

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

New Sources for Biofuels: What Are They?

Rick Zalesky Vice President Chevron Technology Ventures

U.S. Department of Agriculture 2008 Outlook Forum Arlington, Virginia – February 21, 2008

Framing the Future of Energy

- Significant growth is expected in global energy demand
- Adding and accelerating diversification is essential
- Scale matters and scaling up has effects
- Infrastructure development is often overlooked
- Renewable energy requires different business models
- Energy strategies and solutions require a holistic view, including addressing carbon constraints

For a comprehensive analysis of the future of energy to 2030, see the major new study at: *WWW.npc.org*

The Dimensions of Energy

Scale	Time	Capital
Global fuel volume: Today: One thousand	Manufacturing and infrastructure: • Takes decades to develop	Estimates of future investment call for \$20+ trillion over the next 30 years
 barrels per second > 1 trillion gal/yr 0.5 gal for every human, every day 	 at scale; lasts generations Large ethanol plant: 100 MM gal/yr Large crude refinery: 3000 MM gal/yr 	the flext 30 years
 Tomorrow – 2030 Mid-range growth forecasts at + 50% Low-range growth forecasts at +30% 	Technology: • Avg. >15 yrs from invention to large scale deployment	

Chevron's View of the Next Generation of Global Energy

Conventional Fuels
Finding and Developing the
Next Trillion Barrels

Alternative Fuels

Converting Unconventional Resources with Molecular Transformation

Renewable Fuels

Building Industrial-Scale,

Sustainable Business Models

Fuels from Unconventional Resources

Fuels from Unconventional Resources

Chevron

Synthetic Alternative Fuels

Synthetic Alternative Fuels

Advanced Biofuels Development

Industrial-scale Infrastructure

2nd Generation Technology

Key Components

Large, concentrated supplies of feedstock

Advanced Biofuels Development

Industrial-scale Infrastructure

2nd Generation Technology Large, concentrated supplies of feedstock

Key Components

Feedstock Challenges

Develop cost-advantaged access to scalable feedstock supply to support industrial scale volumes:

- Scale and economic viability
- New vs. existing infrastructure
- Crop threats and seasonality
- Food vs. fuel competition
- Land availability
- Level and persistence of subsidies
- Water supplies
- LCA & LUC

Algae, which require no arable land at all, potentially can produce much more oil per acre than any terrestrial crop.

However, algae is still some years from being a commercially viable feedstock source.

Conventional and Green Crude Process

With all the excitement about alternative energy sources ...

... it's important to keep perspective ...

... and we're going to need it all.

Fundamentals of the Energy System

- A complex blend of economics, geopolitics, technology and the environment
- World's largest supply chain
- Highly integrated infrastructures
- Capital- and technology- intensive
- Very long-lived assets

