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Solving and Interpreting Large-scale

Harvest Scheduling Problems by Duality

and Decomposition

Abstract

This paper presents a solution to the forest planning problem that takes ad-
vantage of both the duality of linear programming formulations currently being
used for harvest scheduling and the characteristics of decomposition inherent in
the forest land class-relationship. The subproblems of decomposition, defined
as the dual, can be solved in a simple, recursive fashion. In effect, such a tech-
nique reduces the computational burden in terms of time and computer storage
as compared to the traditional primal solutions. In addition, utilization of this
method allows the use of two simple procedures for creating an initial, basic,
feasible solution. Forest management alternatives within one (or more) land
class can be evaluated easily in this framework, and multiple-use considerations
can be incorporated directly into the optimization as nonharvest values.
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Solving and Interpreting Large-Scale Harvest Scheduling
Problems by Duality and Decomposition

ABSTRACT. This paper presents a solution to the forest planning problem

that takes advantage of both the duality of linear programming formulations

currently being used for harvest scheduling and the characteristics of decom-

position inherent in the forest land class-relationship. The subproblems of

decomposition~ defined as the dual, can be solved in a simple, recursive

fashion. In effect, such a technique reduces the computational burden in

terms of time and computer storage as compared to the traditional primal solu-

tions. In addition, utilization of this method allows the use of two simple

procedures for creating an initial, basic, feasible solution. Forest manage-

ment alternatives within one (or more) land class can be evaluated easily in

this framework, and multiple-use considerations can be incorporated directly

into the optimization as nonharvest values.

ADDITIONAL KEY WORDS. Duality, decomposition.



Solving and Interpreting Large-Scale Harvest Scheduling
Problems by Duality and Decomposition*

The Forest Service uses linear programming to produce timber harvest plans

consonant with the nondeclining flow requirement of the National Forest Manage

ment Act. Pioneered by Navon (1971), linear program scheduling techniques

were improved by Johnson and Scheurman (1977) and incorporated into the Forest

Service1s current scheduling tool, FORPLAN (Johnson et ale 1980).1 However,

the scheduling problems solved by the Forest Service are larger and more com-

plex than the problem described by Johnson and Scheurman (1977). The size of

these problems makes their solution expensive (as much as Z200,OOO for a

single forest) and their interpretation difficult. This paper exploits the

structure of the basic scheduling problem to produce fast, compact computer

code and to aid in the interpretation of optimal plans.

The problem solved in this paper is the efficient solution of Johnson and

Scheurman's Model II scheduling problem with nondeclining flow. This problem

is one of the many schedules deve oped for each forest for comparison pur-

poses. The scheduling runs that produce the selected plans include all the

constraints in this problem plus additional constraints on size of cuts) old

growth retention~ and others. Thus efficient solution of the Model II with

nondeclining flow problem is interesting in its own right and will help in the

ultimate efficient solution of larger problems.

Part of the difficulty in interpreting linear programming scheduling solu-

tions is finding the effects of constraints such as nondeclining flow on the

desirability of management techniques proposed for an individual stand. The

algorithm presented in this paper provides a set of present value prices that

can be used to check the desirability of management techniques other
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than the one selected by the linear program. For instance~ the value of

thinning commercial site class 144 douglas fir stands twice rather than once,

can be computed by a few arithmetic calculations without rerunning the model.

The same set of present value prices give an approximation of the cost of the

constraints imposed on the model. These methods~ although used to price non

declining flow in this model) are easily extended to any constraints and can

used with the standard FORPLAN output.

This paper is presented in six sections. Following the Introduction) Sec

tion 1 shows how to solve Johnson and Scheurman's Model II, Form I, without

using an iterative technique such as the revised simplex method.

Section 2 shows how to decompose the forest planning problem by using the

algorithm of Dantzig (1963) and Dantzig and Wolfe (1961), which has been used

in different forest-planning contexts by Nazareth (1973) and by Williams

(1976).

Section 3 provides an extremely simple way to start the decomposition

algorithm. Section 4 shows how decomposition and nondeclining flow shadow

price can be used to evaluate alternative management strategies such as a

pest-suppression program_

Section 5 extends the algorithm so that forest land is valued both for the

timber cut and for the other resources produced. For instance~ a manager

might wish to maximize the value of timber plus the value of water. Section 6

provides a summary and discussion.

1. AN ANALYTIC APPROACH TO HARVEST SCHEDULING

Johnson and Scheurmanls model (Model II, Form I; 1977, p. 5) captures the es

sence of the U. S. Forest Service's current linear programming approach to

forest planning. Using their notation, the model is represented as:



N j-z
max l~ I

j=l i=-M
D.. x·· +1J 1J

3 ..

(1.1 )

where x .. is the harvest and D.. is the value in year j of land planted in
1J 1J

year i.. N is the terminal time; hence, wiN are the acres left uncut and

['M is the value of the uncut acres in year N that were planted in year i.
11-.

The regeneration time lag is z, and the oldest timber was regenerated at

time -M.

The constraints are

-M, .. • ., a (l.la)

which states that the inventory of land planted at time i, Ai' is either cut

or left standing and

j-z
I

i=-M
x ..

1J
j:::::.l, .... , N (l.lb)

which states that land harvested in year j from all previous plantings is

available for harvesting between year j + z and year N or left standing,

WON" The linear program is max equation (1.1) subject to equations (l.la)
J

and (l.lb) and to nonnegativity constraints.

Although Form I of Model II is well suited for the direct use of the

revised simplex method, a noniterative solution requires a form with many more

constraints. Define Wit as the acreage planted at year i available for har

vest after date t.

(1.2)
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Using this definition, equation (l.la) is equivalent to

Xil + Id
i1 A. i == -M, . ., 0 (1.3)

1

and

Wit - wit+1 '= xit+1 = -M, . . . , 0 (1.4)

t =: 1 , . . a , N - 1.

The indexi n9 set, I = [( i, j) Ii=: -~1, . .. ., N; j ::: 1, • • ., N], can be

divided into two sets, T and Te , their union being the whole of I:

T=[(i,j) i = -M, ., N; j :; max (1, i + z), a, N]

Te =: rei, j) J i =: -M, ... , N; j = 1, ... , max (1, i + z) - 1].

These sets can be used to separate meaningful harvests from empty harvest

possibilities as shown in the following new constraint

x.. 0
lJ

i f (i, j) e: Te • (1 .. 5 )

Now, repeatedly, apply equation (1.2) to equation (I.Ib) to obtain

and

w•• 1JJ-

j
::: L

i=-M
x ..

lJ
j = 1, •. a, N (1.6)

i = 1, ••• , N

t '= i-I, . . ., N - 1"

(1.7)

The extended form of Model II is to max equation (1.1) subject to equations

(1.3) through (1.7) and to nonnegativity constraints.
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The Lagrangian function for this problem is to be min max L,
AY X,W

L
N N
f~ 2:

i=-M j=l
D.. x·. +
lJ lJ

(1.8)

(
W •• 1 +
JJ- j Vl~ x

i::::-M ij

To solve this minimax problem (see Whittle 1971), recall that, at a saddle

of L, the complementary slackness conditions are

where

L • x· .x. . 1J
lJ

L .. w..
'vi. . lJ

lJ
0,

L. aL
x" =~.

lJ 1J

Making this substitution in L gives the dual problem

min
o
1:: A'I A.1 1

i=-M
(1 .. 8a)



subject to

6.

L ::: D " + A •• 1- A •• < 0x,. 'J JJ- lJ-lJ
(i, j) E T (l.8b)

(I.Be)

j = max (1, i-I),

L = -A .. + A. '+1 < 0W., lJ lJ -lJ

L = E,~, - A"N = 0
WiN 11-'1

These constraints can be rewritten as

).,. > [0,. + )."! and A
1
'
J
'+!]lJ - lJ JJ-

i = -M~ •.. , N

i = M, • • ., N.

(i, j) £ T

(I.8d)

_, N- 1

(I.Be)

). .. > [0" + A,. 1 - 'Y" and A.. 1]lJ - lJ JJ- lJ lJ+

Since minimizing EA, A'l requires the minimum A'I and A.. is coo-
l 1 1 1J

strained recursively to be at least as large as A. '+1 and (D .. + ).,. 1)'
lJ lJ JJ-

it follows that

). .. =max[D.,+A·· l and A1'J'+!]lJ lJ JJ- (i, j) E T. (1.9)

In the case (i, j) E T, 'Yij is positive, Aij will decrease if 'Yij

increases; hence,

Aij = ).ij+1 (1.10)



7.

Finally,

= -M, • • .. ~ N. (1 .. 11)

The solution to the dual problem is obtained by setting AiN EiN and

finding A,. 1 from the A,. by rules (1.9) and (1.10).
1J- 1J

The optimal program is constructed by using the complementary slackness

conditions .. Using the ;th class as an example, xiI' the first period har-

vest is zero if L is nonzero. Equivalently, x'l is zero if Ail =
~l 1

li2" The remaining stock is zero if L is nonzero or Ail = Al O +w
i1

Dil .. These two rules determine whether acreage is cut or saved in period 1;

they determine wil' the acreage available in period 2. Again allocating

acreage to be harvested if Ai2 = A21 + Di2 and to be saved if Ai2 =

1 i3 gives the period 2 optimal program. This procedure is repeated until

the program for all N periods is constructed.

Starting with the first period, one then constructs the program. The

interpretation of the rules can be expressed as: If the value of stumpage,

D. " and the regenerated stand, A •• l' exceeds the value of the stand in
lJ JJ-

the next time period, ljj+l' then the stand should be cut; otherwise, save

the stand for harvest in a subsequent period.

2. DECOMPOSITION OF THE FOREST SCHEDULING PROBLEM

A common forest planning problem is to schedule the harvest on many land

classes--each satisfying an area constraint--and, simultaneously, to consider

the forestwide nondeclining flow. FORPLAN and similar methods solve this
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large linear programming problem with the revised simplex method. However,

the method provides no added insight into the structure of the planning

problem, and the costs in computer time and storage are large. By incorporat-

ing the dual methods of Section 2 into a Dantzig-Wolfe decomposition algorithm

(Dantzig and Wolfe 1961, Dantzig 1963), this section develops a computational

method that decreases markedly the storage required and elucidates the role of

nondeclining flow shadow prices in forest planning.

stating the problem formally, let there be S land classes, s, with har-

t d s . . s d" t' 1 ASves e area, x .. , remalnlng area, w.. , an 1n1 la area, .•
lJ lJ 1

Define the volume harvested from land class s in period t as

for s ~ 1, ... , S (2.1 )

swhere vit is the volume per acre in year t on land of class s planted in

year i. Let G be the (N - 1) x N matrix.

G

1 -1

o 1

a 0

o 0

-1 a
1 -1

o
o
o

o
o
o

o 0 0 0 1 -1

Forestwide nondeclining flow requires harvest to be nondecreasing over time.

Hence, the master problem constraint,

0, (2.2 )



where hS is the column vector with elements hS and u is an N- 1 ele-t

ment vector of slack variables. Letting Pt be the present value price in

year t, the forestwide planning problem is

9.

max
h ,x (2.3)

subject to equation (2.2) and, for each s, to equations (2.1), (l.la), and

(l.lb), and to nonnegativity.

Instead of using the revised simplex method to solve equation (2.3), one

can decompose it into a master problem with S subproblems. The solution pro-

ceeds (from the initial master basis described in Section 3) by solving the

master problem and using its shadow prices in the formation of the objective

functions of the subproblems. The subproblems are then solved, and their new

splans, ht, are added to the prior set of plans. The master problem in-

volves the choice of a new, basic, feasible solution from the candidate plans.

This procedure is repeated until convergence is achieved.

Starting with the subproblems at the beginning of the kth iteration, one

s sexamines the master problem to find an objective function (D it , EiN )

for each subproblem. These subproblems~ solvable by the methods of Section 1)

are

max (2.4)

subject to constraints (l.la) and (l.lb). One then calculates the harvest

volume, hS
, by equation (2.1); the present discounted value of the current

schedule, fS, is calculated by
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(2.5)

The subproblem value (hS)k and (fS)k are returned to the master

problem. (The parentheses and subscripts denote that this is the subproblem's

communication at the kth iteration.)

Using the calculations of harvest volume and present discounted value from

the subproblems, the master problem is to find the linear combination of sub-

problem plans that meets the nondeclining flow constraints and maximizes the

present value of the plan. The kth iteration begins by combining the

previous optimal basis at the k - Ith iteration, Mk_1, with the S new

candidate plans communicated by the subproblems at the end of the k _ Ith

iteration. The master problem chooses linear combinations of plans and uses

index sets, R~, to keep track of them2

(2.6)

The master problem at iteration k is then defined by maximizing

(2.7)

subject to:

and

(2.8 )

for s = 1, ... , s. (2.9)
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At the kth iteration, an optimal, basic, feasible solution to the master

problem will consist of (N - 1 + S), nonzero a~ls, and N - 1 nondeclining

flow shadow prices expressed in vector notation as

Solution of the master problem at the kth iteration yields new values

sfor Dit for each s calculated as

t 2, N - 1

Those values are transmitted back to the subproblems, and the subproblems are

solved. The iterative procedure ends when the matrix of candidate columns

generated by the subproblems at some iteration contains no columns not already

included in the basis of the master problem.

3. STARTING THE ALGORITHM

The solution algorithm described above is relatively easy to manipulate once

an initial, basic, feasible solution to the problem is formulated. This sec-

tion of the paper describes procedures for the development of that solution.

In general, it is possible to find such a solution by a traditional Phase I

procedure or other methods that consider the whole linear program. However,

such a procedure requires simultaneous use of all of the subproblem and

master-problem constraints and would incur all of the 11setup" costs associated

with a large, complete linear program.
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Those costs can be avoided by noting that any set of subproblem harvest

plans that meets the nodeclining flow requirements individually will also meet

them collectively. Thus, solving each subproblem individually under noo-

declining flow constraints yields the initial basic, feasible solution for the

master problem. An even less time-consuming method involves the construction

of a set of subplans that harvests only at N (the end of time) or only at N

and N - 1, or N, N - I, N - 2, etc. For example, the following rules meet all

area, as well as nondeclining flow, constraints on a stand-by-stand basis:

A., all other x·
t

= 0,
1 1

(3.1 )

or

A. V
N
_
11

XN :::: vN + vN_1
(3.2 )

A. VN1
XN_1 = +vN

v
N
_1

all other Xit :::: O.

For the simple case under consideration, these methods provide an easy way

to start the algorithm. Some, but not all, other constraints can be handled

as well. For instance, cutting everything in the last period will meet an old

growth retention constraint. An even-flow harvest plan might meet an overall

budget constraint~ but there is no guarantee that it would.

4. EVALUATING ALTERNATIVE MANAGEMENT STRATEGIES

Determining the economic benefits of a forestry practice, such as insect

suppression or intensive forest management (Tedder and Schmidt 1980) in a
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planned forest requires the new practice to be evaluated at prices that re-

fleet both market value of the timber output and the binding constraints of

the harvest schedule. Oantzig and Wolfe (1961) have shown that a subproblem

feasible plan that increases the value of the subproblems objective function

will also increase the value of the overall objective function. This theorem

provides a method to determine whether a new practice should be incorporated,

at some level of intensity, into an optimal forest plan.

To be specific, consider undertaking an insect suppression program (e.g.,

spraying Bacillus Thuringiensis) on acres available for planting in year i

that costs (present value) C per acre and increases yields from vit to

V't'. The value of a plan without suppression, called the old plan, is A, A.•
, 1 1

The value of the new practice is found by solving the subproblem using the

modified objective function from the old optimal solution:

N
max t:l (Pt - nt + nt_I) vit ' x it ' (4 .. 1)

subject to equations (l.la) and (l.lb); that is, maximize present value using

the subproblem objective function, which is adjusted for the value of the oon-

declining flow constraints.

The addition and subtraction of shadow prices from the present value price

reflects the costs of the nondeclining flow constraints. When both ~t and

nt_l are not zero, the nondeclining flow constraints are binding; and it is

profitable to shift output from period t + 1 to period t and from period t to

period t - 1. Of course, the nondeclining flow constraints prevent such a

rearranging of the output stream.. However, a suppression program that in-

creases output at time t would make it possible to shift some output to
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time t -·1 without violating the nondeclining flow constraint. So, in addi

tion to the market price of output, Pt' output at time t is worth TIt_l

because it allows rearranging the output stream to get greater output at time

t - 1. Similarly, increasing output at t requires rearranging the output

stream to get greater output at t + 1. This rearrangement is not profitable,

so TIt must be subtracted from the output price.

The new program is undertaken (at some positive level) if its value ex

ceeds the value of the old program and the costs C. In the case of a spray

program, this guarantees that some spraying would be optimal, but it does not

guarantee that spraying all the eligible acreage will be profitable. Con

versely, if the new program fails this test, it guarantees that none of the

acreage should be sprayed. An analyst could confirm this theorem by rerunning

the entire forest planning model allowing the scheduling model to choose

whether or not to suppress the pest. Conversely, when this nondeclining flow

adjusted cost-benefit condition does not hold) there is no point in rerunning

the entire harvest schedule because the optimal level of suppression will be

zero. Thus, pricing new alternatives with the modified objective function

identifies unprofitable alternatives without the expense of rerunning the

entire harvest scheduling model.

A more negative view of this theorem is that new plans that appear profit

able when valued at market prices (the standard benefits less costs criteria)

do not necessarily get incorporated into optimal forest plans. The reason is

that such plans do not account for the nondeclining flow constraints.3



5. EXTENSIONS

So far~ the objective function has only included timber harvest. More

complicated forest scheduling problems require inclusion of either constraints

or prices for other forest resources. Suppose, for instance, that water is

produced by the forest in proportion to the amount of land in certain age and

site categories. One can either add a constraint to the master problem to

require a certain water flow or one can add a water price to the objective

function to reflect the value of water. This section examines the latter

method of valuing nontimber resources.

For examp 1e, 1et Ei t (t < N) represent the val ue 0 f the f 10\'1 0 f \'J i 1d

life~ water, aesthetic services, etc., generated in, upon, and around an acre

regenerated in year i. Land costs associated with fertilization, fire protec-

tion, and other objectives could also be included in E.

The single land-class problem then would still be

subject to equations (1.3) through (1.7).

Retracing the steps in Section It one would obtain conditions (I.8a)

through (1.8e). However t condition (1.8d) would be replaced with

The solution to the single land-class subproblem would then be

(5 .. 1 )

A •• := max [D .. + A. • 1 and
1J 1J J,J- E.. +A. '+111J 1,J.J

(i, j) c T (5.2)

(5.3)
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The variables, x and w, are then computed from complementary slackness

conditions as before; and the results are used in the decomposition of

Section 2.

6. CONCLUSIONS

The dual and decomposition methods reported in this paper provide a com

putational method to solve the harvest scheduling problem and a way to

interpret the output of the currently used scheduling models.

The dual decomposition algorithm reported here was used to solve a

medium-size scheduling problem constrained only by nondeclining flow and

acreage and regeneration constraints. The sample problem had 12 stands split

among three land classes. The ti~e period included 15 decades before the

schedule and 20 decades for the harvest schedule. On a Chi 2130 computer

(roughly twice as fast as a ZaOa based microcomputer with a hard disk), it

took 75 minutes to solve the problem running a revised simplex algorithm

provided by IBM (product H20-0238-2). Using the dual decompostion methods,

the solution took only 37 minutes. The difference in speed may be attribut

able to differences in the codes other than the difference in the algorithm.

Similarly for our machine and packages, the largest problem that could be ac

commodated by the revised simplex was about twice the size of the reported

problem. The dual decomposition does not have that limitation, but the

quality of its code was such as to preclude very large problems. The method

is most attractive where the number of constraints (other than areal and

regeneration constraints) is small, the number of land classes is large, the

number of stands is even larger, and the machine resources are Quite limited.

Using a microcomputer to test th0 effects of insect suppression programs on
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nondeclining flow benchmark runs would be such a use. Of course, where as in

classroom exercises, there are no constraints other than those of Model II

Form I, the harvest schedule can be found with pencil and paper using the

methods of Section 1.

In addition, this method provides a unifying framework for evaluating, on

a forestwide basis, many forest management options--especially those that

impact harvest yields over time~ We have suggested only two such options:

intensive management and insect control programs. Other management options

that would impact yield are apparent and could be considered. Although the

observation has been made previously [c.f. Binkley (1980) and selected

references therein], we show that management options which change yield in a

forest managed for nondeclining flow should be evaluated in terms of the non

declining flow shadow prices as well as in terms of their net value computed

at market prices. Here, we extend the usefulness of that observation by pro

viding a simple structure for evaluating such management options within one or

more land classes in terms of their forestwide impacta Standard linear pro

gramming output includes the shadow prices of active constraints. These

shadow prices can be used to form the decomposed objective function for each

land class and the methods of Section 4, then suffice to evaluate the new

plan. Similarly, just computing the decomposed objective function gives

insight into the effect of the constraints. For instance, if the value of the

decomposed price were only a fraction of the market price, then one could con

clude that the constraints removed almost all of the economic incentive for

forestry. In these circumstances, intensive forestry techniques that would be

selected without the constraints are no longer selected. The advantage of

these methods is that they properly account for the forestwide constraints and

do not require the rerunning of the harvest schedule problem.
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In conclusion) this paper provides a method to solve harvest scheduling

problems when machine resources are limited and the number of constraints

other than those that describe the growth of trees is not too large. The

paper also provides a way to interpert existing harvest schedules and to

evaluate new programs based upon their shadow prices.
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FOOTNOTES

*Giannini Foundation Paper No. 656.

1 FORPLAN schedules harvests but does not allocate land to different

uses such as commercial and noncommercial. MUSYC (Johnson and Jones 1980)

allocates land and then schedules harvests on the commercial portion.

2 The indices of the starting basis are nonpositive.

3 Binkley (1980) presents) in a different context) a simple analysis of

the role of nondeclining flow shadow prices for management that alters yield.

He uses a cost-benefit framework that addresses some of the issues addressed

here.
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