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Abstract 

While the preponderance of empirical studies point to negative crop yield skewness in a 

wide variety of contexts, the literature provides few clear insights on why this is so. The 

purpose of this paper is to make three points on the matter. We show formally that statistical 

laws on aggregates do not suggest a normal yield distribution. We explain that whenever the 

weather-conditioned mean yield has diminishing marginal product, then there is a disposition 

toward negative skewness in aggregate yields. This is because a high marginal product in bad 

weather states stretches out the left tail of the yield distribution relative to that of the weather 

distribution. Turning to disaggregated yields, we decompose unconditional skewness into 

weather-conditioned skewness plus two other terms and study each in turn. 

 

Keywords: conditional distribution, crop insurance, negative skewness, spatial heterogeneity, 

statistical laws.  
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Introduction 

Crop yield distributions are used to model risk exposures, and also as an input in informed 

rating-making when designing and marketing crop insurance. As a reading of recent literature 

on crop yield modeling should confirm, it is a controversial topic (Just and Weninger 1999; Ker 

and Goodwin 2000; Atwood, Shaik, and Watts 2002, 2003; Sherrick et al. 2004). One 

difficulty is with appropriate conditioning of empirical data. Plots differ across space because 

of climate and soil variation, while different technologies may also be used. So concerns about 

the effects of spatial aggregation naturally arise. There may also be temporal and spatial 

heterogeneities in scrutinized data due to random weather events. Complete control over these 

differences is practically impossible.  

While cases in which skewness is likely positive have been identified in Day (1965) and 

also Ramirez, Misra, and Field (2003), the majority of studies have estimated negative 

skewness (Nelson and Preckel 1989; Swinton and King 1991; Moss and Shonkwiler 1993; 

Ramirez, Misra, and Field 2003; Atwood, Shaik, and Watts 2002, 2003). This is at variance 

with the suggestion that the crop yield distribution should be normal and so should have zero 

skewness, in light of statistical limit considerations. Referring to a version of the Central Limit 

Theorem (CLT), Just and Weninger (p. 302) state “Central limit theory thus calls into question 

the nonnormal empirical results found to date with aggregate time-series data.” On the other 

hand, Goodwin and Mahul (2004, pp. 13-14) and others hold that spatial dependence and 

systemic risk factors mean a straightforward application of CLT is not appropriate.1 We see a 

need for clarification.  

Apart from Just and Weninger (1999), two other papers have sought to provide foundations 

for the origin of observed yield skewness. Ker and Goodwin (2000, p. 465 and Fig. 1) reason 

                                                 
1 Wang and Zhang (2003) use dependent versions of the CLT, but for the purpose of estimating 
a crop insurance company’s portfolio risk as the number of risks grows, not for identifying 
yield distributions. As we will explain, it is more meaningful to use CLT when studying the 
distribution of a sum than when studying the distribution of an average. 
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that aggregating over some weather-conditioned yield distribution should predispose 

unconditional yield toward negative skewness whenever the weather variable is itself 

negatively skewed. Focusing on the small plot level of analysis, Hennessy (2008) has shown 

that the law of the minimum technology together with stochastic resource availabilities can 

support positive or negative skewness. Efforts to tightly control the left tail of a resource 

availability can create a negative skewness tendency. Irrigation, however, may increase 

skewness by completely eliminating a source of yield shortfall.  

Assuming a general technology and dealing with aggregation issues, this paper makes three 

main points. We invoke the systemic-idiosyncratic risk decomposition that is widely used in 

financial risk theory (LeRoy and Werner 2001).2 The first point is that statistical large number 

and limit laws assert more about the distribution of an average than just convergence to 

normality. In specifications relevant to modeling mean crop yields, the laws also provide a 

limiting value of zero for the distribution variance. In short, in the aggregate only the 

distribution of systemic risk sources remains as a determinant of the crop yield distribution. 

The relevance of statistical large number and limit laws to crop yield distributions has long 

been recognized (Hirshleifer 1961). Yet the state of the crop yield distribution modeling 

literature suggests that what they imply for that context needs to be parsed. 

Our second main point is constructive. It concerns the role of weather conditioning and so 

can be seen as a formalization of and development on the aforementioned graphical argument 

in Ker and Goodwin (2000). We clarify that, because of a result in van Zwet (1964), a 

beneficial random systematic weather factor with decreasing marginal product ensures that the 

yield distribution will have smaller (i.e., more negative) skewness than that of the underlying 

weather factor. Intuitively this is because, in the change of random variables from weather 

                                                 
2 Portfolio theory could, and sometimes does, seek to model spatial dimensions to systemic 
risk. There of course it is not geographic distance but rather attribute distance that is modeled, 
as when food company shares are grouped to be more similar to each other than to defense 
company shares. 
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factor to yield, the production function’s concavity stretches out the left tail of the weather 

factor distribution. This negative bent is consistent with the empirical literature on yield 

skewness.  

Our third main point is to relate skewness of aggregate yields to skewness of local yields, 

where local idiosyncrasies play a role. We decompose the relationship into three terms and 

study each in turn. One is the systemic effect on aggregate yields, studied in point two. Another 

is the skewness of the local idiosyncrasies, where the impact on unconditional skewness is 

clear. Finally there is the covariance between systematic factor conditioned mean yield and 

conditioned variance as the systematic factor varies. This covariance could plausibly be of 

either sign, depending on the nature of the local idiosyncratic randomness. 

The paper’s layout is as follows. We first provide an analysis under the assumption that 

production plots are homogeneous. One deduction is then probed for implications on yield 

skewness. The case of plot heterogeneity is then addressed. Upon introducing a disaggregated 

idiosyncratic risk component, an expression relating conditional skewness with unconditional 

skewness is presented and analyzed. A brief discussion concludes.  

 

Analysis under Yield Aggregation 

For any plot of land, we consider three contributions to the yield realization. I): The land could 

differ innately from other plots because of endowments. This contribution is not random, and 

we will refer to it as spatial heterogeneity or land heterogeneity. II): There could be a systemic 

factor, such as weather, that is common to all plots, but realizations could differ from year to 

year. Then there would be a common yield across plots each year, but this yield would vary 

from year to year. III): There could be a local idiosyncratic, or LI, factor. This contribution 

involves different yield realizations for otherwise identical plots in the same year, perhaps 

because of local weather, pest, or infrastructure problems. In this section it will be assumed 

that the yield observation is at an aggregated level, perhaps at the townland or county level. 
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We will first jointly consider systemic (contribution II) and idiosyncratic sources of temporal 

randomness (contribution III). We will then allow for contribution I, spatial heterogeneities. 

 

Homogeneous Land 

Our statistical model of crop yields is as follows. There are n  land units of equal area in a 

defined geographic region. The land units are homogeneous in that they are agronomically 

identical, face the same systemic weather events, and are farmed in the same way. Yield is 

random in two senses. There is systemic randomness but also local idiosyncrasies. Firstly, 

conditional on some ‘weather favorability’ index [0,1]w W∈ = , yield on the ith land unit is the 

random realization ( )iy w  with support on some interval Y . This is contribution III).  

These conditional draws ( ), {1, ... , }iy w i n∈ , are independent and from the identical 

conditional distribution | ( ) : [0,1]w
iF y Y →  with mean ( )wµ . Here the weather favorability 

index is given content by the assumption that ( )wµ  is a strictly increasing function. Define the 

inverse function as 1( )w yµ−= . Secondly, contribution II is modeled by letting nature draw a 

w  from distribution ( )G w  where bounded density ( )g w  exists everywhere on w W∈ . The 

following ex ante, or weather unknown, yield distribution is identified in the Appendix. 

Proposition 1. Suppose i) land is homogeneous with yields given by independently 

distributed and identically drawn weather-conditioned draws from | ( )w
iF y , and ii) the 

weather-conditioned mean yield ( )wµ  exists and is strictly increasing. Let weather be 

distributed according to ( )G w on w W∈  where the density exists everywhere on the support. 

Then the region’s limiting ex ante distribution, as n → ∞ , of mean crop yield is represented by 

( )T y  where 1( ) [ ( )]T y G yµ−= . 
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The proposition shows that LI are averaged out under the Strong Law of Large Numbers, 

leaving only the systemic component. The point here is that non-systemic risks will be 

drowned out in the face of area-wide systemic weather risks so that the distribution of the 

systemic component dominates and there is no special role for the normal distribution. One 

may wonder how robust this conclusion is when crop yields are clearly positively correlated 

over space. Note first when thinking this through that much if not most of this dependence may 

not persist after conditioning on a systemic weather factor.  

Suppose for the moment one can control for a systemic factor and that there only remain 

dependent LI. CLT results allow spatial dependence among LI to exist. Indeed, Wang and 

Zhang (2003) in their study of crop insurance risk pooling opportunities have allowed for finite 

range dependence, whereby yields are assumed to be independent beyond a defined spatial 

distance. The variance of mean yield still converges to zero. In their empirical study, Wang and 

Zhang (2003) used county data for wheat, soybeans, and corn across 2,000 to 2,640 counties in 

the United States over 1972-1997. They found the distance for any positive dependence to be at 

most 570 miles and in many cases much less. They did not control for weather, so their 

distribution is largely due to weather and not to weather-conditioned idiosyncratic risks. Their 

range conclusions are similar to those found in Goodwin (2001) for Illinois, Indiana, and Iowa 

corn production, where spatial correlation declines to 0.1 by 200 miles in typical years and by 

400 miles in drought years. 

Of what relevance is all this when interpreting Proposition 1? That depends on how data are 

being aggregated. If yield data are from a small area then one can reasonably assume a 

common w  realization for all land at issue. If data are from a larger area then a spatial 

stochastic process is appropriate. Let ( , )w i j  and ( , )y i j  be weather and yield random variables 

at map coordinate ( , )i j , ( , ) {1, ... , } {1, ... , }i j I J∈ × , where weather follows the arbitrary joint 

distribution [ (1,1), (1,2), ... , ( , 1), ( , )]G w w w I J w I J− . Then 1( , ) ( , )w i j i jµ−= , and yield 
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follows the joint distribution 1 1 1 1[ (1,1), (1,2), ... , ( , 1), ( , )]G I J I Jµ µ µ µ− − − −− . Introducing the 

spatial dependencies adds a layer of notation to the finding in Proposition 1 but does not 

change the underlying result. 

Local weather variations are a large component of local idiosyncrasies. It is difficult to 

disentangle the two when presenting a formal model of spatio-temporal yield randomness risk, 

and even more so as a practical matter. But no matter how one looks at it, the normal 

distribution should have no special role in understanding how averages are distributed. Suppose 

that i) all practical conditioning problems have been sorted out, including the thorny issue of 

spatial correlations in weather, and that ii) a CLT applies to what is left. Then mean yield will 

have zero variance at the limit. More positively, while we may not know how to condition well 

or have the requisite data, the observed distribution should be seen to reflect what has not been 

conditioned on and not to have been formed by CLT. 

Upon reflection, one may conclude that Proposition 1 is an almost trivial (if formal) 

application of statistical laws. We do not disagree but see its merits on two fronts. Firstly, yield 

random variables are realizations of an unknown spatio-temporal process where yields at each 

point in space need further conditioning to account for relevant agronomic attributes. Given the 

complexity of the context, quite what to condition on can be lost in the mix so that how 

statistical laws apply warrants formal delineation. In addition the procedure of formal 

delineation reveals a relationship that is important in understanding the yield distribution, 

namely, 1( ) [ ( )]T y G yµ−= . 

Notice that the process of arriving at ( )T y  in Proposition 1 is an example of that ubiquitous 

statistical technique, the change of variables. Our paper’s second main point arises from a 

consideration of what effect this change of variables, as the weather variable changes to the 

yield variable, has on the skewness. For some random variable η , and with [ ]⋅E� as the 

expectation operator, recall that the skewness statistic is 
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In Theorem 2.2.1 on p. 10 and later remarks on p. 16 of his seminal work on convex 

transformations of random variables, van Zwet (1964) established the following. Provided the 

skewness statistics exist, then any transformed random variable ( )Lξ η=  has a smaller 

skewness statistic than η  whenever ( )L η  is increasing and concave. Thus we have  

Proposition 2. Make the assumptions of Proposition 1, and also that ( )wµ  is concave while 

the skewness statistics exist. Then yield skewness is smaller than weather index skewness, or  

(2) [ ]
[ ]( )

[ ]( ){ }
[ ]( )

[ ]( ){ }
3 3

3/ 2 3/ 2
2 2

( ) ( )
( ) ( ).

( ) ( )

w w w w
w w

w w w w

µ µ
µ

µ µ

   − −
   ϒ = ≤ = ϒ
   − −
   

E� E � E E

E E E E

 

 

So if mean yield is an increasing and concave function of, say, growing degree days, then 

mean crop yield is more negatively skewed than is growing degree days. In particular, if 

growing degree days has zero skewness, then mean crop yield will have negative skewness. To 

develop some intuition on this, consider the probability mass given to each of weather index 

interval [ , ]l lw w δ+  and index interval [ , ]h hw w δ+  where h lw w>  and 0δ > . For { , }j l h∈ , 

the probability weighting on interval [ , ]j jw w δ+  is transformed to apply over yield interval 

[ ( ), ( )]j jw wµ µ δ+ , where concavity ensures that ( ) ( ) ( ) ( )l l h hw w w wµ δ µ µ δ µ+ − > + − . The 

transformation stretches the left tail density weightings over a comparatively larger interval in 

the yield variable and contracts the right tail weightings. This creates a tendency toward the 

sort of left-tail to right-tail asymmetry associated with negative skewness. Fig. 1 illustrates.  

An alternative means of making the same observation is through differentiating ( )T y  to 

obtain density  
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(3) 
1

1
1

( )

( ) ( )
( ) [ ( )] .

( ) /
w y

d y g w
t y g y

dy w w µ

µµ
µ −

−
−

=

= =
∂ ∂

 

As the numerator ( ) /w wµ∂ ∂  is declining in w , the yield density at the same quantile, or fixing 

1( )w yµ−= , is increasing in w . In other words, the yield distribution’s left tail’s density is 

stretched longer and thinner upon mapping from weather domain to yield domain. 

Note that a concave ( )wµ  would suggest a cardinal interpretation of the weather 

favorability index in that expected yield has decreasing marginal product in the index. The 

weather favorability indices that come to mind, such as growing degree days or the moisture 

stress index, are cardinal representations of scientific measures. As in Schlenker (2006) and 

Schlenker, Hanemann, and Fisher (2006), it may be necessary to include a separate index for 

harmfully high degree days. A second but related issue is whether concavity and monotonicity 

properties apply. Weather extremes are seldom good for crops suited to a given climatic region. 

While yield will likely not be monotone in precipitation or temperature, it should be monotone 

increasing in a well-designed weather favorability index. There remains the issue of concavity. 

Although using disparate approaches and contexts and although not seeking evidence on 

concavity, Porter and Seminov (1999, 2005), Schlenker (2006), Almaraz et al. (2008) and 

others find that an increase in inter-annual weather variance reduces average crop yield. This 

suggests an overall concave shape. 

Example 1. Consider a single-input Mitscherlich-Baule production function relationship 

between mean yield and weather:  

(4) 2
0 1( ) ,ww e λµ λ λ −= −  

where 0 1 20, 0, 0w λ λ λ> ≥ > >  to ensure a positive, increasing, concave relation. Let w  be 

normally distributed with mean θ  and variance 2σ  so that skewness for the weather 

distribution is zero.3 As for yield skewness, use of moment generation functions for the normal 

                                                 
3 As is typical when working with the normal distribution, the left tail problem of w  such that 
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distribution shows that  

(5) [ ] ( ) ( )2 2 2 2
2 2

0.5

( ) 1 2 0,w e eλ σ λ σµϒ = − − + <  

where details are provided in the Appendix. The function is decreasing in both the relative 

curvature parameter 2λ  and the weather index variance parameter 2σ . 

 

Heterogeneous Land 

In this sub-section the model is extended so that land is no longer homogeneous. In particular, 

land attribute [0,1]z Z∈ =  follows continuously differentiable distribution ( )M z . Conditional 

on any given value of z , there are n  land units of equal area in a defined geographic region. 

Yield on the ith land unit is ( ; )iy w z . These conditional draws are independent and from the 

identical conditional distribution | , ( )w zF y  with mean ( , )w zµ , which is assumed to be 

increasing and differentiable in both arguments. Define the attribute-conditioned inverse as 

( ; )w h y z=  and the weather-conditioned inverse as ( ; )z r y w= .  

Proposition 3. Let a) land be heterogeneous with yields given by i.i.d. weather- and yield-

conditioned draws from | , ( )w zF y , and let b) the weather and land attribute conditional mean 

yield ( , )w zµ  exist. Let weather and land attributes be distributed according to 

( ) : [0,1]G w W →  and ( ) : [0,1]M z Z → , respectively, in each case with densities defined over 

the entire support. Then, as n → ∞ , the region’s 

i) limiting mean crop yield distribution, ex post for given w , is represented by | ( )wL y  where 

| ( ) [ ( ; )]wL y M r y w= . 

ii) limiting mean crop yield distribution for a given land attribute value z  is represented by 

| ( )zT y  where | ( ) [ ( ; )]zT y G h y z= . 

                                                                                                                                                          
( ) 0wµ <  is assumed to be negligible and is ignored.  
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iii) unconditional limiting mean crop yield distribution is represented by ( )T y  where ( )T y =  

[ ( ; )] ( ) [ ( ; )] ( )
Z W
G h y z dF z M r y w dG w=∫ ∫ . 

 

Again, in each case the limiting distribution is that in which the idiosyncratic randomness 

is ignored. The usual left-tail problem aside, the normal distribution may or may not result. But 

it has no special place in the analysis. 

 

Relating Conditional and Unconditional Moments 

In this section we introduce an LI that is not averaged away, so the scale of analysis is at the 

small plot level. The marginal distribution for yield at some arbitrarily chosen ith location with 

fixed z  attributes is ( ) : [0,1]F y Y → , where we will henceforth drop the location and z  

indicators in order to avoid notational clutter. The unconditional mean yield is µ =  

( ) ( )
W

w dG wµ∫  and the conditioned deviation in mean yield is ( ) ()w wδ µ µ= − . The residual 

between ith location yield and the conditional mean is ( ) ( )w y wε µ= − . This difference arises 

from LI. Of course, |( ) ( ) 0w

Y
w dF yε =∫ . We are interested in comparing the conditional and 

unconditional expectations of some mean-normalized function 

(6) [ ]( ) ( ) ( ) ,S y S w wµ ε δ− = +  

where the functions of interest will all be of kth moment form [ ]( ) ( )
k

w wε δ+ . With 

( ) /j jS y∂ ⋅ ∂  as the jth derivative of function ( )S ⋅ , a third-order Taylor’s series expansion 

around ( ) 0wε =  identifies  

(7) 

[ ] [ ]

[ ]

2 2

2( ) 0
( ) 0 ( ) 0

3 3

3

( ) 0

( )( ) ( )
( ) ( ) ( ) ( )

2

( ) ( )
.

6

w
w w

w

wS S
S w w S w

y y

w S

y

ε
ε ε

ε

ε
ε δ ε

ε

=
= =

=

∂ ⋅ ∂ ⋅+ ≈ ⋅ + +
∂ ∂

∂ ⋅+
∂
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Use the notation for kth conditional and unconditional moments: 

(8) 
[ ]
[ ] [ ]

( ) |

( ) |

Conditional : ( | ) ( ) ( );

Unconditional : ( ) ( ) ( ) ( ).

kk w

Y

k kk w

W Y Y

C y w y w dF y

C y y dF y dG w y dF y

µ

µ µ

= −

= − = −

∫

∫ ∫ ∫
 

Noting that (1)( | ) 0C y w = , insert (7) as [ ] ky µ−  into the ( ) ( )kC y  equation in (8) to establish  

(9) 

[ ]
2

( ) (2)
2

( ) 0

3
(3)

3

( ) 0

1 ( )
( ) ( ) ( ) ( | ) ( )

2

1 ( )
( | ) ( ).

6

k

W W
w

W
w

S
C y S w dG w C y w dG w

y

S
C y dG w

y

ε

ε

δ

θ

=

=

∂ ⋅≈ +
∂

∂ ⋅+
∂

∫ ∫

∫

 

Now let4 

(10) [ ]3
( ) ( ) ( ) ,S y y w wµ µ δ− = − +  

so that the third-order approximation in (7) is exact. Relation (9) becomes  

(11) [ ]3(3) (2) (3)( ) ( ) ( ) 3 ( ) ( | ) ( ) ( | ) ( ),
W W W

C y w dG w w C y w dG w C y w dG wδ δ= + +∫ ∫ ∫  

as identified in Hennessy (2008). We are interested in better understanding the signs of these 

three right-hand terms.  

Suppose that, conditional on w , there can be only two states of nature where w  is assumed 

to be some beneficial growth factor such as growing degree days. There can be good overall 

growing conditions in the locality with probability π  and yield ( )gy w , and also bad overall 

growing conditions with probability 1 π−  and yield ( )by w . Of course, ( ) ( )g by w y w w≥ ∀ ∈ 

W  while ( ) / 0 , { , }jy w w w W j b g∂ ∂ ≥ ∀ ∈ ∈ . Some algebra confirms: 

(12) 
2(2)

3(3)

( ) ( ) (1 ) ( );

( | ) (1 ) ( ) ( ) ;

( | ) (1 )(1 2 ) ( ) ( ) .

g b

g b

g b

w y w y w

C y w y w y w

C y w y w y w

µ π π

π π

π π π

= + −

 = − − 

 = − − − 

 

                                                 
4 Conditional and unconditional kurtosis and non-moment statistics can be compared in a 
similar manner. 
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Further observations about eqn. (11) are that ( ) ( ) 0
W

w dG wδ =∫ , meaning that the well-known 

covariance decomposition leads to  

(13) 

(2)

(2) (2)

(2) (2)

( ) ( | ) ( )

( ) ( ) ( | ) ( ) Cov ( ), ( | )

Cov ( ) , ( | ) Cov ( ), ( | ) ,

W

W W

w C y w dG w

w dG w C y w dG w w C y w

w C y w w C y w

δ

δ δ

µ µ µ

 = +  

   = − =   

∫

∫ ∫  

since constant µ  has zero covariance with any other variable. 

In light of the points made above, eqn. (11) may be written as  

(14) 

[ ]3(3)

2

3

Term I

Term II

Term III

( ) ( ) ( )

3 (1 )Cov ( ) (1 ) ( ), ( ) ( )

(1 )(1 2 ) ( ) ( ) ( ).

W

g b g b

g b

W

C y w dG w

y w y w y w y w

y w y w dG w

δ

π π π π

π π π

=

  + − + − −   

 + − − − 

∫

∫

�������

�������������������������

�������������������

 

We will look at each term in turn. 

Term I. This expression has already been studied in Proposition 2 and the discussions 

surrounding it. It is the systemic component of the unconditional third central moment. 

 

Term II. By the covariance inequality, Term II is negative whenever one expression is 

increasing in w  while the other is decreasing in w . Now ( ) / 0w wµ∂ ∂ ≥  as ( ) /jy w w∂ ∂ ≥  

0 , { , }w W j b g∀ ∈ ∀ ∈ , and [0,1]π ∈ . The second term in the covariance expression has 

derivative { }2 ( ) ( ) ( ) / ( ) /g b g by w y w y w w y w w − ∂ ∂ − ∂ ∂  . This is negative if the LI and 

systemic risk factors substitute but positive if they complement. Our present knowledge on 

crop production theory suggests that both are possible where the crop in question, location, and 

production practices will factor into determining the sign. Some examples illustrate. 
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CASE A: If ( ) ( )g by w y w w Wλ= + ∀ ∈  where 0λ >  then ( ) / ( ) /g by w w y w w∂ ∂ ≡ ∂ ∂  and 

Term II has value zero.  

CASE B: If instead ( ) ( )g by w y w w Wλ= + ∀ ∈  where 0λ >  and ( )by ⋅  is strictly concave 

then ( ) / ( ) /g by w w y w w w W∂ ∂ < ∂ ∂ ∀ ∈  and Term II is negative.  

CASE C: Finally, consider a special instance of the von Liebig technology as specified in, 

e.g., Berck and Helfand (1990). Let ( , ) min[ , ]y w wε ε=  where g bε ε> , gε ε=  with 

probability π , and bε ε=  with probability 1 π− . Then5  

(15) 

( ) min[ , ]; ( ) min[ , ];

1        if  1        if  
( ) ( )

[0,1]  if ; [0,1]  if .

0       if 0       if 

g g b b

g b

g b
g b

g b

y w w y w w

w w
y w y w

w w
w w

w w

ε ε
ε ε
ε ε
ε ε

= =

 = < = <
 ∂ ∂∈ = ∈ = ∂ ∂ = > = > 

 

Clearly, ( ) / ( ) /g by w w y w w∂ ∂ − ∂ ∂  is nowhere strictly negative on w W∈  while ( ) /gy w w∂ ∂  

( ) / ( , )b b gy w w w ε ε> ∂ ∂ ∀ ∈  so that Term II is non-negative.  

 

Term III. If good growing conditions are more common, or 0.5π > , then monotonicity 

condition ( ) ( )g by w y w w W≥ ∀ ∈  ensures that Term III is negative. A comparatively heavy 

weighting on the good state disposes the LI component of yield toward negative skewness 

while 0.5π <  ensures positive skewness. 

 

Figure 2 illustrates Case B above. In it the production functions are the same except that 

( )by w  is a rightward translation of ( )gy w , parallel to the w  axis. Because of concavity, the 

vertical gap between outputs under the two states declines as weather improves from any index 

                                                 
5 The [0,1]∈  component merely provides bounds on the derivative at the kink point, where the 
derivative from above is 0 and the derivative from below is 1. Any line through the kink point 
with slope in [0,1]  does not intersect the production function. 



14 
 

value lw  to another value hw  such that h lw w> . Weather-conditioned mean yield increases 

with w  while conditional variance decreases with w . Somewhat similar to the analysis in 

Proposition 2 and Fig. 1, introducing LI creates more dispersion on the left tail of the yield 

distribution, and this is what generates the tendency toward negative skewness. For Case C on 

the other hand, the LI creates more dispersion on the right tail. In spreading out the right tail 

realizations, it promotes positive skewness. 

A final comment about decomposition (14) is that Term II disappears whenever the 

conditional variance is independent of the conditioner. This is the case in Figure 1 of Ker and 

Goodwin (2000), where a mixture of zero skew weather-conditioned yield distributions is 

represented. The conditioner itself is negatively skewed. This negative skewness, our Term I, 

ensures negative unconditional yield skewness because Ker and Goodwin do not include an 

idiosyncratic component (our Term III) in their graphical model. 

 

Conclusion 

With the ultimate goal of moving the literature toward developing and testing hypotheses on 

contexts in which positive or negative yield skewness should be observed, this paper has 

sought to do three things. Firstly, it has pointed out that while both the Strong Law of Large 

Numbers and the Central Limit Theorem should indeed apply given adequate approximation of 

the relevant statistical assumptions, there is a catch. Yield variance, when appropriately 

conditioned, should recede to zero and the limiting distribution is degenerate. So if systemic 

heterogeneities exist in the data under consideration, these will dominate to determine the 

shape of the yield distribution. Secondly, it has identified an effect that tilts the skewness of 

aggregate yield to be more negative than weather factor skewness whenever the weather factor 

expresses a positive but diminishing marginal impact on aggregated mean yield. Thirdly, 

moving to disaggregated yields generates two further effects. The paper shows that both could 

act to increase or decrease yield skewness at the small plot level of analysis.  
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The paramount question when conditioning yield distributions is to what end the results 

will be put. For the purpose of crop insurance, conditioners should be what can be observed at 

economically low cost by the insurer before contractual agreement. Ideally that will include 

clay content, water holding capacity, and other agronomic characteristics, as well as pre-season 

weather variables such as soil moisture or El Niño. The growing literature on yield 

distributions seeking to account for spatial effects has yet to control for land heterogeneity 

beyond the use of location indicators, e.g., Ozaki et al. (2008). This is understandable because 

the focus is on other aspects of systemic variation. But improvements in geographical 

information systems and efforts by yield modelers in the climate change literature suggest that 

such conditioning should be feasible. 

In order to better explain what remains, more attention needs to be paid to how weather 

variables shape yield distributions. This matters because weather derivative markets may be of 

use in reassuring crop insurance products (Woodard and Garcia 2008). The connections also 

matter because, as all our propositions develop upon, these connections can help us better 

understand yield distribution tails. 
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Appendix 

Relevant Large Number and Limit Laws 

Let ( )P ⋅  be a probability measure on some probability space ( , , ( ))PΩ ⋅S , where ( )P A  is the 

probability attached to condition set A ⊆ S .6 Our analysis depends crucially upon large 

number theory, where we choose to emphasize the standard Strong Law. Let 1 2, , ...x x  be 

independent random variables having the same probability distribution, i.e., they are 

independent drawn from identical distributions (i.i.d.). 

Strong Law of Large Numbers (SLLN) (Lamperti 1996, p. 50). For i.i.d. random variables 

1 2, , ...x x  with distribution ( )iF x , assume their expected value, ( )i ix dF xµ = ∫ , exists. Then  

(A1) 1 ...
Lim 1.n

n

x x
P

n
µ→∞

+ + = = 
 

 

 

Condition (A1) is also commonly referred to as almost sure convergence. Essentially, this 

condition asserts that the probability that the sample average 1

1

n

ii
n x−

=∑  does not converge to 

true mean µ  is negligible. The implications are very strong; the law allows for Monte Carlo 

methods to identify asymptotically exact estimates of the true expectation of some function 

( )f x , i.e., [ ] 1

1
( ) Lim ( )

n

n ii
f x n f x−

→∞ =
= ∑E  where the ix  are independent draws from a 

common distribution and [ ]⋅E  is the expectation operator with respect to that distribution. 

While the law establishes what the mean converges to (almost surely), it provides very 

limited information on how convergence occurs. That is left to the Central Limit Theorem, 

which describes the distribution a sample mean is likely to follow when the sample size is 

                                                 
6 See p. 46 of Capi�ski and Kopp (2004) on probability spaces. The technical details here are 
not relevant to our analysis but are needed in order to be precise and avoid confusion when 
invoking widely cited large number results. 
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large. Distribution being a function, to characterize a Central Limit Theorem one must have a 

concept of how to measure convergence between functions.   

Convergence in Distribution (Bain and Engelhardt 1992, p. 71). Probability measure ( )n xυ  is 

said to converge in distribution to measure ( )xυ , written as 
dist

nυ υ→ , if   

(A2) Lim ( ) ( )n n x xυ υ→∞ =  

for all values on the domain of x  at which ( )xυ  is continuous. 

 

The normal distribution is continuous everywhere so the issue of continuity is moot. 

Central Limit Theorem (CLT) (Lamperti 1996, p. 95). Let 1 2, , ...x x  be i.i.d. random variables 

having probability distribution ( )iF x . Assume that their expected value, µ , and variance, 2σ , 

are both finite. Define 1( ... ) /n nx x x n≡ + + . Then  

(A3) (0,1)

( )
Nor ( ),

dist
nx n

P x x
µ

σ
 − ≤ →  
 

 

where 2( , )
Nor ( )xµ σ  is the cumulative normal distribution with mean µ  and variance 2σ .  

 

Comparing the law and the theorem, they may appear to be inconsistent. The SLLN asserts 

that the distribution of the mean converges to a distribution with discontinuity at µ , or  

(A4) ( ) 0, ;
Lim

1, .n n

x
P x x

x

µ
µ→∞

<
≤ =  ≥

 

However, divide through by n  and use scaling properties of the normal distribution to 

consider an alternative version of (A3) as 

(A5) 1(0, )
Nor ( ).

dist
n

n

x
P x x

µ
σ −

− ≤ → 
 

 

In this case, as n → ∞  then the variance of the mean contracts toward 0, or 2Lim / 0n nσ→∞ = , 
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and the distribution does indeed become degenerate with a discontinuity at x µ= . Factor n  

in (A3) is required to ensure a non-degenerate limiting distribution. It is often called a 

‘stabilizing’ or ‘blow-up’ transformation (Greene 2003, p. 908).7 

 

Proof of Proposition 1. From the SLLN we know that the weather-conditioned mean yield over 

the region converges to ( )wµ  with probability 1, or  

(A6) ( ) 1

1
ˆ ˆLim ( ) ( ) 1; ( ) ( ).

n

n n n ii
P y w w y w n y wµ −

→∞ =
= = = ∑  

We will proceed in two steps. The first uses the SLLN to get a weather-conditioned limiting 

distribution. The second uses the Bounded Convergence Theorem to extend an implication for 

the unconditional distribution. 

Step 1: (Using SLLN). Consider function sequence  

(A7) [ ] |

1
ˆ( , ) ( ) ( ),

n w
n n iiY Y Y

u w y I y w y dF y
=

= ≤ ∏∫ ∫ ∫⋯  

where [ ]I C  is the indicator function with value 1 if condition C  applies and value 0 otherwise. 

From almost-sure convergence of ˆ ( )ny w  to ( )wµ  under SLLN, it follows that the function 

limit exists and is given by 

(A8) 
1, ( ) ;

( , ) Lim ( , )
0, ( ) .n n

w y
u w y u w y

w y

µ
µ→∞

≤
≡ =  >

 

Step 2: (Using the Bounded Convergence Theorem). This theorem, a corollary of the 

Dominated Convergence Theorem, gives conditions under which the Limn→∞  and ∫  operations 

commute.  

Theorem: (Lewin 1987). For a bounded interval A ⊂ ℝ , suppose the sequence of functions 

( ) :nf x A →ℝ  satisfies ( ) ( )nA
f x v x dx < ∞∫  for ( )v x  a density function and for all 0n ∈ℕ , 

                                                 
7 In econometric theory, CLT can be used to transform low variance estimator distributions so 
that standard significance tests can be employed. 
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0ℕ  the natural numbers other than 0. Suppose a) the sequence converges almost everywhere to 

a limit function ( ) :f x A →ℝ , and b) there exists a number Γ∈ℝ  such that for every 0n ∈ℕ , 

( ) ( )nf x v x M≤  for almost all x A∈ .8 Then ( ) ( )
A

f x v x dx < ∞∫ , and  

(A9) Lim ( ) ( ) Lim ( ) ( ) ( ) ( ) .n n n nA A A
f x v x dx f x v x dx f x v x dx→∞ →∞= =∫ ∫ ∫  

 

In particular, our use of the theorem involves the limiting behavior of ( , ) ( )nu w y g w dw∫  

since that provides a description of the limiting yield distribution. Note that 

(A10) [ ] ( )|

1
ˆ( , ) ( ) ( ) ( ) ( ) ,

n w
n n i niW W Y Y Y

u w y g w dw I y w y dF y g w dw P y y
=

= ≤ = ≤∏∫ ∫ ∫ ∫ ∫⋯  

or the unconditional probability that the mean upon drawing from n  plots is no more than yield 

value y . Taking the limit, noting that ( )nu g w ≤ Γ  to satisfy the theorem’s condition b), and 

using step 1 to satisfy the theorem’s condition a), the Bounded Convergence Theorem implies 

(A11) 1

( )
Lim ( , ) ( ) ( , ) ( ) ( ) [ ( )].n nW W w y

u w y g w dw u w y g w dw g w dw G y
µ

µ−
→∞ ≤

= = =∫ ∫ ∫  

But 1( ) [ ( )]T y G yµ −= .    � 

 

Details for Example 1. When w  is normally distributed with mean µ  and variance 2σ , then  

(A12) 
2 20.5 .tw t te e µ σ+  = E  

Therefore,  

                                                 
8 Here, almost all means almost everywhere or with probability 1. The technical assumption is 
innocuous in our context. 
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(A13) 

[ ]( ) ( )
( )

( )

2 2

2 2

2 2 2 2

2 2 2 2 2 2
2 2 2 2 2 2 2

33

0 1 0 1

3
3

1

3
2 33 3 3

1 1 1

2 2 0.5 3 1.5 33 3 3
1 1 1

( ) ( )

3 2

3 2

w w

w w

w w w w

w w e e

e e

e e e e

e e e e

λ λ

λ λ

λ λ λ λ

λ θ λ σ λ θ λ σ λ θ λ σ λ θ

µ µ λ λ λ λ

λ

λ λ λ

λ λ λ

− −

− −

− − − −

− + − + − + − +

    − = − − −     

  = − −    

       = − −       

= − −

E E E E

E E

E E E E

( )
2 2
2

2 2 2 2 2 2
2 2 2 2

4.5

3 1.5 33
1 3 2 .e e e

λ σ

λ θ λ σ λ σ λ σλ − += − −

 

Also,  

(A14) 

[ ]( ) ( )
( ) ( )

( )

2 2

2 2 2 2

2 2 2 2 2 2 2 2
2 2 2 2 2 2 2

22

0 1 0 1

2 2
22 2 2

1 1 1

2 2 2 22 2 2
1 1 1

( ) ( )

1 .

w w

w w w w

w w e e

e e e e

e e e e

λ λ

λ λ λ λ

λ θ λ σ λ θ λ σ λ θ λ σ λ σ

µ µ λ λ λ λ

λ λ λ

λ λ λ

− −

− − − −

− + − + − +

    − = − − −     

      = − = −       

= − = −

E E E E

E E E E  

So 

(A15) [ ] ( )
( ){ } ( )

2 2 2 2 2 2
2 2 2 22 2 2 2
2 2

2 22 2 2 2
22 2 2

3 1.5 33
3

1

3/ 2 3/ 2
22

1

3 2 3 2
( ) .

11

e e e e e
w

ee e

λ θ λ σ λ σ λ σ λ σ λ σ

λ σλ θ λ σ λ σ

λ
µ

λ

− +

− +

− − − −ϒ = =
−−

 

Set 
2 2
2p eλ σ=  and write this as  

(A16) 
[ ] ( )

( )
( ) ( )

( )
( ) ( )

( ) ( )2 2 2 2
2 2

23
0.5

3/ 2 3/ 2

0.5

3 2 1 2
( ) 1 2

1 1

1 2 0.

p p p p
w p p

p p

e eλ σ λ σ

µ
− + − +

ϒ = − = − = − − +
− −

= − − + <

 

 

Proof of Proposition 3. For parts i) and ii), simply extend the proof of Proposition 1 to allow 

for conditioning on z  also. For part iii), note that  

(A17) ( )| ( ) [ ( ; )] Prob yield | ,wL y M r y w y w= = ≤  

where w  has distribution ( )G w . Then integrate through to obtain the unconditional yield 

distribution  
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(A18) ( ) ( )[ ( ; )] ( ) Prob yield | ( ) Prob yield .
W W

M r y w dG w y w dG w y= ≤ = ≤∫ ∫  

Similarly, ( )| ( ) [ ( ; )] Prob yield |zT y G h y z y z= = ≤  and 

(A19) ( ) ( )[ ( ; )] ( ) Prob yield | ( ) Prob yield .
Z Z
G h y z dF z y z dF z y= ≤ = ≤∫ ∫  
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Figure 1. Mapping weather variation to yield variation
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Figure 2. Yield under good and bad local idiosyncrasies
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