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The Shape of the Optimal Hedge Ratio: Modeling Joint Spot-Futures Prices  
using an Empirical Copula-GARCH Model 

 

Abstract 

Commodity cash and futures prices have been rising steadily since 2006.  As evidenced 
by the April 2008 Commodity Futures Trading Commission Agricultural Forum, there is 
much concern among traditional futures and options market participants that the 
usefulness of commodity derivatives has been compromised.  When basis risk is 
particularly high, dynamic hedging methods may be helpful despite their complexity and 
higher transaction costs.  To assess the potential benefits of dynamic hedging in volatile 
times, this paper proposes a novel, empirical copula-based method to estimate GARCH 
models and to compute time-varying hedge ratios.  This approach allows a nonlinear, 
asymmetric dependence structure between cash and futures prices.  The paper addresses 
four principal questions: (1) Does the empirical copula-GARCH method overcome 
traditional limitations of dynamic hedging methods? (2) How does the empirical copula-
GARCH hedging approach perform, for storable agricultural commodities, compared 
with traditional GARCH and Minimum Variance (static) hedging methods? (3) Is 
dynamic hedging more or less effective in the post-2006 biofuels expansion time period? 
(4) How sensitive is the ranking of methods to the hedging effectiveness criterion used?  
Preliminary findings suggest that the empirical copula-GARCH approach leads to 
superior hedging effectiveness based on some, but not all, risk criteria. 

 

INTRODUCTION 

Agricultural commodity prices have risen sharply since late 2006 (Figures 1 and 2), 
partly due to the Federal mandate for biofuels (mainly ethanol) and the resulting demand-
side pressure on corn and supply-side pressure on soybeans, wheat and cotton. As an 
unintended effect, rising commodity prices attracted nontraditional investors such as 
mutual and pension funds. As a consequence, as of mid-2008, the relationship between 
spot and futures prices seems to have undergone substantial changes. In particular, the 
cash-futures price basis for certain commodities and locations has been observed to be 
much weaker than the historical norm. From a practical standpoint, this makes the 
effectiveness of futures hedging a timely problem. 

This paper concerns the estimation of optimal dynamic hedge ratios for price risk 
management, e.g. by a grain elevator purchasing corn, wheat and soybeans. The 
conventional approach to the problem is to use a multivariate GARCH (MGARCH) 
model to estimate conditional (co)variances. However, an important limitation of 
MGARCH models is the typical assumption of joint multivariate normality, despite the 
empirical evidence against elliptical distributions in price returns. This paper adopts a 
different approach by combining univariate GARCH models of spot and futures prices 
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with empirical (nonparametric) copulas to characterize the higher order moment 
dependence between the two.  

This paper is interested in the shape of the optimal hedge ratio in the sense that 
the hedge ratio depends not only on cash and futures price (co)variances but also on the 
level of prices, the sign of the basis (asymmetry), and other characteristics that may be 
best captured by describing the full joint dependence structure of cash and futures prices.  

Empirical applications are presented for hedging corn and soybean meal from the 
perspective of a Texas feedlot operator with attention paid to the problem of increasing 
dimensionality (e.g. several simultaneous long or short hedges). As a secondary 
contribution, the paper shows how empirical copulas can be used to improve the results 
in the case of a small data sample by providing an arbitrarily large number of draws from 
the underlying distribution.  

The paper also discusses the importance of using an appropriate hedging 
effectiveness criterion, which a few recent papers have noted, and suggests adopting 
“coherent measures” to obtain appropriate benchmarks when comparing different 
hedging approaches. 

 

DYNAMIC HEDGING: CONCEPTS AND ISSUES 

Futures and futures options are commonly used in agribusiness to hedge commodity price 
risk.  Cash and futures prices for a given commodity move closely together over time but 
the difference between the two (i.e. basis) is itself time-varying.  Due to such basis risk, a 
naïve hedge position (equal and opposite) is unlikely to be successful.  Moreover, it has 
been well understood at least since Cecchetti, Cumby and Figlewski (1988) and Baillie 
and Myers (1991) that a constant (OLS) hedge ratio may be inappropriate when prices are 
possibly nonstationary, and that conditional rather than unconditional (co)variances 
should be used.  Myers and Thompson (1989) proposed a general framework to estimate 
dynamic hedging.  

The Engle (1982) and Bollerslev (1986) GARCH framework allows for the 
estimation of the conditional variance in a univariate case. Since the dynamic hedge ratio 
under min-variance criterion is the ratio of the conditional cash/futures covariance over 
the conditional futures variance at time t, a natural approach would be to estimate a 
bivariate GARCH model of cash and futures prices.  Consequently, a large number of 
papers have applied this framework to estimate time-varying hedge ratios (e.g. Baillie 
and Myers, 1991; Bera, Garcia and Roh, 1997 Garcia, Roh and Leuthold, 1995; Moschini 
and Myers, 2002).  In particular, Moschini and Myers (2002) devised a test enabling 
them to reject the null hypothesis of a time-constant hedge ratio for corn cash and futures 
prices, in favor of a time-varying hedge ratio.  

Most of the empirical results, however, provide only weak evidence of any 
significant improvements in hedging effectiveness (Collins, 1997; Lence, 1995; Lien, 
2005).  To explain this apparent failure of dynamic hedging models, research on hedging 
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has examined cointegration (e.g., Haigh and Holt, 2000, 2002), parameter and model 
uncertainty (Dorfman and Sanders, 2005; Lence and Hayes, 1994a,b; Manfredo and 
Sanders, 2004) as well as business risk (Turvey and Baker 1989, 1990; Brorsen 1995).   

Moreover, an issue that has been well noted in the multivariate GARCH literature 
and which extends beyond the problem of hedging is that the number of parameters 
increases rapidly with the dimensionality of multivariate GARCH models.  For example, 
in the case of the widely used full MGARCH-BEKK (Engle and Kroner, 1995), the two-
variable (one commodity) problem involves only eleven parameters, but a three-
commodity problem implies 42 parameters and a seven-commodity problem implies 497 
parameters.  This is an important concern for a number of agribusiness risk management 
problems including multiple input/output price risk, currency risk or shipping cost risk.  

A second principal issue raised in the dynamic hedging literature is the 
appropriate measure of hedging effectiveness.  Early papers concluded that GARCH 
dynamic hedges were inferior to minimum variance hedges, but this comparison was 
likely misleading because the standard hedging effectiveness criterion (minimum 
variance) is designed for unconditional (co)variances and is therefore ill-suited to 
evaluate the usefulness of GARCH dynamic hedges (Lien, 2005).  Moreover, several 
authors have noted that only downside risk should be minimized (e.g. Lien and Tse, 
1998).  More generally, Cotter and Hanly (2006) show that the ranking of hedging 
models is highly sensitive to the criterion used, to the point of this paper that better 
measures of hedging effectiveness ought to be considered such as recently-developed so-
called “coherent measures” of risk (e.g. Acerbi, 2008). 

The present paper proposes an empirical copula-GARCH model to better describe 
the joint comovement of variables in a portfolio of several cash and futures prices. This 
allows us to determine, for example, whether the failure of GARCH models to provide 
useful dynamic hedging is due to the possibly unrealistic assumption of joint multivariate 
normality.  The latter is generally necessary to maintain model tractability but may be 
unduly restrictive.  Indeed, recent papers (Bertram, Taylor and Wang, 2007; Jondeau and 
Rockinger, 2006; Lee and Long, 2007; Hsu, Tseng and Wang, 2008; Fernandez, 2008) 
have explored copula-GARCH approaches and have concluded that improving modeling 
of the joint distribution (i.e. through a copula) provides greater overall hedging efficiency 
gains than does improved modeling of the price dynamics (i.e. through GARCH).  
However, all of these papers take a parametric copula approach, and often use the 
Gaussian copula, implicitly assuming an elliptical dependence structure that is a function 
of only one parameter, and which further ignores higher order moments.  In contrast our 
contribution is to propose a nonparametric, data-driven framework.  The principal 
weakness is that the empirical copula is not itself time-varying, thus it is implicitly 
assumed that all dynamics are accurately captured in the marginals (i.e. univariate 
GARCH models).  

The GARCH Estimation Framework 

This section presents a review of essential concepts in the GARCH estimation 
framework.  Consider a time series variable Pt such as a commodity cash price sampled 
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at a weekly frequency.  A convenient measure of variation is the continuously 
compounded log-return, defined as a log-change in the case of commodity prices.  The 
log-change is r t = ln (Pt ) – ln (Pt-1 ). Let the unconditional mean and variance be defined 
by µ and σ2 and let the conditional mean and variance be: 

 mt = E[r t | F t-1] 

 ht = E[(r t – mt )
2 | F t-1] 

where F t-1 is the information set (filtration) at time (t-1).  Then we may write: 

     t t t tr m hε= +  

where εt is the standardized innovation (error) at time t, which has conditional mean zero 
(0) and unit conditional variance.  The basic GARCH model assumes the distribution of 
εt to be Gaussian Normal, but likelihood functions are available for a large number of 
other distributions, notably including Student-t, GED and Skewed Student-t.  In this 
paper the Student-t distribution is assumed for the innovations, based on the results of 
Likelihood Ratio tests that reject the Normal distribution and Kolmogorov-Smirnov tests 
that find no support for the GED distribution.   

The simplest GARCH model specification allows one ARCH parameter α and 
one GARCH parameter β.  Although any combination GARCH(p,q) is admissible, 
previous research has found that the (1,1) specification performs very well as long as the 
most appropriate distribution is specified for the innovations (see above).  Therefore, the 
model of conditional variance is: 

 ht = ω + β ht-1 + α (r t-1 – µ) 

with (α+β)<1 to ensure stationarity.  Note that the persistence of volatility shocks can be 
estimated based on the values taken by α and β.  The appropriate likelihood is maximized 
using a nonlinear solver.  Robust standard errors are computed following Bollerslev and 
Wooldridge’s (1992) method.   

The dynamic hedge ratio at each date in time can be computed as the ratio of the 
conditional cash-futures covariance over the conditional futures variance.  Although a 
simple univariate GARCH model provides the latter, a method to obtain the conditional 
covariance is needed.  The main challenge with multivariate GARCH models is how to 
specify a stable parametric structure that is also computationally solvable in a reasonable 
amount of time.  A large number of methods have been suggested, but the BEKK 
specification of Engle and Kroner (1995) in particular has become widely used. It has the 
advantage of imposing positive semidefiniteness of the conditional covariance matrix, 
which is helpful to avoid a numerical failure to converge.  Unfortunately, it requires that 
a relatively large number of parameters be estimated, indeed far more do than the 
individual univariate GARCH models.   
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An alternative approach used in this paper is to nonparametrically estimate the 
joint density, recover the empirical copula dependence structure and compute 
numerically the conditional covariance as follows: 

 ( ), , , , , , , 1, |SF t S t F t S t F t S t F t th h h f dxdyε ε ε ε
∞ ∞

−
−∞ −∞

= ℑ∫ ∫  

where hS,t is the conditional cash price variance, hF,t is the conditional futures price 
variance, and f is the joint density of cash and futures price innovations (errors).   

As an empirical application of this novel approach, we consider the dynamic 
hedging problem of a Texas feedlot operator who must purchase corn and soybean meal 
for livestock feed.  An advantage of this approach is that, unlike many parametric 
multivariate GARCH methods, it extends well to higher-dimensionality problems. 

 

COPULA PROCEDURES 

Copulas provide an alternative way to model joint distributions of random variables with 
greater flexibility both in terms of marginal distributions and the dependence structure. 
Copulas have been used in financial literature for quite sometime (see, for example, 
Embrechts et al. 2002; Cherubini, Luciano and Vecchiato, 2004; Chen and Huang, 2007; 
Fernandez, 2008), but have not made their way yet to the agricultural economics 
literature. What is more, theory was until recently inadequate to support the application 
of copulas to stochastic processes (i.e. time series), as argued by Mikosch (2006).  Recent 
advances have focused on extending the copula concept to the stochastic process (time 
series) setting (Chen and Fan, 2006; Ibragimov, 2007; Patton, 2006). These theoretical 
results support empirical applications of copula theory to the case of time series assuming 
certain conditions are satisfied, and this includes in particular stationary Markov 
processes, of which martingales (which describe a number of financial asset price return 
series) are a special case.  The Markov assumption is appropriate if we model the copula 
on the dependence structure after having estimated the GARCH model, in what is 
therefore a two-step solution method. 

This paper’s choice of empirical copula (analogous to nonparametric kernel 
density estimation) rather than parametric (e.g. Gaussian or Student) copula is motivated 
by the paucity of theoretical economic justifications for a specific copula form (see e.g. 
deVries and Zhou, 2006).   
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Overview of Copulas1 

The connection between copulas and joint distributions is established by the Sklar’s 
Theorem (Nelsen, 2006, p. 15), which states that any distribution function ),( yxH  with 
margins )(xF  and )( yG  can be represented as 

))(),((),( yGxFCyxH = ,     (1) 
where ),( ⋅⋅C is a uniquely determined copula function. The theorem also states that any 
two distribution functions )(xF  and )( yG  combined with an arbitrary copula C 

according to (1) result in a joint distribution function ),( yxHC  with the margins F and G. 

If the distribution functions and the copula in (1) are continuous, Sklar’s theorem 
can be restated in terms of the probability densities as 

)()())(),((),( ygxfyGxFcyxh ⋅⋅= ,    (1’) 

where 
yx

yxH
yxh

∂∂
∂= ),(

),(
2

, )(')( xFxf = , )(')( yGyg = , and 
vu

vuC
vuc

∂∂
∂= ),(

),(
2

 is the 

copula density. Eq. (1’) often referred to as the canonical representation essentially 
decomposes the joint distribution of two variables into a product of marginal densities 
and the dependence structure captured by the copula density (Cherubini, Luciano and 
Vecchiato, 2004).  

From the practical standpoint, (1’) allows both derivation of copulas from a 
known distribution and construction of a joint distribution given marginal distributions 
and the copula. For example, if h is a bivariate standard normal distribution with the 
correlation ρ and the standard normal margins, then (1’) implies the Gaussian copula 
density 










−
Φ−Φ−ΦΦ+Φ+Φ

−
=

−−−−−−

)1(2

))(())(()()(2

2

))(())((
exp

1

1
),(

2

2121112121

2 ρ
ρ

ρ
vuvuvu

vuc

,   (2) 
where Φ(·) is the cumulative density function of the standard normal distribution. The 
Gaussian copula is parameterized by a single parameter, which can be estimated from the 
historical data in a straightforward fashion. 

The real advantage of copulas, however, comes from the fact that once the copula 
is derived or estimated, it can be applied to any pair of marginal distributions, not 
necessarily those implied by the original joint distribution. For instance, the Gaussian 
density (2) can be combined in (1’) with a beta distribution f and a Student distribution g 
to result in a joint density function h, which is neither bivariate normal, nor beta, nor 
Student. 

                                                 
1 The following is a brief summary of theory behind the copulas limited to two-dimensional copulas for 
brevity sake. A more formal and thorough presentation on the  topic can be found in Nelsen, 2006. 
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For all its flexibility, the copula approach has one serious shortcoming. Generally 
speaking, there are an infinite number of copulas that can be used to generate joint 
distributions in (1’).  Several parametric copulas have been frequently used in financial 
literature including the Gaussian copula (2) (Cherubini, Luciano and Vecchiato, 2004). 
Relative performance of different copulas can be measured against each other, but there 
is no constructive way to determine the “optimal” copula function (Kole, Koedijk and 
Verbeek, 2007).  

Kernel Copula 

An alternative to parametric copulas is a nonparametric kernel copula, which can be 
constructed from (1’) by setting h equal to the kernel density estimate of the joint 
distribution, and f and g to the kernel density estimates of the corresponding marginals. A 
general form kernel density estimator of a univariate probability density function f can be 
written as 

∑
=








 −
=

n

i

iXx
K

n
xf

1

1
),(ˆ

ττ
τ ,     (3) 

where n

iiX 1}{ =  are observations (i.i.d. draws from the distribution being estimated), K(·) is 
a kernel function, and τ is a smoothing parameter called bandwidth.2 

A bivariate analog of (3) can be written as 

∑
=








 −−
=

n

i

ii YyXx
K

n
yxh

1 2121

21 ,
1

),,,(ˆ
ττττ

ττ ,   (4) 

where all the notation corresponds to (3), except that the kernel function now has two 
arguments and different smoothing parameters can be used along each dimension. There 
are several options for choosing the bivariate kernel function, but the most 
straightforward way is to use the product of two univariate (although not necessarily the 
same) kernels (Wand and Jones, 1995). 

Based on (1’), (3), and (4), the overall procedure for estimating the kernel copula 
from a series of historical data n

iii YX 1},{ = can be outlined as follows.3 

Step 1. Construct the kernel density estimates of marginal distributions f and g 
according to (3) using appropriate kernels Kj and bandwidths τj. 
Step 2. Calculate the cumulative density functions corresponding to f and g (e.g. 
by numerical integration) 

∫∑
∞− =








 −
=

x n

i

i d
X

K
n

xF
1 1

1

1

1
)(ˆ ξ

τ
ξ

τ
  and    ∫∑

∞− =







 −
=

y n

i

i d
Y

K
n

yG
1 2

2

2

1
)(ˆ η

τ
η

τ
 (5) 

Step 3. Construct kernel density estimate of the joint density h according to (4) 
using the product kernel and the same bandwidths as in Step 1. 

                                                 
2 The theory behind the kernel density estimator and the choice of the kernel function and bandwidth is 
beyond the scope of the present paper. A more detailed exposition can be found in (Wand and Jones, 1995). 
3 Note that in the rest of the section the dependence of the estimated kernel density functions on the 
bandwidth is suppressed for brevity sake. 
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Step 4. Estimate the copula density at any given point (u,v) based on (1’), namely 

))(ˆ(ˆ))(ˆ(ˆ

))(ˆ),(ˆ(ˆ
),(ˆ

11

11

vGguFf

vGuFh
vuc

−−

−−

⋅
= ,    (6) 

where )(ˆ 1 uF − and )(ˆ 1 vG −  are inverse functions to the cumulative densities 
estimated in (5), which can be obtained by solving numerically the root-finding 
problems uxF =)(ˆ  and vyG =)(ˆ  for given u and v, respectively. 

Once estimated, the kernel copula can be combined with any estimates of the marginal 
distributions of f and g, either parametric or nonparametric. 
 

APPLICATION: HEDGING CATTLE FEED PRICES 

An important agribusiness problem in the Western U.S. states is how to manage feed 
price risk in livestock operations.  A number of papers have examined the problem of 
jointly hedging feed price risk and selling price risk (Shafer, Griffin and Johnston, 1978; 
Garcia, Leuthold and Sarhan, 1984; Leuthold and Peterson, 1987).  Consider a typical 
feedlot pen with 100 heads of cattle, a starting weight of 800 lbs/head and a finished 
weight of about 1200 lbs/head at the end of a 17-week feeding period.  Each head of 
cattle consumes 50 bushels of corn over this period (for a total of 5000 bu.) and about 
120 lbs of a source of protein for which soybean meal is a reasonable proxy.  This is a 
baseline problem that omits a number of relevant issues including hedging cattle prices, 
(feeder and fed/live) as well as credit liquidity risk, financial leverage and taxes. The 
impact of these concerns will be addressed in a future draft of this work 

For the purposes of the paper, we use Texas triangle area corn cash prices, 
Decatur, Ill. soybean meal cash prices, and Chicago Board of Trade (CME Group) corn 
and soybean meal futures prices. All prices are sampled weekly on Thursdays. The 
observations range from 1/6/2000 to 1/17/2008 for a total of T = 420.  

To compare hedging effectiveness before and after the large structural change in 
agricultural commodity markets due to the biofuels boom, we determine that a structural 
break in grain and oilseed prices is located in October 2006 and separate the data into two 
samples: pre- and post-October 2006.  The analysis is completed separately in each 
sample and the results are then compared.  

Transaction costs 

Dynamic hedging involves changing one’s futures position (ratio of bushels equivalent of 
futures contracts to bushels in cash position) based on how the GARCH hedge 
(cash/futures conditional covariance over futures conditional variance) varies. Since very 
few hedgers can be assumed to be members of the Chicago Board of Trade (for grains 
and oilseeds) or Chicago Mercantile Exchange (for livestock), a measure of broker fee or 
transaction cost should be included to reflect the price paid to change the futures position 
frequently.  As a simple measure of transaction costs, it is assumed that there is a 
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proportional and constant fee of $0.01 per bushel each time the futures position is 
adjusted.  Although this proxy is a simplification, it appears to be a reasonable value 
based on communications with practitioners.  

 

EMPIRICAL RESULTS AND HEDGING EFFECTIVENESS 

First we discuss the GARCH model estimates for both the kernel copula approach and the 
benchmark MGARCH-BEKK model.  We also include minimum variance static hedge 
ratio results.  Second we present evidence of hedging effectiveness based on portfolio 
risk criteria as well as portfolio returns for hypothetical scenarios. 

Results for Dynamic Hedge Ratios 

The estimated dynamic hedge ratios are presented, together with the minimum-variance 
(static) hedge ratio, in Figure 3 for soybean meal and in Figure 4 for corn.  First, for both 
corn and soybean meal the static hedge ratio increases in the post-October 2006 time 
period reflecting relatively higher volatility of cash prices.  For corn, the GARCH-BEKK 
approach produces a dynamic hedge ratio that is higher, over most of the time period, 
than the static hedge ratio.  In contrast, the kernel copula GARCH produces a hedge ratio 
that is generally smaller than the After October 2006, both the BEKK and kernel copula 
GARCH hedge ratios become closer to the static hedge ratio.  For soybean meal, the two 
dynamic hedge ratios are relatively close to the static hedge ratio, but over most of the 
entire time period the BEKK GARCH hedge ratio is greater than the kernel copula 
GARCH hedge ratio.   

Hedge Effectiveness and Portfolio Returns 

As a baseline, we begin with a simple portfolio mean-variance analysis.  Figures 5 and 6 
present the frequency with which each of the three hedging strategies (static, GARCH-
BEKK, kernel copula-GARCH) led to portfolio returns in various intervals.  Note that 
interestingly the kernel copula GARCH approach leads to the overall best returns, but 
understandably that is not the main objective of hedging.  Regarding the cost of broker 
fees associated with weekly updating of futures positions, the kernel copula GARCH 
dynamic hedge ratio ends up being less costly than is hedging with the BEKK GARCH 
approach.  

Figures 7 and 8 present similar results using the measure of portfolio standard 
deviation, a simple measure of risk.  Here, the kernel copula GARCH approach generally 
does well in reducing “tail risk” (i.e. probability of very large gains or losses), which is 
consistent with Fernandez’s (2008) finding that a copula approach to hedging is generally 
optimal according to the Value-at-Risk criterion.  However, the kernel copula approach 
does not perform as well in reducing variance, which is also consistent with the original 
objective of using copulas to address higher-order moment risk.   
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CONCLUSIONS 

The present paper proposes the use of empirical (kernel) copulas as a means of estimating 
multivariate GARCH models without imposing the restrictive assumption of joint 
normality.  The joint model is estimated as a combination of univariate (marginal) 
GARCH models and a kernel copula to characterize the joint dependence structure and in 
particular capture non-elliptical higher order moment relationships.   

In addition to being a methodological contribution to improve the estimation of 
MGARCH models in a tractable framework, this paper also presents a simple empirical 
application that may be generalized to a number of agribusiness hedging and risk 
management problems.  We find that the kernel copula GARCH approach is a promising 
method but that the current, preliminary results are mixed.  In the empirical application, 
this new approach provides lower broker fees, superior hedge returns and lower tail risk, 
but only mediocre variance reduction. 

There are several directions in which this research may be extended to obtain 
better results.  We note two areas of concern.  First, the assumption of a stationary copula 
may be overly restrictive.  While time-varying parametric copulas have been developed 
(e.g. Patton, 2006), it remains a computationally difficult problem to extend this to the 
nonparametric case.  Second, we follow Cotter and Hanly (2006) and emphasize the 
importance of using appropriate risk criteria, as the interpretation of the hedging 
effectiveness results is highly sensitive to the criterion used.  One increasingly used set of 
criteria are the Lower Partial Moments (e.g. Mattos, Garcia and Nelson, 2008; Turvey 
and Nayak, 2003).  Lastly, a more general framework in which to nest the different 
criteria and their comparisons may be the recently defined “coherent measures of risk” 
(e.g. Acerbi, 2008).   
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Figure 1: Corn futures and cash prices (Texas basis), 7/2005-12/2007 

 

Figure 2: Soybean meal futures and cash prices (Illinois basis), 7/2005-12/2007 



 16 

 

Figure 3: Static and dynamic hedge ratios, soybean meal, GARCH-BEKK, GARCH-
kernel copula 

 

Figure 4: Static and dynamic hedge ratios, corn, GARCH-BEKK, GARCH-kernel copula 
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Figure 5: Feed Storage Hedge Net Return, Number of Hypothetical Cases Occurring in 
Each Bracket, over 1/2000-9/2006 

 

Figure 6: Feed Storage Hedge Net Return, Number of Hypothetical Cases Occurring in 
Each Bracket, over 10/2006-1/2008 
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Figure 7: Feed Storage Hedge Portfolio Standard Deviation, Number of Hypothetical 
Cases Occurring in Each Bracket, over 1/2000-9/2006 

 

Figure 8: Feed Storage Hedge Portfolio Standard Deviation, Number of Hypothetical 
Cases Occurring in Each Bracket, over 10/2006-1/2008 

 


