii -3.3 -22.5 -28.3 20.8 4.8 -3.8 -3.7 -0.1 2.1 -3.4 33.0 
1 -7.5 -9.9 -7.2 17.8 -11.4 0.3 -4.7 0.4 0.4 -6.6 -3.8 

2b -6.3 -9.9 -7.3 18.6 -11.3 0.9 -5.4 0.4 0.4 -9.0 -2.9 

Production 

Oilseeds 

3b-ii -8.0 -10.0 -7.3 18.0 -11.4 0.4 -4.8 0.3 0.4 -6.8 -3.8 
1 -4.8 -10.2 -6.1 -16.6 -10.6 -5.2 -5.2 -7.6 -5.0 -3.9 -12.4 

2b 0.1 -10.7 2.1 -17.5 -11.8 2.2 -8.7 -4.7 -0.8 -7.4 -14.0 
Coarse 
grains 

3b-ii -4.7 -10.1 -6.1 -16.1 -10.3 -5.1 -5.1 -7.5 -5.0 -3.8 -12.0 
1 -11.0 -23.8 -7.2 -9.9 -6.4 -9.5 -7.3 -12.9 -1.0 -11.4 -22.8 

2b -13.0 -23.8 -10.7 -10.9 -6.9 -10.5 -7.0 -16.2 -5.1 -6.8 -23.1 
Cotton 

3b-ii -10.2 -23.8 -4.5 -8.6 -6.3 -9.4 -7.3 -9.9 -0.3 -10.7 -22.6 
1 -10.7 -14.6 -6.4 -12.6 -9.2 -11.5 -7.3 -9.7 -12.2 -7.8 -11.1 

2b -13.3 -16.2 -7.6 -15.7 -10.6 -17.1 -8.0 -18.8 -15.9 8.4 -14.5 

Exports 

Oilseeds 

3b-ii -9.0 -14.1 -5.7 -4.9 -5.1 -7.6 -7.5 -3.2 -10.1 -6.9 -9.8 
1 -5.1 -15.7 -18.6 -14.7 -13.3 -5.2 -3.0 -0.9 -3.1 -9.2 -5.8 

2b -7.1 -15.6 -18.5 -14.8 -13.6 -4.9 13.4 -1.0 -3.1 -9.2 -6.0 
Coarse 
grains 

3b-ii -3.9 -15.8 -18.7 -14.7 -13.4 -5.3 -1.9 -0.9 -3.1 -9.2 -5.9 
1 -5.9 -30.4 -15.4 -27.3 -11.7 0.3 -2.0 -7.7 -11.1 -9.6 -6.4 

2b -8.7 -30.4 -15.4 -27.5 -11.7 0.0 -1.9 -7.7 -11.1 -9.5 -6.5 
Cotton 

3b-ii -4.1 -30.7 -15.8 -27.4 -11.7 0.2 -1.7 -7.8 -11.2 -9.8 -6.4 
1 -10.9 -17.2 -23.7 -21.4 7.3 -4.1 -8.2 -10.5 -1.3 -18.7 0.2 

2b -12.5 -17.2 -23.8 -22.2 6.3 -5.6 -10.5 -10.5 -3.0 -18.9 -2.6 

Imports 

Oilseeds 

3b-ii -11.3 -19.3 -25.2 -21.8 6.9 -4.1 -1.3 -11.6 -1.6 -19.8 0.0 
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Table A.2. Percentage changes in production, export, and import volumes for selected set B scenarios in GM-adopting countries  
(numbers corresponding to GM-adopting region and sector are shown in bold) 

Set A Scenario Australia / 
New Zealand

Canada Mexico United
States

Argentina Brazil European 
Union 

China India Philippines South Africa

1 -3.3 -4.5 -6.0 9.0 5.5 -1.6 -0.7 -0.6 0.0 1.1 0.1 
2b -3.5 -4.5 -6.0 9.0 5.6 -1.7 -0.7 -0.5 0.0 1.1 0.2 

Coarse 
grains 

3b-ii -3.3 -4.5 -6.0 9.0 5.5 -1.6 -0.7 -0.6 0.0 1.1 0.1 
1 -3.3 -22.5 -28.3 20.8 4.8 -3.8 -3.7 -0.1 2.1 -3.4 33.0 

2b -2.9 -22.5 -28.3 20.8 4.8 -3.7 -3.7 -0.1 2.1 -3.6 33.1 
Cotton 

3b-ii -3.3 -22.5 -28.3 20.8 4.8 -3.8 -3.7 -0.1 2.1 -3.4 33.0 
1 -7.5 -9.9 -7.2 17.8 -11.4 0.3 -4.7 0.4 0.4 -6.6 -3.8 

2b -6.3 -9.9 -7.3 18.6 -11.3 0.9 -5.4 0.4 0.4 -9.0 -2.9 

Production 

Oilseeds 

3b-ii -8.0 -10.0 -7.3 18.0 -11.4 0.4 -4.8 0.3 0.4 -6.8 -3.8 
1 -4.8 -10.2 -6.1 -16.6 -10.6 -5.2 -5.2 -7.6 -5.0 -3.9 -12.4 

2b 0.1 -10.7 2.1 -17.5 -11.8 2.2 -8.7 -4.7 -0.8 -7.4 -14.0 
Coarse 
grains 

3b-ii -4.7 -10.1 -6.1 -16.1 -10.3 -5.1 -5.1 -7.5 -5.0 -3.8 -12.0 
1 -11.0 -23.8 -7.2 -9.9 -6.4 -9.5 -7.3 -12.9 -1.0 -11.4 -22.8 

2b -13.0 -23.8 -10.7 -10.9 -6.9 -10.5 -7.0 -16.2 -5.1 -6.8 -23.1 
Cotton 

3b-ii -10.2 -23.8 -4.5 -8.6 -6.3 -9.4 -7.3 -9.9 -0.3 -10.7 -22.6 
1 -10.7 -14.6 -6.4 -12.6 -9.2 -11.5 -7.3 -9.7 -12.2 -7.8 -11.1 

2b -13.3 -16.2 -7.6 -15.7 -10.6 -17.1 -8.0 -18.8 -15.9 8.4 -14.5 

Exports 

Oilseeds 

3b-ii -9.0 -14.1 -5.7 -4.9 -5.1 -7.6 -7.5 -3.2 -10.1 -6.9 -9.8 
1 -5.1 -15.7 -18.6 -14.7 -13.3 -5.2 -3.0 -0.9 -3.1 -9.2 -5.8 

2b -7.1 -15.6 -18.5 -14.8 -13.6 -4.9 13.4 -1.0 -3.1 -9.2 -6.0 
Coarse 
grains 

3b-ii -3.9 -15.8 -18.7 -14.7 -13.4 -5.3 -1.9 -0.9 -3.1 -9.2 -5.9 
1 -5.9 -30.4 -15.4 -27.3 -11.7 0.3 -2.0 -7.7 -11.1 -9.6 -6.4 

2b -8.7 -30.4 -15.4 -27.5 -11.7 0.0 -1.9 -7.7 -11.1 -9.5 -6.5 
Cotton 

3b-ii -4.1 -30.7 -15.8 -27.4 -11.7 0.2 -1.7 -7.8 -11.2 -9.8 -6.4 
1 -10.9 -17.2 -23.7 -21.4 7.3 -4.1 -8.2 -10.5 -1.3 -18.7 0.2 

2b -12.5 -17.2 -23.8 -22.2 6.3 -5.6 -10.5 -10.5 -3.0 -18.9 -2.6 

Imports 

Oilseeds 

3b-ii -11.3 -19.3 -25.2 -21.8 6.9 -4.1 -1.3 -11.6 -1.6 -19.8 0.0 
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Table A.3. Percentage changes in production, export, and import volumes for selected set RICE 
scenarios in GM-adopting countries 

Set RICE Scenario China Bangladesh India Indonesia Philippines 
1 19.7 7.5 19.8 20.4 19.1 
2a 19.5 7.5 19.7 20.2 18.9 
2b 17.9 7.5 16.4 19.3 17.8 

Production 

3b-ii 19.5 7.5 19.6 20.2 18.9 
1 18.3 9.8 15.3 150.7 84.5 
2a 5.6 -5.1 7.9 100.5 46.4 
2b -18.0 -31.4 -6.0 8.0 -24.1 

Exports 
 

3b-ii 15.6 3.0 13.5 130.4 67.6 
1 -45.9 -27.0 -49.4 -65.2 -56.2 
2a -46.1 -27.1 -49.7 -65.4 -56.4 
2b -46.7 -27.4 -50.4 -65.8 -57.0 

Imports 

3b-ii -46.1 -27.1 -49.6 -65.3 -56.3 
Source: Authors’ derivations. 

Table A.4. Percentage changes in production, export, and import volumes for selected set WHEAT 
scenarios in GM-adopting countries 

Set WHEAT Scenario China Bangladesh India Argentina
1 9.1 -4.3 16.8 30.8
2a 9.1 -4.3 16.8 30.8
2b 8.3 -4.4 14.5 30.3

Production 

3b-ii 9.0 -4.3 16.2 30.7
1 44.7 -36.8 50.5 -5.8
2a 44.1 -36.8 50.3 -5.8
2b -63.8 -37.2 35.2 -6.1

Exports 
 

3b-ii 10.7 -36.9 45.6 -5.9
1 -43.6 -0.6 -42.7 -36.9
2a -43.6 -0.6 -42.7 -36.9
2b -44.1 -0.6 -43.3 -37.1

Imports 

3b-ii -43.7 -0.6 -42.9 -37.0
Source: Authors’ derivations. 
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Table A.5. Sensitivity analysis on selected set B scenarios with minimum, most likely, and maximum yield effects 

SET B 
1. Productivity 

shock 
 

Minimum 

1. Productivity 
shock 

 
Most likely 

1. Productivity 
shock 

 
Maximum 

3b-ii. Import filter, 
5% cost segregation

Minimum 

3b-ii. Import filter, 
5% cost segregation

Most likely 

3b-ii. Import filter, 
5% cost segregation

Maximum 

Region  $ million %  $ million %  $ million %  $ million %  $ million % $ million %
Australia and New Zealand -52.555 -0.016 -53.062 -0.016 -53.140 -0.016 -48.641 -0.015 -49.154 -0.015 -49.234 -0.015
China 243.542 0.031 242.399 0.031 243.025 0.031 248.426 0.032 247.285 0.032 247.918 0.032
Japan 431.796 0.014 435.365 0.014 437.256 0.014 258.273 0.008 261.864 0.009 263.763 0.009
South Korea 359.921 0.124 360.583 0.125 360.992 0.125 56.743 0.020 57.709 0.020 58.197 0.020
Rest of Asia 142.500 0.025 143.124 0.025 144.049 0.025 145.834 0.026 146.457 0.026 147.382 0.026
Indonesia 52.700 0.053 113.213 0.115 150.886 0.153 53.122 0.054 113.639 0.115 151.315 0.153
Philippines 122.944 0.196 120.197 0.191 120.345 0.192 122.664 0.195 119.918 0.191 120.065 0.191
Bangladesh 0.241 0.001 1.008 0.003 1.336 0.004 0.237 0.001 1.004 0.003 1.332 0.004
India 625.615 0.168 825.588 0.221 862.765 0.231 624.066 0.167 824.106 0.221 861.303 0.231
Canada 38.916 0.007 39.428 0.007 39.491 0.007 41.228 0.008 41.738 0.008 41.800 0.008
United States 1842.366 0.022 1848.543 0.022 1848.750 0.022 1854.163 0.022 1860.343 0.022 1860.551 0.022
Mexico 333.425 0.070 333.683 0.070 333.839 0.070 334.381 0.070 334.641 0.070 334.799 0.070
Rest of Latin America 103.728 0.020 103.975 0.021 103.965 0.021 108.362 0.021 108.608 0.021 108.599 0.021
Argentina -281.731 -0.124 -282.945 -0.125 -283.500 -0.125 -283.338 -0.125 -284.556 -0.125 -285.137 -0.126
Brazil 28.042 0.007 27.534 0.007 27.431 0.007 15.304 0.004 14.790 0.004 14.687 0.004
European Union 495.925 0.008 506.163 0.008 508.240 0.008 275.696 0.004 286.030 0.004 288.130 0.004
Rest of Europe 42.469 0.006 43.566 0.006 43.941 0.006 25.626 0.004 26.728 0.004 27.083 0.004
North Africa and Middle East 253.074 0.031 256.574 0.032 257.765 0.032 252.918 0.031 256.414 0.032 257.606 0.032
Rest of Sub-Saharan Africa -2.893 -0.002 -2.877 -0.002 -2.815 -0.002 -0.429 0.000 -0.420 0.000 -0.359 0.000
South Africa 20.122 0.023 20.568 0.024 20.618 0.024 19.808 0.023 20.254 0.023 20.304 0.023
Tanzania and Uganda 44.557 0.321 44.558 0.322 44.565 0.322 44.522 0.321 44.523 0.321 44.529 0.321
World 4844.700 0.020 5127.184 0.021 5209.803 0.021 4148.963 0.017 4431.919 0.018 4514.632 0.018
Source: Authors’ derivations. 
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Table A.6. Opportunity cost ($ million/yr) of segregation of non-GM crops for exports toward final 
consumption under set A and set B for adopting and sensitive countries 

Country Set A  Set B 
GM producers only 

China -1.34 -1.37 
Indonesia -1.93 -0.93 

Philippines  0.18 0.17 
Bangladesh -0.03 -0.06 

India 4.8 4.69 
Canada 3.06 3.04 

USA 5.17 5.21 
Mexico -2.82 -2.84 

Argentina 6.80 6.80 
Brazil 19.23 19.15 

South Africa 0.58 0.58 
Tanzania/Uganda -0.26 0.30 

Total GM producers 33.44 34.74 
Sensitive countries 

Australia/NZ 3.44 3.46 
Japan 150.82 149.3 

South Korea 722.12 724.21 
EU 536.77 541.28 

Rest of Europe 46.22 46.44 
Total sensitive countries 1459.37 1464.69 
WORLD   

Global 1434.36 1439.62 
Source: Authors’ derivations. 
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