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OPTIivrAL MA.?\IAGEMENl' OF RENEWABLE RESOURCES WIlli
GROWING DEiv1A.L'ID AI'ID STOCK EXfERi'iALITIES

1. INTRODUCTION

Economists often characterize optimal management of renewable resources in

terms of a simple capital market equilibrium rule such as the rate of interest

equals the rate of increase of population growth, a rule that leads to lower

steady state resource stocks than the maximum sustainable yield prescribed by

many biologists and environmentalists. Indeed, the biologists' rule which

amounts to the economists' simple rule with a zero interest rate is fallacious,

but the simple capital theory rules are little better because of costs, exter-

nalities, and increasing demand. Rules that treat cost properly are well known;

in general, harvesting costs lead to increased steady state stocks. Externali-

ties of the common pool or open access sort are known to lead to inefficiency,

but the policy prescription is simply to restrict access so that the resource

again follows a (cost adjusted) simple capital market rule. Besides the well-

known open access externality, many renewable resources such as range or forest

provide a positive externality such as fishing in their streams, hiking across

their expanses, and drinking water which runs off them. It is not customary

for the landowner to be compensated for the water, hiking, or fishing his land

provides, so these services are positive external economies. These positive

external economies are often thought to be related to the stock of the underly-

ing resource: the size or number of trees influences the quality of the hiking
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experience and the quantity of runoff. Optimal renewable resource policy should

account for these externalities. Growing demand provides the last of the modi­

fications to the simple capital theory rules presented here. When demand grows

in a particular exponential fashion, "the steady state stock should be larger

than it would otherwise be. To be precise, the entrepreneurs will act exactly

as if they faced a stationary demand and a lower interest rate. In fact, if

the numbers are fortuitously chosen, rational entrepreneurs (or a regulating

agency) could end up acting as if the interest rate were zero, which is exactly

the environmentalist-biologist maximum sustainable yield rule.

Although the growing demand model requires no government intervention to

achieve an optimal path (assuming correct expectations), the case of positive.:­

valued externalities does require intervention for optimality. Besides simply

mandating the optimal harvest path, the government might try a number of tax

or subsidy strategies. It turns out that harvest costs play an essential and

surprising role in determining the efficacy of many of these policies.

Section 2 .. 1 presents a partial equilibrium model of a renewable resource

with harvest costs which draws heavily on Clark (2] and which has its roots in

the work of Smith [16], Scott [14], and ultimately Lotka [9].

In Theorem 1 the model is used to characterize a market equilibrium. In a

market equilibrium that starts with a large resource stock, price starts low

but rises faster than the rate of interest toward a steady state price. As the

price goes up over time, the resource stock is diminished toward a steady state

stock. Section 2 contains Theorem 2 which describes the market allocation over

time if the demand curve shifts out at an exponential rate m. In this case of

exponentially increasing demand, there is no steady state for price: in the

long run it increases at rate m; however, stock does approach a steady state.

The simple capital theory rule relating rate of interest to rate of growth
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increase and rate of price increase is modified by replacing the rate of in­

terest with the rate of interest less m. To illustrate how exponentially in­

creasing demand might come about, there is an example of a simple economy with

a good manufactured from a renewable and nonrenewable resource. Section 3 is

concerned with the optimal management of a resource when the resource stock

per se has consumption value, an area first researched by Lusky [10J and

Vousden [18] for nonrenewable resources. Theorem 3 shows that the optimal

resource policy with valued stock will have a higher steady state stock than

the optimal policy without valuation of the stock; the theorem also presents

the optimal pricing rule. Theorem 4 shows how to decentralize the solution of

Theorem 3 using a stock subsidy. Theorems 5 and 6 are concerned with the re­

sults of actually observed resource policies that are designed to protect

stocks. In Theorem 5 it is shown that taxing a product (lumber) would increase

the steady s-tate stock of trees only if unit harvest costs were not constant.

Irrational conservation is examined in Theorem 6: the result is that legislated

inefficiency does indeed raise steady state stock.

2. MODEL

2.1. Partial Equilibrium Mode l

Seven assumptions on the entrepeneurs and consumers define the partial

equilibrium model.

Assumption I--The Growth Curve. In order to elucidate the price path of

a renewable resource in a compe-titive environment, it is necessary to obscure

the details of the population's age distribution. Accordingly, let x, a scalar,

be the stock of the exploited population, and let its growth be described by

the usual differential equation ~ = f(x) - h, where h is the harv€st or cut,
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and f is concave, twice continuously differentiable, positive only on the open

interval (0, K), and zero at 0 and K.

Assumption 2--Price Takers. There are many producers, each of whom owns his

own pool of the resource (forestland, fish pond, etc.) and acts as price taker.

Assv.mption 3--CeT~tainty Prediction. These producers know the demand for

the resource and use this knowledge to predict future prices with certainty.

AssW1rption 4--Present Value Maximization. Each producer is assumed to

maximize the present discounted value of resource harvest at discount rate r.

Assumption S--Costs. The unit cost of extracting the resource is given

by c(x)~ a monotone decreasing differentiable function of x.

Assumption 6--Demand. Consumers are represented by a downward sloping

demand curve Q(p) which is continuously differentiable and is the same in every

period (section 2.2 relaxes this assumption). The lim Q = 0 and Q > O. Any
p-700

information on the relative prices of the resource and other goods in the future

is reflected by this demand curve.

Assumption 7--Equilibrium. The market-clearing equation states Q{p} h

or harvest equals demand at every instant.

With these assumptions, it is possible to describe the resulting partial

equilibrium.

Theorem 1. If Assumptions 1 through 7 hold, then there is a price path

that equates supply and demand and:

a. Along the present value ~nximizing path, p/(p - c) = (r - f) + e'f/

(p - cJ so when unit costs are constant (e' = OJ, the rate of net

price increase plus the rate of growth increase (f') equals the rate

of interest.
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b. There is a steady sta""te x*~ p*, h* defined by p = 0 and Q{p*)

and every equilibrium path leads to a steady state.

c. The steady state is unique if c ff = o.

d. If the initial stock is greater than the steady state stock, then the

initial price is lower than the steady state price; and when at = 0.>

p/(p - 0) > r when x > x}!;~

To show lea), it is necessary to solve the problem of the producer faced

with a differential price path.

The producer's problem is:

max [
c 0

-rt
e [p - c(x)] h dt (1)

subject to

.
x = f(x) - h

x ~ 0, h E [0, 00],

where pet) is the expected and actual price at time t. The supply of resource

is h(t) from each of the identical producers, and, for convenience, h(t) is

taken as the industry supply; that is, the industry is treated as having only

one price-taking firm.

The first step in solving this problem is to apply the maximum principle

of Pontragin et ale [13] to the producer's problem. Let

H e-
rt [p _ c(x)] h + A [f(x) - h] (2)

be the Hamiltonian. Necessary conditions for an optimum are:
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f(x) - h
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(3)

aH
ax

-rt-f'(x) A + c'h e (4)

transversality condition lim AX 0
t-+-oo

and the maximum principle: choose h to maximize H at every time t. Because H

-rt
is linear in h, h is either zero or infinity or A = e (p - c).

The corner conditions have been avoided by judicious choice of demand func-

tions. No demand function derived from a budget-constrained problem can admit

infinite output at positive price~ so the possibility that h 00 can be dis-

missed. On the other hand, the harvest could well be zero at a chokeoff price~

and this was ruled out by Assumption 6.

On the above conditions~ A = e-rt
p everywhere. Differentiate

[p - c (x) ]

and substitute it into Eq. (4) to get

-rt
e A, (5)

p (r - ff) (p - c) + c'f(x). (6)

Eq. (6) shows part (a) of the theorem and provides one of two equations neces-

sary to show part (b) of the theorem. In the case that unit costs are constant,

Eq. (6)--when rearranged--states that the rate of net price ~/ (p - c} increase is

the rate of interest less the rate of growth increase (ff). Since f" < O--rate

of growth increase decreases in stock--it is true that price increases fastest

when the stock is large. In particular, when ff is negative, as is the case

with a resource just beginning to be exploited, price increases faster than the

rate of interest. The economic sense of the situation is that entrepreneurs
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holding large stocks lose interest--they could harvest the resource and put the

money in a bank--and they lose growth. Growth happens at rate f, and £1 is the

growth lost or gained from a small change in the stock. The rate of price

increase--capital gains--must be enough to make up for both the lost interest

and the lost growth. When costs are not constant, the matter is more difficult.

Price increases slower than (r - f') (p - c) by the amount c r f which comp-ensates

for the extra costs incurred by reducing the stock.

Parts (b) and (c) of the theorem follow from examining the differential

equation sys'tem described by Eq. (6), the price equation; the simultaneous solu-

tion of the growth and demand equations,

x = f(x) - Q(p);

and the transformed transversality conditions in terms of p,

(7)

. -rt11m p e x
t~

o. (8)

Eq. (7) states that the change in stock equals growth less market demand. Since

Eqs. (6) and (7) describe a differential equation system that depends continu-

ouslyon its variables, there is a solution to the equations at each point on

R~ [8]. Most of these solutions do not meet the transversality condition

[Eq. (8)J. Those for which lim p and lim x are constant, called a stationary
t-KO t~

point, clearly do meet the transversality condition. Being a stationary point

is not quite enough; it must also be possible to "get there" from somewhere

else--solutions starting in other places must end at the stationary point. If

the linearized differential equations system at the stationary point has at

least one negative eigenvalue, it makes it possible to "get to" that stationary

point. Saddle points have one negative and one positive eigenvalue.
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First, take the special case--part (c) of the theorem.

Lemma 1. When there are constant marginal costs [c' (x) = 0] ~ this equation

system r~s only one stationary point on the positive orthant.

Since p is zero if r = f'(x) and f' everywhere decreases in x, there is a

single value x* such that r = f' (x*). To find p*, set Q(p) = f(x*). Again,

p* is unique because Q' < 0 everywhere.

Lemma 2. wllen marginal costs are eonstant., the stationary point (x $:., p*)

is a saddle point.

To verify this statement~ linearize the differential equations about

(x*, p*) and find the characteristic values. Let ~p and nx be the state vari-

abIes expressed as a deviation from the steady state values. That is, ~p =

p - p* and ~x = x - x*. To a first-order approximation, the problem of a

renewable resource is:

-f" (x*) P*] (~p).

f'(x*) ~x

(9)

The characteristic polynomial is b 2 - bf' - Q' flt p*, and the characteristic roots

are

(10)
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which are real and of opposite sign, b
2

being negative, since the term 4Q'f"p* >

o (Q' < 0 and fl' < 0). The opposition of the signs of the eigenvalue is suffi-

cient to show that (x*, p*) is indeed a saddle point.

To aid in discussion, Figure 1 presents the p - x phase space. That the

.
p 0 locus is a vertical line is plain. The U shape of the x = 0 locus re-

suIts from the shape of the growth curve f: for almost all values of Q(p),

there are two values x such that f (x) = Q(p); by the concavity of f, it has a

unique maximizer x ; and by the downward slope of the demand curve, this must
max

be associated with the least p .

.
The placement of the p = 0 locus to the left of x is not accidental: ft

max

is positive only between 0 and x ,so (r - if) can only be zero somewhere on
max

that interval. As x ~ 0 or K, p will approach an infinite price. The conver-

gent arm (labeled z) exists because {p*, x*} is known to be a saddle point (8].

The arrows, whose directions are easily verifiable, sh~w that the convergent

arm must reside in regions II and IV. The horizontal line in the diagram at

p = c is the break-even point. In the half plane below it, nothing would be

harvested (h =0); but given the assumptions on demand" (no supply brings an

infinite price), the convergent arm will always lie above the break-even line.

Any trajectory other than z must eventually end in quandrants I and III, both of

which lead to violations of the transversality conditions.

Turning to the more general case of part (b) of the theorem:

Lemma 3. The p = 0 curve crosses x = 0 an odd number of times ['Pom above.

Each such crossing is a saddle point.

~~en unit costs are not constant, the p o locus is given by

p c -
cff

f l·r -
(11)
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As shown in Figure 2, the slope of the p = 0 curve is generally downward: it

'has a pole at r - i' (x) = 0; and examination of

..<!E.Idx •p=o
= _-_f_"--:(~p_-_c~)_+_(::-t_-~f_'~):..--._(,:1-.-_c_'.......):..--._+--.c_'_'f.....__+--...c_'_f_'

(ff - r)
(12)

shows that all the terms of the numerator save the last are positive while the

denominator is negative. The last term in the numerator is positive for

x > x ,so the p = 0 curve slopes downward on x > x . Although it would
max max

be easy to draw cases 'of mult~ple -equilibria (Colin Clark [2] has done this),

.
assume the equilibrium is unique. Since the p = 0 curve starts above the x 0

curve, it must cross it (an odd number of times) from above. This crossing is

a saddle point. The linearized system is

(A~) = [<r -
Ax _Qf

f') _rl (p - c) + (r - ft) (-c) + cHf + C'f'] (AP)
f'(x) Ax

(13)

That p = 0 crases x ::::: 0 from above is equivalent to its having a greater slope

than x = 0; in symbols,

(B) > i' (x)
(r - ff) -Q'

where (B) is the upper right-hand corner term of 'the linearized system.

ing that r - £' and _Qf are positive and rearranging yields

(r - ff) (f') - Q' (B) ~ o.

(14)

Notic-

(15)

This shows that the determinant of the system is negative, the eigenvalues are

real and of opposite sign, and the equilibrium is a saddle point.
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Figure 2 depicts this system. Again, the break-even curve [p = c(x)] has

been drawn in; it slopes downward because low stock leads to high cost. As

drawn, the costs of harvest if x < ~ k are infinite.bre,a .-even

The existence of the harvest path is not quite enough to assure that the

agents actually get on it. The individual entrepreneur must be constantly

checking both the differential equation conditions (he must see that price is

rising at the ri'ght rate) and the transversality conditions (he must see that

the price-quantity ·path leads to a steady state and not some infinte price dis-

aster from which he should profit). This problem was first studied by -Hahn [6].

Stiglitz [17] finds these expectations--rational with respect to both day-to-day

price change and the transversality conditions---to be a very strong assumption.

For instance, suppose a resource owner observes a price lower than he expects.

If he believes his calculations and his estimate of the total resource stock,

he withholds his supply from the market and attempts to establish a ttlong" posi-

tion in the commodity; these actions tend to push price up and lead to stability.

To the contrarYt assume the producer is unsure of the total resource stock.

When price is lower than expected~ "the producer concludes that the true industry

stock was greater than he thought. He adjusts his plan by selling more and de-

pressing price further: clearly an unstable situation. Which of these scenarios

is more realistic, is open to question. For want of a better assumption, it is

assumed that the expected prices are realized and are on the convergent arm.

This was Assumption 3.

2.2. Nonautonomous Demand

Stationary demand curves of the sort used in Theorem I do not account for

increased demand incident on such things as growing population, increasing

wealth, or changing relative prices. When these time-varying factors affect

demand by moving the demand curve outward at an exponential rate, the partial
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equilibrium model can still be sOlved. Clark and Munroe [3] treat the related

case of exogenously increasing price. Theorem 2 characterizes the solution.

Following the proof of the theorem is an example of how changing relative prices

in a competitive world led to exponentially shifting resource demand.

Theorem 2. If Assumptions 1 through 4 hold~ Assumption 5 is replaced by

c = O~ and Assumption 6 is replaced by demand = Q (e-mt
p) and r > m~ then

a. There is a unique steady state x* at which price increases at rate

pip = m and x* is definr!Jd by /' (x*) = r - m.

b. Along any profit-maximizing path, pip = r - ftc.

> • -mtc. Along an optinn.l path whenever x > x*~ pip> r - m and q = pe < q*

where f{x*) = Q(q*).

Proof. The same steps--maximizing firm profits and substituting in the

demand curve--that lead to Eqs. (6), (7), and (8) give

----E- = (r - f')
p

x = f(x) - Q [e-mt pet)]

(16)

(17)

lim pet) e-
rt x(t)

t-)<X)
o (transversality) (18)

A solution involves exponentially increasing prices at rate m. Choose a new

-mtvariable q(t) = e pet) and rewrite the system in terms of this new variable:

-S- = [r - m - f'(x)]
q

x = f(x) - Q(q)

(19)

(20)

lim q e(~r)t x(t)
t~

o. (21)
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When the time preference (or interest) rate is greater than the rate of

demand increase (r > ~)t there is a steady state in the q - x space which cor­

responds to a solution where pJp = m. The steady state occurs at a resource

stock x*(m) that is higher-than the zero increase in demand steady state stock

x*(O). Because of the concavity of f, x*(·) is monotonically increasing in m.

One troublesom~ -detail remains: if m > r, then the proposed solution no longer

meets the transversality condition--the economic problem underlying the trans­

versality condition is the finiteness of the present value- of a unit of the

resource sold in the future. YJ'hen prices go up faster than the rate of interest

forever, the present value of eVen a carelessly made plan would be infinite.

Criteria concerning vector dominance or overtaking--not present value--are

appropriate for judging plans in these unhappy circumstances; below, the dis­

cussion is limited to m < r.

Since the equations for the nonautonomous demand case are the same as those

that lead to Theorem 1, save the replacement of p by q and r by r - m, the

analogous theorem. in the new phase space is also true.

2.3. An Example

One situation in which demand is not autonomous is a world dependent upon

only a renewable and an exhaustible resource. From the outset, it will be clear

that it is a grim world: neither manufactured capital nor technical progress

nor high elasticities of substitution are allowed to preclude the Malthusian

doom (Dasgupta and Heal [5] and Stiglitz [17] investigate these reasons for

continued growth with exhaustible resources).

A single consumption good (g) is produced by a Cobb-Douglas production

function with parameters a and B from the renewable resource (stock x, flow h)

and the exhaustible resource (stock yy flow k). Social welfare--or the utility
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of a representative agent--is given by a function u = gY. This small economy

can be viewed either as a competitive equilibrium problem, a planning problem,

or a market equilibrium problem in which agents act to maximize present value

of profits or utility subject to a present value budget constraint. Since there

is only one consumer and no externalities, the solutions will be identical.

To find the market equilibrium, start with the consumer's problem. The

consumer's problem in such a world would be to

[ u( ) e-rt dtmax 0 g

subject to a wealth constraint t

W(t) = W(O) - J: zge-
rt

dt and W > O.

As is pointed out by Shell and Stiglitz [15], this is not the same as maximizing

utility subject to the investment possibilities available in the resource firms.

For simplicity, the rate of time preference of the consumer is assumed to equal

the economywide discount rate for goods. The Hamiltonian for the consumer's

problem is

H U(g)
-rt , -rt= e - Age z (22)

with necessary conditions U'

condition is

= AZ, 1 • -rt:: 0, and W = -zge The transversality

lim WA O.
t~

For the chosen utility function, the solution--up to the choice of Awhich

depends on wealth through the transversality condition--is
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(23)

The function g (z, W) is the demand for goods. The consumer's demand for goads

gives rise to the firm's demand for its factors of production, which are the

resources.

The g-producing firm's profit-maximizing problem is

Ct Smax zh k - hp - ks,
h,k

and the first-order conditions are

- a.-I kB 0crzh - p =

- B-1BzhCi
k - s = o.

These conditions can be explicitly solved for the factor demands and the

(24)

(25)

(26)

g-supply equations, and then the g-demand [Eq. (23)] and g-supply equation Can

be used to eliminate z. The result of that calculation is the derived demand

for factors which are expressed using the convenient notation

a. -ay (27)

and, in the Cobb-Douglas case, these are

D
h (p) s) (--1.-\yd (l-B)d oBd (S-l)d

A) Ct ~ P
-Sd

s (28)

Dk (p, s) (29)



18 ..

where d = 1/(1 - a - 8). The exhaustible resource-owning firms are of the sort

described by Hotelling [7); they maximize present value,

-rt
e sk dt,

subject to y = -k, Y ~ 0, with the result that ;/s = r or k takes a corner

value. The initial value of s, 5(0), is determined from

yeO) ,

a determination that depends on p and W.

The situation of the renewable resource-owning firms is exactly that of an

industry faced by growing demand:

-rt
e ph dt

subject to x = f(x) - h where p is determined from the firm's first-order

D rtconditions and the demand equation h [p, s(O) e , 'tV]. Inspection of the form

D -mt rtof h [Eq. (28)] shows that it is indeed of the form Q (pe ) when s = So e

is substituted into the equation. Thus, the world with only a renewable and

nonrenewable resource can be modeled in an explicit demand and supply framework,

and that framework leads to a renewable resource industry facing a nonautonomous

demand.. Because the computation of consumer wealth (rents in the resource-

holding industries plus the profits of the consumer good-producing firms) is

difficult, it is easier to find the solution to this economy in terms of the

equivalent planning problem.



Under these conditions, the planning problem is

subject to

x = f (x) - h

Y -k

x, y .:: o.

The Hamiltonian is

19.

(30)

(31)

Making the change to current t~me-price variables p

the necessary conditions are

-L = r - ft
p

s
-- = r

s

x = f(x) - h

y = _ok

The maximum principle yields

p~O

s > a

x > 0

y .:: o.

(32)

(33)

(34)

(35)

BhCt
k S

k
= s (36)
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and the transversality conditions are

lim -rt
0x e p

t~

lim -rt o.y e s =
t~

(37)

(38)

Solving the two marginal utility conditions and substituting So e
rt

for

set) yields

Q
(39)

which is an exponentially decreasing, nonautonomous demand curve of exactly the

form discussed in the previous section. In this example, that section's parame-

ter m is rB/(S - 1) and, since it is negative, r > m whatever the (permissible)

values of a and B. Using the results of the section on nonautonomous demand

curves, the renewable resource sector acts just as if its time preference rate

were r - m, except that renewable resource prices constantly fall at rate m

instead of being stationary. The exhaustible resource is not depleted in finite

time. Asymptotically, its rate of extraction is given by

k(t) h*O/(E-l) 1/(8-1)So
rt/ (B-1)

e (40)

where h* is the steady state renewable resource flow and So is determined from

the initial conditions and transversality. Clearly, k decreases at an exponen-

tial rate, as does u (h, k), revealing the increasing degree of misery promised

in th is model.
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3. EXTERNALITIES

3. 1. Introduction

Externalities are the more usual reasons cited for aiming for a steady

state resource stock greater than that given by f'{x*) = r. Vousden [18] and

Lusky [10) have made analogous arguments for the pure theory of exhaustible re-

sources, and Calish, Fight, and Teeguarden [1] use estimates of stock-provided

externalities to determine the optimal stock in a Faustman-type forestry

problem. The essence of the problem is that the stock of a resource provides

benefits a(x) to society but that these benefits are not captured by the re-

source owner. Examples in forestry include water, hiking, wildlife, and pretty

views. To account for these externalities, a regulatory agency would try to

induce the resource owner to hold a higher stock than he would under competition.

The usual sorts of policy instruments are available. Standards are frequently

enforced for reforestation but, except on public lands, are not used to deter-

mine the resource stock itself. Taxes are not currently employed to encourage

an increase in forest stocks; to the contrary, the current taxes discourage the

holding of even as much as the free market competitive resource stock [11].

Assumption 7--PZanner's Objective. The planning agencies' objective is

[
-rt

max 0 [D(h) - C(x)h + a(x)] edt.

The plan chosen by the agency is characterized in Theorem 3.

(41)

Theorem 3. If AssvflPtions lj 5> and 6 hold and the planner's object is

Assumption ?~ then
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a. There is a steady state given by x = p = 0 and an optimaZ path

'" '"
h" p~ x.

b. The optimal path slopes dOwnward in p - x space--if x > x*, then

p < p* along the optimal path.

c.

d.

e.

As a' increase, so does x*.

As a' increases, p* increases if x* > x and decreases otherwise.- max

Since harvest is a function of priee hD
(p), h* decreases with at

if x* > x and increases otherwise.- max

To show Theorem 3, form the Hamiltonian for this' problem:

H = [U(h) + a(x) - C(x)h] e-rt + A (f - h). (42)

The necessary conditions in terms of present price [(p - c)
rt

- Ae ] are

and

p (r - f') (p - c) + c'f - a'

x = f(x) - h.

(43)

(44)

The maximum principle on the assumption lim U(b)
h+O

u' (h) = p.

00 yields

(45)

The usual manipulation of the utility function gives the demand curve

hD(p) = U,-l(p) which is then used to reduce the equations to a two-equation

system:

Dx = f(x) - h (p), (46)



p (r - f) (p - e) - e'f + a' ~
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(47)

and the transversality condition

lim xpe-rt = o.
t~

(48)

The x = 0 locus is identical to that of Eq. (7) while the p = 0 locus is simply

displaced upwards from that of Eq. (6) by the inclusion of a'. The phase space

.
is given in Figure 3. As drawn, there are three p = 0 curves corresponding to

increasing values of at [ai(x) < a2(x) Vx]. Taking a1(x) = 0, examination of

the phase diagram makes Theorem 3 plain.

Theorem 3 gives the answer to the planner's problem and shows that the

optimum in the sense of utility less costs plus external benefits can be achieved

by a command economy. The same results can easily be achieved by decentralization.

Theorem 4. Under the Gsswrptions of Theorem J and Asswnptions 2> J, and 4~

a C,Jompe ti tive ecoYlOi1P;j wi th consumers maximizing

JU(h)
-rt

e

-rtsubjeot to W = pe h and producers maximizing

[
-rto [(p - c) h + a(x)] e dt

subjeot to ~ = [(x) - h ~ill have the same time path of resouroe use as the

planning problem of Theorem 3.

The consumer's problem yields U'(h) = op where 0 is a constant depending

continuously on wealth. Since infinite wealth leads to 0 ~ 0 and zero wealth
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leads to 0 + 00, there is some wealth w* such that 8 = 1. The first-order

conditions for the producer are just Eqs. (43) and (44) so the competitive sys-

tem with initial wealth w* leads to a differential equation system identical to

that of the command system.

Theorem 4 shows that the economy can be decentralized by providing the re-

source OWners with a subsidy of a' (x). Since subsidies are often politically

unpalatable, two tools that are easier to use are discussed next. The next two

subsections provide ,the details of policies of taxing resource flow and "irra-

,tional conservation" and discuss their efficacy in solving the valued-stock

problem.

3. 2 • Product Taxes

Discouraging use of a commodity by taxing it is the economist's "Pigouvian"

prescription. A tax on the flow of the resource would be relatively easy to

collect; but, as Plott [12] recognized, taxing a commodity to influence the con-

sumption of its factors of production may be less than successful. In the case

of a product-taxes effect on the stock of a natural resource, the situation is

not as bad as that of an ordinary factor market; at worst) the tax has no effect

on the resource stock.

Theorem 5. Under Assvpptions 1 through 6 and a tax T on the resource fZ~~

a. A tax on product increases steady state stock when unit cost

varies (e' 1= 0) and leaves it unchanged otherwise.

b. The trace of the path leading to the taxed equiZibrium lies belo~

that leading to the untaxed equilibrium.

c. A sTraZl tax on p":{'oduct when marginal cost varies increases

product flo~ ~hen x* < x and decreases it otherwise. w~en unit
max

cost is constant3 the tax has no effect on product j1ow.
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The usual manipulation of the Hamiltonians yields:

p = (r - ft) (p - c) + ctf (49)

x = f (x) - Q (p + -r). (50)

The phase diagram) Figure 4, shows the dowrnvard shift of the x = 0 curve and

makes parts (a) and (c) of the theorem plain. To show part (b): at any point t

dp/dT ; 0 while a~/dT > 0; thus, the (p, ~) vector field is warped upward--that

is, trajectories point higher through given points in quadrant IV.

3. 3. Irrational Conserrvation

Irrational conservation refers to the practice of increasing extraction

costs to reduce the flow of a resource product. Crutchfield and Pontecorvo [4]

examine salmon, an open-access resource, and conclude that restrictions of the

type of gear cause large losses over a system of regulating catch directly.

Indeed, there is no question that legislated inefficiency will not be an optimum

policy for a solely owned resource; but since it is easy to legislate standards,

it is still of interest to see what could be accomplished with such a policy.

Let Ac(x) be nonzero unit costs where A is a technical change parameter. A

policy of irrational conservation is one that increases A.

Theorem 6. Under Assumptions 1 through 6 and irrationa l conservation,

a. A cost increase~ when unit cost varies (resp. ~s constant), inc~eases

(resp. leaves unchanged) the steady state stock.

b. ~aen unit cost va~~es~ a cost increase increases product flow when

x* < x and decreases it otherwise.
max
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Like Theorems 4 and 5, the proof is by reference by the appropriate phase

diagram. The equations of motion are:

p (r - f') (p - Ac) + Ac'f (51)

x f(x) - Q(p). (52)

•Since dp/aA < 0, the p = 0 curve will be shifted upward wherever it slopes down.

When unit cost is constant, the cost increase has no effect on stock and

product flow, or it results in a shutdown of the industry. Figure 5 gives the

phase diagrams in this case. By an argument like that for the case of taxes,

it can be shown that the new convergent arm lies everywhere above the old one.

4. CONCLUSION

Neither choosing the optimal long-run renewable resource stock nor attain-

ing the planned goal is easy. Simply equating a rate of growth to a rate of

time preference--as if determining the rate of time preference were simple--will

not work if there is anticipated growth in demand or a significant externality

attached to the resource stock. Failure to account for demand growth or an ex-

ternality both result in too Iowa plan for the resource stock. In the case of

an externality, a regulatory agency might find the traditional tax tool for cor-

rection of an externality to be very difficult to handle. Taxing the product--

the easiest tax to levy--has an effect on stock that is critically mediated by

the slope of the unit cost curve. If the curve is flat, the tax has little

effect on ultimate stock. Regulation of production techniques will be ineffi-

cient, while stock subsidies are hard to administer because of the difficulty

in measuring stock and the requirement for a dispersion of public monies. In

short~ the optimal regulation of or management of renewable resources cannot

be meaningfully reduced to an r = f' (x) or other such simple rule.
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Figure 5.
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LIST OF SYMBOLS

alpha

beta

lower case delta

lambda

gamma

tau

partial differential

infinity

upper case delta

element of

identical with

give, pass over to, or lead to

circumflex

;-- square root

> greater than

< less than

> greater than or equal to

< less than or equal to

1 unequal to

V for all




