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Abstract

While the preponderance of empirical studies pminmtegative crop yield skewness in a
wide variety of contexts, the literature providewfclear insights on why this is so. The
purpose of this paper is to make three points emthtter. We show formally that statistical
laws on aggregates do not suggest a normal yistdlition. We explain that whenever the
weather-conditioned mean yield has diminishing nmadgoroduct, then there is a disposition
toward negative skewness in aggregate yields.i$Hiecause a high marginal product in bad
weather states stretches out the left tail of thlydistribution relative to that of the weather
distribution. Turning to disaggregated yields, vee@mpose unconditional skewness into

weather-conditioned skewness plus two other temdsséudy each in turn.

Keywords. conditional distribution, crop insurance, negaskewness, spatial heterogeneity,

statistical laws.



I ntroduction
Crop yield distributions are used to model risk@syres, and also as an input in informed
rating-making when designing and marketing cropiiasce. As a reading of recent literature
on crop yield modeling should confirm, it is a aaversial topic (Just and Weninger 1999; Ker
and Goodwin 2000; Atwood, Shaik, and Watts 200232&herricket al. 2004). One
difficulty is with appropriate conditioning of enrmal data. Plots differ across space because
of climate and soil variation, while different teaiiogies may also be used. So concerns about
the effects of spatial aggregation naturally ari$eere may also be temporal and spatial
heterogeneities in scrutinized data due to randeather events. Complete control over these
differences is practically impossible.

While cases in which skewness is likely positiveehbeen identified in Day (1965) and
also Ramirez, Misra, and Field (2003), the majaoitgtudies have estimated negative
skewness (Nelson and Preckel 1989; Swinton and k@94 ; Moss and Shonkwiler 1993;
Ramirez, Misra, and Field 2003; Atwood, Shaik, &vialtts 2002, 2003). This is at variance
with the suggestion that the crop yield distribntghould be normal and so should have zero
skewness, in light of statistical limit consideosis. Referring to a version of the Central Limit
Theorem (CLT), Just and Weninger (p. 302) statenttaé limit theory thus calls into question
the nonnormal empirical results found to date \agigregate time-series data.” On the other
hand, Goodwin and Mahul (2004, pp. 13-14) and stheid that spatial dependence and
systemic risk factors mean a straightforward apfitim of CLT is not appropriateWe see a
need for clarification.

Apart from Just and Weninger (1999), two other pap@ve sought to provide foundations

for the origin of observed yield skewness. Ker @wbdwin (2000, p. 465 and Fig. 1) reason

! Wang and Zhang (2003) use dependent version®dE i, but for the purpose of estimating
a crop insurance company’s portfolio risk as thenber of risks grows, not for identifying
yield distributions. As we will explain, it is momaeaningful to use CLT when studying the
distribution of a sum than when studying the disttion of an average.
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that aggregating over some weather-conditionedl yatribution should predispose
unconditional yield toward negative skewness whenéwe weather variable is itself
negatively skewed. Focusing on the small plot I@felnalysis, Hennessy (2008) has shown
that the law of the minimum technology togethetvgtochastic resource availabilities can
support positive or negative skewness. Effortsgiatly control the left tail of a resource
availability can create a negative skewness tenden@ation, however, may increase
skewness by completely eliminating a source ofdysklortfall.

Assuming a general technology and dealing with eg@fion issues, this paper makes three
main points. We invoke the systemic-idiosyncrat& decomposition that is widely used in
financial risk theory (LeRoy and Werner 208Tjhe first point is that statistical large number
and limit laws assert more about the distributibarmaverage than just convergence to
normality. In specifications relevant to modelingan crop yields, the laws also provide a
limiting value of zero for the distribution variasdn short, in the aggregate only the
distribution of systemic risk sources remains detarminant of the crop yield distribution.
The relevance of statistical large number and liavits to crop yield distributions has long
been recognized (Hirshleifer 1961). Yet the stétidn® crop yield distribution modeling
literature suggests that what they imply for thattext needs to be parsed.

Our second main point is constructive. It concenesrole of weather conditioning and so
can be seen as a formalization of and developmetit@aforementioned graphical argument
in Ker and Goodwin (2000). We clarify that, becaaka result in van Zwet (1964), a
beneficial random systematic weather factor witbréasing marginal product ensures that the
yield distribution will have smaller (i.e., moregagive) skewness than that of the underlying

weather factor. Intuitively this is because, in theange of random variables from weather

2 Portfolio theory could, and sometimes does, seekddel spatial dimensions to systemic
risk. There of course it is not geographic distamaerather attribute distance that is modeled,
as when food company shares are grouped to begimoilar to each other than to defense
company shares.



factor to yield, the production function’s concgstretches out the left tail of the weather
factor distribution. This negative bent is consisteith the empirical literature on yield
skewness.

Our third main point is to relate skewness of aggte yields to skewness of local yields,
where local idiosyncrasies play a role. We decorepbs relationship into three terms and
study each in turn. One is the systemic effectggregate yields, studied in point two. Another
is the skewness of the local idiosyncrasies, wtiereémpact on unconditional skewness is
clear. Finally there is the covariance betweenesyatic factor conditioned mean yield and
conditioned variance as the systematic factor gafiiis covariance could plausibly be of
either sign, depending on the nature of the latiakiyncratic randomness.

The paper’s layout is as follows. We first provateanalysis under the assumption that
production plots are homogeneous. One deductithers probed for implications on yield
skewness. The case of plot heterogeneity is thdreased. Upon introducing a disaggregated
idiosyncratic risk component, an expression refptionditional skewness with unconditional

skewness is presented and analyzed. A brief diggusencludes.

Analysisunder Yield Aggregation
For any plot of land, we consider three contribngioo the yield realization. I): The land could
differ innately from other plots because of endowtaeThis contribution is not random, and
we will refer to it as spatial heterogeneity ordareterogeneity. Il): There could be a systemic
factor, such as weather, that is common to allsplotit realizations could differ from year to
year. Then there would be a common yield acrogs plach year, but this yield would vary
from year to year. Ill): There could be a locabslincratic, or LI, factor. This contribution
involves different yield realizations for otherwigkentical plots in the same year, perhaps
because of local weather, pest, or infrastructuoblpms. In this section it will be assumed

that the yield observation is at an aggregated |@eehaps at the townland or county level.



We will first jointly consider systemic (contribot II) and idiosyncratic sources of temporal

randomness (contribution II). We will then alloarfcontribution I, spatial heterogeneities.

Homogeneous Land

Our statistical model of crop yields is as followsere aren land units of equal area in a
defined geographic region. The land units are ha@megus in that they are agronomically
identical, face the same systemic weather eventsaee farmed in the same way. Yield is
random in two senses. There is systemic randoningsdso local idiosyncrasies. Firstly,

conditional on some ‘weather favorability’ index JW =[0,1], yield on theth land unit is the
random realizatiory, (w) with support on some interval. This is contribution IlI).

These conditional drawg, (w),i {1, ... ,n}, are independent and from the identical
conditional distributionF"™(y,):Y - [0,1] with meanu(w) . Here the weather favorability
index is given content by the assumption thétv) is a strictly increasing function. Define the
inverse function asv= 4 *(y). Secondly, contribution Il is modeled by lettingtare draw a

w from distributionG(w) where bounded density(w) exists everywhere ow[IW . The

following ex ante, or weather unknown, yield distition is identified in the Appendix.

Proposition 1. Suppose) land is homogeneous with yields given by indegerig
distributed and identically drawn weather-condigdrdraws fromF"(y ), andii) the
weather-conditioned mean yiejdw) exists and is strictly increasing. Let weather be
distributed according t&(w) on wOW where the density exists everywhere on the support

Then the region’s limiting ex ante distribution, ms» «, of mean crop yield is represented by

T(y) whereT(y) =G[x(y)].



The proposition shows that LI are averaged out utideStrong Law of Large Numbers,
leaving only the systemic component. The point ethat non-systemic risks will be
drowned out in the face of area-wide systemic wezatisks so that the distribution of the
systemic component dominates and there is no $petador the normal distribution. One
may wonder how robust this conclusion is when gfiefds are clearly positively correlated
over space. Note first when thinking this throulgattmuch if not most of this dependence may
not persist after conditioning on a systemic weathetor.

Suppose for the moment one can control for a syst&otor and that there only remain
dependent LI. CLT results allow spatial dependeamneng LI to exist. Indeed, Wang and
Zhang (2003) in their study of crop insurance pskling opportunities have allowed for finite
range dependence, whereby yields are assumedrnddymendent beyond a defined spatial
distance. The variance of mean yield still convengezero. In their empirical study, Wang and
Zhang (2003) used county data for wheat, soybeanscorn across 2,000 to 2,640 counties in
the United States over 1972-1997. They found thadce for any positive dependence to be at
most 570 miles and in many cases much less. Thiegadicontrol for weather, so their
distribution is largely due to weather and not &atiher-conditioned idiosyncratic risks. Their
range conclusions are similar to those found ind®an (2001) for lllinois, Indiana, and lowa
corn production, where spatial correlation declitee8.1 by 200 miles in typical years and by
400 miles in drought years.

Of what relevance is all this when interpretinggraition 1? That depends on how data are
being aggregated. If yield data are from a smalhdhen one can reasonably assume a
commonw realization for all land at issue. If data arefra larger area then a spatial

stochastic process is appropriate. €t, j) and y(i, j) be weather and yield random variables

at map coordinaté, j), (i, ))0{, ..., 1}x{, ... ,J}, where weather follows the arbitrary joint

distribution G[W(1,1),w(1,2), ..w ({ J = Dw ( J ). Thenw(i, j)= (i, j), and yield



follows the joint distributionG[#(1,1),1™* (1,2), ... £/* ( J — L (I ). Introducing the
spatial dependencies adds a layer of notationetdiriding in Proposition 1 but does not
change the underlying result.

Local weather variations are a large componenbadllidiosyncrasies. It is difficult to
disentangle the two when presenting a formal motispatio-temporal yield randomness risk,
and even more so as a practical matter. But ncemadiw one looks at it, the normal
distribution should have no special role in underding how averages are distributed. Suppose
thati) all practical conditioning problems have beenembout, including the thorny issue of
spatial correlations in weather, and thpa CLT applies to what is left. Then mean yield wi
have zero variance at the limit. More positivelyil we may not know how to condition well
or have the requisite data, the observed distobuthould be seen to reflect what has not been
conditioned on and not to have been formed by CLT.

Upon reflection, one may conclude that Proposifios an almost trivial (if formal)
application of statistical laws. We do not disagoeesee its merits on two fronts. Firstly, yield
random variables are realizations of an unknowtigfp@mporal process where yields at each
point in space need further conditioning to accdantelevant agronomic attributes. Given the
complexity of the context, quite what to conditimm can be lost in the mix so that how
statistical laws apply warrants formal delineationaddition the procedure of formal

delineation reveals a relationship that is impdriamnderstanding the yield distribution,
namely,T(y) =G[x ()] .
Notice that the process of arriving Bfy) in Proposition 1 is an example of that ubiquitous

statistical technique, the change of variables. gayer’'s second main point arises from a
consideration of what effect this change of vagabhs the weather variable changes to the

yield variable, has on the skewness. For some randwiabler, and withE[[]] as the

expectation operator, recall that the skewnessstaits



| (0-5ln]) |
(=[(r-ela1)' )~

In Theorem 2.2.1 on p. 10 and later remarks or6mfhis seminal work on convex

(1) Y1) =

transformations of random variables, van Zwet (J@ablished the following. Provided the

skewness statistics exist, then any transformedoranvariableé = L(17) has a smaller
skewness statistic thap wheneverL(#7) is increasing and concave. Thus we have
Proposition 2. Make the assumptions of Proposition 1, and &labg(w) is concave while

the skewness statistics exist. Then yield skewisesmaller than weather index skewness, or

| (p(w) ~Blu(w)])’ | _ | (w-[w])’] - Y(w)
{E[(ﬂ(w)_E[#(W)])Z}}M {E[(W—E[W])ZJ}?’@

(2) Y uw)] =

So if mean yield is an increasing and concave fanaif, say, growing degree days, then
mean crop yield is more negatively skewed thamosving degree days. In particular, if
growing degree days has zero skewness, then megutyietd will have negative skewness. To

develop some intuition on this, consider the prdiigmass given to each of weather index

interval [W,w +J] and index intervalw", w" + ] wherew" >w andd>0. For jO{l, i} ,
the probability weighting on intervéiv',w' + J] is transformed to apply over yield interval
(W), (W' + )], where concavity ensures thatw' + ) — u(W') > (W' + ) — u(w") . The
transformation stretches the left tail density vagiiggs over a comparatively larger interval in
the yield variable and contracts the right tailgi#ings. This creates a tendency toward the
sort of left-tail to right-tail asymmetry associdteith negative skewness. Fig. 1 illustrates.

An alternative means of making the same observaitmough differentiating (y) to

obtain density



3) () = gl N L - aﬂf’v(V;V}aWI

w=u(y)

As the numeratodu(w)/ow is declining inw, the yield density at the same quantile, or fixing

w=*(y), is increasing inv. In other words, the yield distribution’s leftitaidensity is

stretched longer and thinner upon mapping from e¥adomain to yield domain.

Note that a concavg(w) would suggest a cardinal interpretation of thethvera

favorability index in that expected yield has desiag marginal product in the index. The
weather favorability indices that come to mind,lsas growing degree days or the moisture
stress index, are cardinal representations of sfittemeasures. As in Schlenker (2006) and
Schlenker, Hanemann, and Fisher (2006), it mayelsessary to include a separate index for
harmfully high degree days. A second but relateddss whether concavity and monotonicity
properties apply. Weather extremes are seldom fgarmops suited to a given climatic region.
While yield will likely not be monotone in precipition or temperature, it should be monotone
increasing in a well-designed weather favorabihtyex. There remains the issue of concavity.
Although using disparate approaches and contextakimough not seeking evidence on
concavity, Porter and Seminov (1999, 2005), Sclde(R006), Almarazt al. (2008) and
others find that an increase in inter-annual weathgance reduces average crop yield. This
suggests an overall concave shape.

Example 1. Consider a single-input Mitscherlich-Baule prailue function relationship

between mean yield and weather:
(4) W) = Ay = A",
wherew>0,4, 2 A, > 0,4, > 0to ensure a positive, increasing, concave relatiehw be

normally distributed with mead and variances® so that skewness for the weather

distribution is zerd.As for yield skewness, use of moment generatioctfans for the normal

% As is typical when working with the normal distition, the left tail problem ofv such that
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distribution shows that
(5) Y]pw) =- (e -1) " (e +2) <0,

where details are provided in the Appendix. The function is dengeesboth the relative

curvature parametet, and the weather index variance parameter

Heter ogeneous Land
In this sub-section the model is extended so that EBnd ionger homogeneous. In particular,

land attributez[1Z =[0,1] follows continuously differentiable distributiod (z) . Conditional
on any given value ot, there aren land units of equal area in a defined geographic region.
Yield on theith land unit isy, (w; z) . These conditional draws are independent and from the
identical conditional distributior"*(y) with meanu(w, z), which is assumed to be

increasing and differentiable in both arguments. Define the d#ritmnditioned inverse as

w=h(y;z) and the weather-conditioned inversezasr(y;w) .

Proposition 3. Leta) land be heterogeneous with yields given by i.i.d. weatheryiaiat
conditioned draws fronfF"?*(y), and letb) the weather and land attribute conditional mean
yield p(w,z) exist. Let weather and land attributes be distributed according to
G(w):W - [0,1] andM (2): Z - [0,1], respectively, in each case with densities defined over
the entire support. Then, &as- «, the region’s
i) limiting mean crop yield distribution, ex post for given is represented bi/(y) where

L"(y) =M[r(y;w)] .

ii) limiting mean crop yield distribution for a given land atttdwaluez is represented by

T#(y) whereT?(y) =G[h(y; 2)] .

H(w) <0 is assumed to be negligible and is ignored.

9



iii) unconditional limiting mean crop yield distribution is re@neted byT(y) whereT(y) =

[, GIN(Y; 21dF(2) = | M[r(y W]dQ W) .

Again, in each case the limiting distribution iatin which the idiosyncratic randomness
is ignored. The usual left-tail problem aside, loemal distribution may or may not result. But

it has no special place in the analysis.

Relating Conditional and Unconditional Moments
In this section we introduce an LI that is not ag&d away, so the scale of analysis is at the
small plot level. The marginal distribution for ideat some arbitrarily choseth location with

fixed z attributes isF(y):Y - [0,1], where we will henceforth drop the location and

indicators in order to avoid notational clutter.eTimconditional mean yield ig =
J.W,u(w)dG(w) and the conditioned deviation in mean yieldisv £ 4 w) € 1. The residual
betweerith location yield and the conditional meare(sv) = y — x(w) . This difference arises
from LI. Of course,L £(w)dF"(y) =0. We are interested in comparing the conditional an
unconditional expectations of some mean-normaliaadtion

(6) S(y - 4) = S[e(w) + 3(w)],

where the functions of interest will all bekth moment form{ e(w) + o(w)]*. With

0'S(QVay’ as theth derivative of functiorS([)], a third-order Taylor’s series expansion

around&(w) =0 identifies

S[ £(W) + 5(W)] = S([Ilg(w)m + g(w)%ﬂ + [5 (‘;V)] aa—ngl

£(w)=0

(7)

Jewl sy
6 ay3 £(w)=0
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Use the notation fdith conditional and unconditional moments:

Conditional: ~ C® ¢ W)= [y-u @] dF™ ¢ );

8
® Unconditional: C® ):joY[y—p]de'W f/ PG (N):jY[y—y]de 6)

Noting thatC®(y |w) =0, insert (7) agy - 4]* into theC* (y) equation in (8) to establish

CM(y)= js[a(w)]de(w)+ daS(Dl CO(y [w)dG(w)

£(w)=0

9) "
j S@ C(y|8)dG (w).

£(w)=0

Now lef
(10) S(y - ) =]y - p(w) + W)’
so that the third-order approximation in (7) is &x&elation (9) becomes
(1) Cy) =], [ow)] dG(w) +3[ SW)C? (y [w)dG W)+ [, C (y [w)IG @),

as identified in Hennessy (2008). We are interestdxbtter understanding the signs of these
three right-hand terms.
Suppose that, conditional om, there can be only two states of nature whers assumed

to be some beneficial growth factor such as growiegree days. There can be good overall

growing conditions in the locality with probability and yield y°(w), and also bad overall
growing conditions with probability— 77 and yield y°(w) . Of course,y®(w) = y°(w) Ow[
W while dy’ (w)/ow=00OwOW, j O{b, g} . Some algebra confirms:

p(W) = 7y® (W) + (1- m)y° (w);
(12) CO(y|w)=ml-m) y* w)-y* W)] ;
CO(y|w) = (1- m)(1- 27] y° W)-y* W)] .

* Conditional and unconditional kurtosis and non-reatrstatistics can be compared in a
similar manner.
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Further observations about egn. (11) are f\r/}vai(w)dG(w) =0, meaning that the well-known

covariance decomposition leads to
[ 3w)CE (y [W)dG W)
(13) = [, 6w)dG(w) [ C?(y |w)dGWw) + Coy s W) C? (y )]
= Cov| u(w)~.C? (y w)] = Cof 1 w)C® & W ) .
since constaniz has zero covariance with any other variable.

In light of the points made above, eqn. (11) mawh#en as

Term |
CO(y) = [ [6w)]’ dG(w)
Term I
(14) +an(i-mCof my* Wi (=Y @)y @y o |

Term Il

+7(1-m) (- 2)] [ y° W)~ y* )] dG w).

We will look at each term in turn.
Term | This expression has already been studied in Bitipo 2 and the discussions

surrounding it. It is the systemic component ofdheonditional third central moment.

Term Il. By the covariance inequality, Term Il is negativieenever one expression is
increasing inw while the other is decreasing w. Now du(w)/ow=0 asady’' (v)ow=
00OwOW, j O{b, g} , and 7J[0,1] . The second term in the covariance expression has
derivative Z[yg (w)—y° (w)]{ayg (w) /0w — ay" (W)law} . This is negative if the LI and

systemic risk factors substitute but positive dytfttomplement. Our present knowledge on
crop production theory suggests that both are plesgihere the crop in question, location, and

production practices will factor into determinirigetsign. Some examples illustrate.

12



CASEA: If y(w) =y°(w) + A OwOW whereA >0 thendy®(w)/ow = dy°(w)/ow and
Term Il has value zero.

CASEB: If insteady? v = y* w+A YOwOW whereA >0 and y° (1) is strictly concave
thenay? (v)Ow<ay® (v)owOwOW and Term Il is negative.

CAseC: Finally, consider a special instance of the kmbig technology as specified in,
e.g., Berck and Helfand (1990). Lgtw, &) = min[w,&] whereg? > £°, £=£9 with

probability 77, and € = £° with probability1—77. Ther?

yo(w) =min[w,&%];  y°(w) =min[w, £°];
(15) =1 ifw < &9 ) =1 ifv< &
¢]
W I r01] ifw=eo : WM Ini0.1] itw=é" .
ow ] ow _
=0 ifw> £9 =0 ifw > £”

Clearly, dy?(w)/ow - ay°(w)/ow is nowhere strictly negative onO0W while dy® (w)/ow

> dy° (w)/ow Ow(£°,£9) so that Term Il is non-negative.

Term lll. If good growing conditions are more commonyo¥ 0.5, then monotonicity
condition y? v)= y* v )OwOW ensures that Term Il is negative. A comparativedavy

weighting on the good state disposes the LI compbookeyield toward negative skewness

while 77<0.5 ensures positive skewness.

Figure 2 illustrates Case B above. In it the prdidacfunctions are the same except that
y®(w) is a rightward translation of®(w) , parallel to thew axis. Because of concavity, the

vertical gap between outputs under the two stagebres as weather improves from any index

® The[d[0,1] component merely provides bounds on the derivatihe kink point, where the

derivative from above is 0 and the derivative froahow is 1. Any line through the kink point
with slope in[0,1] does not intersect the production function.

13



valuew to another valuev" such thatw” >w . Weather-conditioned mean yield increases
with w while conditional variance decreases with Somewhat similar to the analysis in
Proposition 2 and Fig. 1, introducing LI createsendispersion on the left tail of the yield
distribution, and this is what generates the teogéoward negative skewness. For Case C on
the other hand, the LI creates more dispersiotemight tail. In spreading out the right tail
realizations, it promotes positive skewness.

A final comment about decomposition (14) is thatriiél disappears whenever the
conditional variance is independent of the conddro This is the case in Figure 1 of Ker and
Goodwin (2000), where a mixture of zero skew weattoaditioned yield distributions is
represented. The conditioner itself is negativebwed. This negative skewness, our Term I,
ensures negative unconditional yield skewness Isecdar and Goodwin do not include an

idiosyncratic component (our Term Ill) in their ghacal model.

Conclusion
With the ultimate goal of moving the literature tand developing and testing hypotheses on
contexts in which positive or negative yield skessiehould be observed, this paper has
sought to do three things. Firstly, it has poiretithat while both the Strong Law of Large
Numbers and the Central Limit Theorem should indsgguly given adequate approximation of
the relevant statistical assumptions, there igeéhcield variance, when appropriately
conditioned, should recede to zero and the limitiisgribution is degenerate. So if systemic
heterogeneities exist in the data under consideratiese will dominate to determine the
shape of the yield distribution. Secondly, it hdentified an effect that tilts the skewness of
aggregate yield to be more negative than weatloéorfakewness whenever the weather factor
expresses a positive but diminishing marginal innpacaggregated mean yield. Thirdly,
moving to disaggregated yields generates two fueffects. The paper shows that both could

act to increase or decrease yield skewness attak glot level of analysis.
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The paramount question when conditioning yieldritistions is to what end the results
will be put. For the purpose of crop insurance diboners should be what can be observed at
economically low cost by the insurer before coritracagreement. Ideally that will include
clay content, water holding capacity, and othepagmic characteristics, as well as pre-season
weather variables such as soil moisture or El Nifie growing literature on yield
distributions seeking to account for spatial eldws yet to control for land heterogeneity
beyond the use of location indicators, e.g., Oeadl. (2008). This is understandable because
the focus is on other aspects of systemic variaBom improvements in geographical
information systems and efforts by yield modelerthie climate change literature suggest that
such conditioning should be feasible.

In order to better explain what remains, more éttemeeds to be paid to how weather
variables shape yield distributions. This mattersause weather derivative markets may be of
use in reassuring crop insurance products (WooaladdGarcia 2008). The connections also
matter because, as all our propositions develop,upese connections can help us better

understand yield distribution tails.
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Appendix

Relevant Large Number and Limit Laws

Let P([) be a probability measure on some probability sgéxes,P(0), whereP(A) is the
probability attached to condition s&t( s .° Our analysis depends crucially upon large
number theory, where we choose to emphasize thdasth Strong Law. Lek;, x,, ... be

independent random variables having the same pilapalistribution, i.e., they are
independent drawn from identical distributionsdi).

Strong Law of Large Numbers (SLLN) (Lamperti 1996, p. 50). For i.i.d. random variable

X, X,, ... With distribution F(x ) , assume their expected vaIL,Le,:J.xdF(x), exists. Then

(A1) P(Limnm%:/& =1.

Condition (Al) is also commonly referred to as adtrgure convergence. Essentially, this
condition asserts that the probability that thep;laraveragen‘lzill)g does not converge to
true meany is negligible. The implications are very strorg taw allows for Monte Carlo
methods to identify asymptotically exact estimatethe true expectation of some function

f(x), i.e.,E[f(x)] =Lim,_ _n™ inzlf(xi) where thex are independent draws from a
common distribution andE[[]] is the expectation operator with respect to thgtidution.

While the law establishes what the mean conveméalitnost surely), it provides very
limited information on how convergence occurs. Tikdéft to the Central Limit Theorem,

which describes the distribution a sample meaikétyl to follow when the sample size is

® See p. 46 of Capski and Kopp (2004) on probability spaces. Thernéei details here are
not relevant to our analysis but are needed inrdadbe precise and avoid confusion when
invoking widely cited large number results.

16



large. Distribution being a function, to charactera Central Limit Theorem one must have a
concept of how to measure convergence betweenidmsct
Convergence in Distribution (Bain and Engelhardt 1992, p. 71). Probability sugav, (x) is

dist
said to converge in distribution to measu(e) , written asv, - v, if

(A2) im,_.u,(X) =u(X)

for all values on the domain of at whichu(x) is continuous.

The normal distribution is continuous everywheréhsissue of continuity is moot.

Central Limit Theorem (CLT) (Lamperti 1996, p. 95). Let, X,, ... be i.i.d. random variables
having probability distributiorF(x ) . Assume that their expected valye, and varianceg?,

are both finite. Definex, =(x + ... +X,)/n. Then
(A3) [(X —in ] NOF , (X),

where Nor(ﬂ o) (x) is the cumulative normal distribution with meanand variances”.

Comparing the law and the theorem, they may appdae inconsistent. The SLLN asserts

that the distribution of the mean converges tosi&ribution with discontinuity agz, or

0, x<u;

(A4) P(Limminsx):{1 .

However, divide through byﬁ and use scaling properties of the normal distigiouto

consider an alternative version of (A3) as

(A5) (X" Ko ] Nor -, (X).
g

In this case, as — » then the variance of the mean contracts towaed Qim, _o*/n=0,
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and the distribution does indeed become degeneititea discontinuity aix = 4. Factor</n

in (A3) is required to ensure a non-degeneratdihignidistribution. It is often called a

‘stabilizing’ or ‘blow-up’ transformation (Green®@3, p. 908Y.

Proof of Proposition 1. From the SLLN we know that the weather-conditioneshn yield over

the region converges ta(w) with probability 1, or

(A6) P(Lim, .9,(W) = (W) =L §,w)=n"3 " v (w).

We will proceed in two steps. The first uses th&ISito get a weather-conditioned limiting
distribution. The second uses the Bounded Convesg&heorem to extend an implication for
the unconditional distribution.

Step 1:(Using SLLN). Consider function sequence

(A7) W y)=[ [ [ 1[5 ) < V][ dF™ (),

where | [C] is the indicator function with value 1 if condiidC applies and value O otherwise.
From almost-sure convergence pf(w) to (w) under SLLN, it follows that the function

limit exists and is given by

1, uw)<y;

(A8) u(w,y)=Lim,_,u,(w,Y) :{o Lw)> y.

Step 2:(Using the Bounded Convergence Theorem). Thisrémepa corollary of the
Dominated Convergence Theorem, gives conditionguwdiich the Lim _ and| operations

commute.

Theorem: (Lewin 1987). For a bounded intervalll R, suppose the sequence of functions

f.(x):A-R satisfiesIA| fn(x)|v(x)dx <o for v(x) a density function and for ail’N,,

"In econometric theory, CLT can be used to tramsflow variance estimator distributions so
that standard significance tests can be employed.
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N, the natural numbers other than 0. Sup@)dbe sequence converges almost everywhere to

a limit function f ):A - R, andb) there exists a numbérlJR such that for evernON,,

| f,(x)|v(x)<M for almost allxJA.° Then IA| f (X)|V(x)dx <o, and

(A9) LimnmjA fn(x)v(x)dx:jALimnm fn(x)v(x)dx=jAf(x)v(x)dx

In particular, our use of the theorem involveslihmting behavior ofJ' u, (w, y)g(w)dw
since that provides a description of the limitinglg distribution. Note that
(A10) [, u,(w,y)gwydw= [ [ [ [ 1[5,(w) < V][] dF™ (y)gw)dw=P(3, < v),

or the unconditional probability that the mean ugeawing fromn plots is no more than yield

value y . Taking the limit, noting that,|g(w) < T to satisfy the theorem’s conditids), and

using step 1 to satisfy the theorem’s condiaprthe Bounded Convergence Theorem implies

(A11)  Lim,_., [ u(wy)g(wdw= [ u(w y)gwdw=[  og(w)dw= G (y)]

But T(y) =Gl (y)]. ®

Details for Example 1. Whenw is normally distributed with meap and variances?, then
(A12) E[e" ]=ero%,

Therefore,

8 Here, almost all means almost everywhere or wittability 1. The technical assumption is
innocuous in our context.

19



E[(IU(W) ‘E[/J(W)])S} = E[()IO — e —E[)IO _Ale_ﬂzw})g:l

= —/]fE[(e“ZW - E[e‘”ZW])S}
(A13) =3[ |E[e"]- 2 (B[ ]) - ATE[e ¥ ]
— 3/113e—2/120+2/12202 e—/lze+o.5azzaz _ 2/]136_3426+ 15202 —/1136_ 3 §+4.5)20°

= 3301 40" (3eﬂ” o esazzaz) _
Also,

B (u(w) ~E[uw)])’ | = E[(AO - A€ ~E[ A, - Ale‘”zw})z}
(A14) - Ale[(e‘”ZW - E[e‘”zw])z} = A7B[ e a2 (B[e )

S e P R PR S ()
So

/13 -31,6+1.50202 38/]22‘72 -2 N? 202 o 3)22
(A15) Y[/J(W)] = l(a{/]lze_z/‘29+/‘§((72 (e/l§a2 _1)}e3/2 ) - %Eeﬂfﬂz 2_1)652

Set p=¢€*?" and write this as

= (P32 (0= (p+2) e
(A16) MELY (p-0)7" (p-17 (p-2)"(p+2)

=- (e -1) (e + 2) <0.

Proof of Proposition 3. For partg) andii), simply extend the proof of Proposition 1 to allo

for conditioning onz also. For pariii), note that
(A17) L"(y) =M[r(y;w)] =Prob(yield< y |w) ,
wherew has distributionG(w) . Then integrate through to obtain the unconditigreld

distribution

20



(A18) _[WM [r(y; W)]dG(w) = jWProb( yield< y w)dG ()= Prolf yielck y)
Similarly, T(y) =G[h(y; 2] =Prob( yield< y |z) and

(A19) J'ZG[h( y: 2)]dF(2) = J'ZProb( yield< y |z)dF @)= Proff yielck y)
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Figure 1. Mapping weather variation to yield variation
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Figure 2. Yield under good and bad local idiosyncrasies
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