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Abstract

This study investigates the impact of agronomic practices and technology adoption on the extent
of pre-harvest losses among maize and paddy farming households in Tanzania. Using data from
the fifth wave of the 2019/2020 Tanzania National Panel Survey, we estimate pre-harvest loss as
the difference between expected and actual production and construct a binary indicator that takes
the value 1 if a household experienced crop loss and 0 otherwise. To assess the impact, we
employ two estimation techniques: Propensity Score Matching (PSM) and the Generalized
Additive Model (GAM). Results from the PSM reveal a negative and significant Average
Treatment Effect (ATE), with marginal probabilities indicating that adopters of agricultural
technologies have an approximately 15 percent lower predicted probability of experiencing pre-
harvest losses compared to non-adopters. In the GAM analysis, intercropping, the use of organic
and inorganic fertilizers, herbicides, mechanization, animal traction, and improved seeds are
found to influence maize pre-harvest losses, with intercropping being the only practice associated
with increased losses. For paddy, the use of organic fertilizer shows a positive association with
pre-harvest losses, while animal traction, pesticides, and irrigation are associated with reductions
in losses. Based on these findings, it is essential to promote the widespread adoption of effective
technologies through targeted extension programs. In addition, training on the appropriate use of
these technologies, coupled with government subsidies to support adoption, could play a critical
role in reducing pre-harvest losses and enhancing food security.
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1.0 Introduction

The persistence of global hunger and food poverty amid rising population growth presents a
profound economic and development challenge. The 2030 Agenda for Sustainable Development,
among others, identifies the eradication of poverty and hunger as central to global well-being.
With the world population projected to reach 8.5 billion by 2030 and 9.7 billion by 2050 (United
Nations, 2019b), ensuring sustainable food systems is essential not only for human welfare but
also for economic stability. Achieving these objectives depends significantly on the productivity
and sustainability of the agricultural sector. However, this initiative is undermined by systemic
inefficiencies, including pre-harvest losses, that reduce food availability and depress households’
farm incomes, thereby perpetuating poverty and inefficiency in food markets.

According to the Food and Agriculture Organization (FAO, 2017, 2018b), an estimated 1.3
billion tons of food are lost annually across the global value chain. This represents not only a
waste of calories and nutrients but also a substantial loss of income and productivity, especially
in developing economies where agriculture accounts for a significant share of GDP and
employment. In sub-Saharan Africa (SSA), the majority of food losses occur during the
production, handling, and storage stages (Searchinger et al., 2018), and approximately 35% of
food produced never reaches the consumer (Sethi et al., 2020).

In Africa, and Tanzania in particular, pre-harvest losses are poorly documented, which limits the
potential for scalable solutions (FAO, 2018b, 2019). The challenge is visible in persistently low
yields. Citing specific documentation for maize and paddy, the major staple foods in the country,
the FAO estimates potential yields at 6-10 tons for maize and 3-6 tons for paddy per hectare
(Senkoro et al., 2018). However, actual national averages remain at 1.8 and 2.2 tons per hectare,
respectively (NBS, 2023). This gap underscores inefficiencies in production, much of which
stems from poorly documented and under-addressed pre-harvest losses. The losses represent an
often-overlooked form of production inefficiency and have received inadequate empirical
attention (Fekadu & Andarege, 2024; Nkwain et al., 2022).

Additionally, while Tanzania has developed national strategies on post-harvest loss management
(URT, 2019a, b) and broader sector plans such as the Agricultural Sector Development Program
Phase Il (ASDP II), pre-harvest lacks comparable policy visibility and remains absent from
formal monitoring systems. This neglect reflects a lack of empirical evidence, diagnostic
capacity, and investment in early-stage loss reduction. Consequently, decision-makers lack the
information needed to design effective interventions, and farmers continue to operate below their
production frontier. To fill this empirical and policy gap, this study poses the following research
questions: [1] What is the extent of pre-harvest losses in maize and paddy production in
Tanzania? [2] To what extent does the adoption of technology mitigate pre-harvest losses? [3]
How do specific agronomic practices influence pre-harvest losses in maize and paddy systems?

These questions are directly motivated by the need to enhance farm-level efficiency, boost
agricultural incomes, and improve food system resilience. By linking losses to technology and
agronomic decisions, the study seeks to identify scalable solutions rooted in both economic
theory and practical relevance. It also contributes to the literature by focusing on pre-harvest
dynamics, a relatively underexplored dimension of the yield gap discourse. The study is
theoretically framed by three complementary perspectives that inform its analytical approach.
The Production Function Theory conceptualizes agricultural output as a function of key inputs
such as land, labor, fertilizer, and technology (Taherdoost, 2018). Pre-harvest loss is understood
as a deviation from the potential output frontier, reflecting inefficiency. The Diffusion of
Innovation Theory (Rogers, 1995), which explains how technologies spread through farmer
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communities, emphasizing the role of communication channels, social systems, and perceived
benefits. The Unified Theory of Acceptance and Use of Technology (Lai, 2017, 2020), which
identifies behavioral and structural factors affecting technology uptake, including performance
expectancy, effort expectancy, and facilitating conditions.

Together, these theories enable a holistic investigation of pre-harvest loss and technology
adoption. By embedding these theories in the Tanzanian context, this research offers insights into
both the technical and behavioral determinants of pre-harvest losses. It positions technology
adoption not merely as a technical fix but as an economic behavior shaped by expectations,
constraints, and institutional support. This framing supports the design of policies aimed at
reducing losses, enhancing efficiency, and promoting sustainable agricultural transformation

The remainder of this study is organized as follows. Section 2 reviews the literature on
technological adoption in agricultural production and management. Section 3 depicts the study
area, sampling methodology, sample size, measurement of variables, and analytical methods.
Section 4 presents the study findings, and Section 5 rests on conclusions and recommendations.

2.0 Literature review

2.1 Theoretical Framework

The present study integrates multiple theoretical lenses to investigate pre-harvest losses and
technology adoption among smallholder farmers. First, the Production Function Theory posits
that agricultural output is a function of key inputs, land, labor, capital, seeds, fertilizer, and
technology (Taherdoost, 2018). In this framework, pre-harvest loss is conceptualized as a form
of production inefficiency, representing deviations from the optimal input-output frontier. This
theoretical stance provides a basis for modeling inefficiencies that arise due to constraints in
technology, agronomic practices, or knowledge.

Second, the Diffusion of Innovation Theory (Rogers, 1995) describes how innovations are
adopted over time within a social system. It identifies five attributes influencing adoption:
relative advantage, compatibility, complexity, trialability, and observability. In agriculture, this
theory is critical in understanding how innovations such as improved seeds or mechanization
spread among farmers and how social structures mediate adoption. Third, the Unified Theory of
Acceptance and Use of Technology (UTAUT) (Lai, 2017; 2020) brings in behavioral and
contextual considerations, performance expectancy, effort expectancy, social influence, and
facilitating conditions as key predictors of technology adoption. Although originally developed
in information systems literature, UTAUT is increasingly used in agricultural contexts, especially
where behavioral, institutional, and infrastructural barriers influence adoption.

Furthermore, the study is informed by concepts from agricultural economics, particularly models
of adoption under risk and uncertainty, as well as stochastic frontier analysis, which
conceptualizes inefficiency as a gap between observed and potential output. This grounding
allows the current research to assess pre-harvest losses as a measurable inefficiency problem and
connect theoretical constructs to empirical estimation strategies. Theoretical frameworks applied
here enable an integrated analysis of both technical and behavioral sources of pre-harvest losses.
The study positions inefficiency as an economic issue, explained not only by input constraints
but also by adoption behavior, institutional conditions, and farmer perceptions.
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2.2 Empirical Literature

2.2.1 Determinants of technology adoption

Numerous studies examine the drivers of agricultural technology adoption in Sub-Saharan
Africa. For instance, Mumah et al. (2024) used an endogenous switching regression model in
Kenya to assess the adoption of chisel harrows. They found farm size, credit access, gender, and
extension contact positively associated with adoption, while age and market distance had
negative effects. Similarly, Mdoda et al. (2022) employed PSM to assess mechanization adoption
and found similar socioeconomic influences; however, the study had limited generalizability due
to its small sample size.

In Uganda, Pan et al. (2018) employed a regression discontinuity design to demonstrate that
households in eligible villages were more likely to adopt improved, cost-effective agricultural
inputs, underscoring the catalytic role of extension services. A complementary perspective is
provided by Bundi et al. (2020), who examined the adoption of pre-harvest practices (PHPS)
among mango farmers. Their use of multivariate and ordered probit models revealed that
adoption was influenced by farming experience, income from off-farm sources, mango sales,
number of mango trees, access to inputs, and farmer perceptions.

Collectively, these studies highlight the significance of access to inputs, market participation,
and extension services in promoting adoption. However, they often stop short of linking
technology adoption to outcomes such as loss mitigation or efficiency gains. Furthermore,
behavioral and cognitive dimensions, such as perceptions of effort, risk aversion, and attitudes,
remain underexplored, pointing to the potential value of integrating frameworks like the Unified
Theory of Acceptance and Use of Technology (UTAUT).

2.2.2 [Estimation and Measurement of Losses

Accurately measuring pre-harvest losses remains a methodological challenge. Most studies rely
on recall-based data with limited methodological frameworks or spatial resolution, thus raising
concerns about reliability. While global assessments such as those by FAO (2019) and Abass et
al. (2018) have developed general loss profiles, they rarely provide empirical, peer-reviewed
evidence grounded in representative field data.

For example, Shah (2014) assessed soybean losses in Maharashtra and estimated that 14-16% of
total production was lost across pre-harvest to post-harvest stages. However, like many studies,
the estimates were based on farmer-reported losses. Similarly, Alemayehu et al. (2018) used
descriptive and regression techniques to assess fruit loss in Northwestern Ethiopia. They found
total losses of 44.8%, with pre-harvest losses accounting for 20.7%. Factors such as income
source, pesticide use, and organic input application were significant predictors of loss levels.
Nevertheless, the study lacked specific documentation on how losses were measured.

However, innovative approaches are emerging. For instance, Yamada et al. (2025) introduced a
novel methodology using computer vision and deep learning to detect and quantify pre-harvest
losses in soybean and wheat. Leveraging advanced imaging technologies such as Mask RCNN,
YOLOX, DETR, and a modified YOLOV8-p2, they achieved high precision and recall, with the
best model yielding an F1 score of 0.710 for soybean and 0.698 for wheat. Despite these
advancements, integrating such technologies with socioeconomic surveys remains limited.

2.2.3 Technology use and pre-harvest losses

While the yield-enhancing effects of technology adoption are well-documented (see, for instance,
Sheahan & Barrett, 2017), evidence specifically linking technology use to reductions in pre-

25



AJER, Volume 13 (3), Sept 2025, Edwin Tito Magoti & Elevatus Mkyanuzi

harvest losses is limited. For instance, Darfour and Rosentrater (2022) reported that over 93% of
maize farmers in Ghana experience pre-harvest losses caused by rodents, birds, and lodging.
Similarly, Kirigia et al. (2017) identified several causes of pre-harvest losses, such as drought
stress, unfertile soils, pest infestation, and poor harvesting techniques, emphasizing production
risks in SSA. Despite the contribution of the studies to the literature, they relied heavily on self-
reported data, with limited methodological rigor.

From a more technological angle, Kumari et al. (2023) highlighted the role of mechanization in
improving the quality and safety of horticultural produce. They noted that pre-harvest
mechanization, when adequately powered and economically viable, significantly reduces losses
and enhances produce quality. In Tanzania, Mlyashimbi et al. (2022) conducted field simulations
and found higher rodent-induced seedling damage in clay soils. Despite offering biological
insights, this study lacked socioeconomic integration, limiting its policy relevance. Also, there
remains a limited number of empirical studies that rigorously quantify how specific technologies
affect pre-harvest losses across varied farming systems.

2.2.4 Synthesis and Gaps in the Literature

Despite the extensive literature on agricultural technology adoption, few studies explicitly link
these technologies to reductions in pre-harvest losses. Much of the existing work is descriptive,
lacks rigorous identification strategies, and is often based on small or region-specific samples.
Therefore, measurement of pre-harvest losses remains inconsistent, with few studies leveraging
large-scale representative data or integrating agronomic and socioeconomic dimensions.

In Tanzania specifically, an absence of data-driven evaluations and minimal literature on pre-
harvest loss quantification and its linkage to agronomic or technological interventions. Existing
policy strategies prioritize post-harvest losses, leaving a significant evidence gap for pre-harvest
inefficiencies. This underscores a critical gap in evidence-based policy formulation for reducing
pre-harvest losses through targeted technological interventions.

This study fills these gaps by combining economic, behavioral, and agronomic lenses to evaluate
how technology adoption and farming practices affect pre-harvest losses. By leveraging
nationally representative data and advanced econometric methods, it offers context-specific,
policy-relevant insights for enhancing agricultural efficiency in Tanzania.

3.0 Materials and Methods

3.1 Data types and sources

The study used secondary data from the fifth wave of the 2019/2020 Tanzania National Panel
Survey (NPS-5). The data were sourced from the National Bureau of Statistics (NBS).

3.2 Measurement of study variables

In this study, the outcome variable was pre-harvest loss. The study borrowed computational
methodology from FAO (2018a) and thus computed preharvest losses by considering the
difference between expected production and effective production (1). After the computation of
actual and relative losses, the study created an indicator variable, carrying a value of 1 if a
household had experienced crop loss and 0 otherwise.

LpreH = Qexp — Q = (Aplant x Yexp) — (Aharv x Yeff) (1)
Where Qexp refers to expected production, which was computed by taking the product of planted

area (Aplant) and expected yield (Yexp); and Q is the effective production, computed by taking
the product of harvested area (4harv) and effective yield (Yeff).
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To get the expected Yield, first, the study computed the actual yield as a ratio of the quantity
harvested (Q) to the area harvested. After computing the actual yield, the data were grouped by
crop type and domain, and then the expected yield was estimated as the 80" percentile of effective
farm yield, FAO (2018a). Accordingly, the expected production was computed by taking the
product of the expected yield and the area planted.

The main predictor variables for this study were application of herbicides, pesticides, organic
fertilizers, inorganic fertilizers, mechanized farming, use of animal traction, soil erosion control
and water management mechanisms, and intercropping. These were indicator variables, with
code 1 if the household adopted a particular farming practice in the production of either maize or
paddy and 0 otherwise. Also, the type of seeds used constituted a list of predictors, with code 1
if the household used improved seeds and 0 otherwise. Additionally, the study used household
and farm-related variables that are likely to influence the decision of a household to adopt and
use a particular farming technology. They are: Household headship, and farming Experience
proxied by the Age of the head of household. Other variables relating to determining accessibility
to farms, such as distance from the farm to the main road and from the farm to home, were also
used.

3.3 Estimation techniques
To achieve the intended study objectives, the two approaches were employed in the analysis: [1]
the Propensity Score Matching technique and [2] the Generalized Additive Model (GAM).

3.3.1 Propensity Score Matching (PSM)
The current study adopted a computational approach as proposed by Gertler et al. (2010) and
Zhao et al. (2021). The study defined the propensity, e(x), as the conditional probability of a
household to adopt a particular production technology, p(T), given a set of covariates, x.
Propensity scores were estimated in the framework suggested by Rosenbaum and Rubin (1983)
as:

e(x) =Pr(T=1|x) =F (h|lx) =E(T=1|x) (2)

Where F (.) is a cumulative distribution function of the probability of being treated, and X is a
vector of observable pre-treatment characteristics. In the context of the current study, the
technology adoption (fechAdoption) referred to the use of at least one modern technology-related
farming practice and was computed by aggregating (summing) the values of ten (10) variables
and then creating an indicator variable with code 1 for households that adopted at least one
technology (sum of techAdoptionScore> 0) and 0 otherwise (sum of fechAdoptionScore = 0).

After computing the propensity scores, the units in the treated group were matched to the pool of
control units. Full matching was found appropriate for this study as it matches one treated unit to
one or more control units, it uses all the available information (no loss of sample size), and
reduces bias as well as the distance between control and treated units (Harris and Horst, 2016).
Balance was then assessed by comparing the means of both treated and control units (Caliendo
and Kopeinig, 2008) and treatment effects were estimated using a Generalized Linear Model with
a logit link, (Wooldridge, 2013, 2015).

To gain insightful knowledge about the effect of technology adoption on pre-harvest losses, the
study computed marginal effects which according to Norton et al. (2019) and Liidecke (2018),
are useful in measuring the extent to which the predicted probability of the outcome variable
(pre-harvest losses) changes given that the household adopts a particular farming technology
without taking into account the non-linear influence of other predictors.
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3.3.2 Generalized Additive Model

The Generalized Additive Model (GAM) is a class of models that extends the usual collection of
likelihood-based regression models in a method for its estimation (Hastie and Tibshirani, 1986).
GAM was used to allow variable-specific estimation, thus relevant in presenting a granular
understanding of specific farming practices that drive the impact and how their impact varies by
crop type. Learning from Hastie and Tibshirani (1986), GAM generalizes a logistic binary model

p(x) €)
o () =
og T+ p(0) 8o + x6
to smooth a function defined by :

l p
p(x)
log (1 n p(x)) = §p + Z sjxj + Z te(xl-,xj) + z 8;x;
j=1 Lj j=1
where;

* sj(xj) are smooth functions for continuous predictors farmExp, distMainRoad and
distHome. These variables are expected to have a non-linear relationship with the
outcome variable.

* The tensor products fe(x; x;) for interaction capture the extent to which the specified
predictor variables jointly influence the outcome variable.

* OJpxp are linear terms for categorical predictors: herbicides, pesticides, OrganicFert,
InOrganicFert, Mechanization, animalTraction, SoilWaterControl, intercropping,
MainSeeds, hhHead. These variables are included as fixed effects and are not expected
to have nonlinear effects on the outcome variable.

(4)

Therefore, substituting the smooth effects and tensor product smooths in the estimation equation
(8), the estimation equation used in this study is as presented in (9)

p(x) ) _ . . .
log (1 oy 8o + s (farmExp) + s (distHome) + s (distMainRoad)

“

+ te(farmExp, distMainRoad) + te(farmExp, distHome)
P

+ te(distHome, distMainRoad) + Z ix;
j=1

4.0 Results and Discussion

4.1 Crop Loss

Table 1 presents a summary of the statistics on the status of crop loss by crop type. Among the
total households reported to engage in Maize and Paddy production, 75.7 percent experienced
preharvest losses while 24.3 percent did not. Across crops, statistics indicate minimal variation,
with proportion of househsehold that expericnced loss being marginally higher in paddy farming
households (76.0 percent) as compared to Maize farming households (75.7 percent).

Table 1: Number and Percent of households experienced pre-harvest loss

Did not Experienced Loss  Experience Loss
Crop type
Count Percent Count Percent
Maize 573 24.3 1782 75.7
Paddy 164 24.0 519 76.0
Total 737 24.3 2301 75.7
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4.2 Mean, Median, and Percentage Loss

The current study computed the loss percentage as well as the mean and median loss of crops by
crop type. As depicted (Table 2), the loss percentage of Maize and Paddy crops aggregated to
35.3 percent and 38.8 percent, respectively. Further, statistics show the losses of Maize and Paddy
averaging 514 tons and 1230 tons, with median values of 409 and 760 tons, respectively. The
findings depict that preharvest losses are more pronounced in Paddy than in Maize, both in terms
of absolute values and relative losses. The possibility of some households having exceptionally
higher losses is also evidenced by higher values of the mean over the median.

Table 2: Mean, Median, and Percentage losses of Maize and Paddy before harvests

Crop Mean Median Percent
Maize 514 409 35.3
Paddy 1203 760 38.8

4.3 Farming experience, proximity to farm, and crop loss

The study used the variable age as a proxy for farming experience, distance to home, and distance
to market, hypothesizing that these variables are likely to impact the decision of a farmer to adopt
a particular technology and subsequently influence crop loss.

For maize crops (Table 3), statistics show that households that heads of households that did not
experience loss their mean and median age was less than those that experienced crop loss.
Similarly, the average distance to home and the average distance to the main road were less for
households that did not register losses as compared to those that had their crops lost during
production. From this we draw several insights, including: [ 1] farmers experiencing crop loss are
on average older than those without losses; [2] Farmers whose farms are far from residences are
more vulnerable to preharvest losses; and [3] Preharvest loss of maize is marginally low to farms
located close to main road than those far away.

Table 3: Number, Mean, Median, Maximum, and Minimum values of key variables by
pre-harvest loss status - Maize

Variable Did not experience l0ss Experienced loss
description Age Distance Distance | Age Distance Distance
to home to road to home to road
N 1743 1743 1743 635 635 635
Mean 48.6 4.2 1.8 50.7 5.0 2.0
Median 47.0 0.01 0.5 50.0 15 1.0

For the Paddy (Table 4), the findings depict that loss was registered to households with younger
household heads than those with older heads. This could be translated to a lack of commendable
farming experience or inadequate technical know-how on managing farm challenges and risks.
Concerning distance to home, there is no notable difference in the average distance. However,
the median for those who had losses is slightly higher, suggesting that paddy farms located far
away from homes are prone to registering losses. This could be attributed to the nature of paddy
farms, which require constant monitoring to prevent them from being invaded by animals,
particularly birds. On the contrary, evidence shows that farms located further away from the main
road had a reduction in exposure to losses. Losses were common to paddy farms that are
relatively close to the main road.
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Table 4: Number, Mean, Median, Maximum, and Minimum values of key variables by
pre-harvest loss status — Paddy

Variable Did not experienced loss Experienced loss
description - - - -
Age Distance Distance | Age Distance Distance
to home to road to home to road
N 528 527 528 157 157 157
Mean 48.9 10.7 2.8 47.0 10.7 2.7
Median 48.0 3.0 15 46.0 4.0 1.0

4.4 Technology adoption

Descriptive statistics (Table 5) indicate that farming households have relatively low adoption
rates of modern agricultural technologies. For maize-cropping households, intercropping and the
use of improved seeds were the most adopted farming practices. The use of animal traction and
organic fertilizer was minimal, and practices such as soil and water conservation and irrigation
were lastly adopted. For paddy cropping households, the most adopted practice is the use of
animal traction, and practices such as soil erosion control and water conservation, and
intercropping were minimally adopted.

Table 5: Percentage distribution of households applying or using selected farming
practices

Farming practice Maize Paddy
Herbicides 06.6 12.4
Pesticides 17.6 6.40

Organic Fertilizer 20.4 7.90

Inorganic Fertilizer 19.7 12.4
Mechanization 09.1 12.0

Animal Traction 355 55.8

Soil and water conservation 07.3 11.37
Intercropping 50.4 7.40

Irrigation 0.80 3.80

Improved main seeds 44.2 145

Table 6 depicts the study findings on the overall technology adoption and crop type. As indicated,
89.2 percent of households that engaged in maize production adopted at least one technology,
while 10.8 percent did not. Similarly, 82.8 percent of households that engaged in paddy
production were able to adopt at least one technology, whereas 17.2 percent did not. Technology
adoption was, therefore, relatively higher in maize-farming households as compared to paddy-
farming households.

Table 6: Distribution of Agricultural households by technology adoption status and crop
type

Description Maize Paddy
Count Percent Count Percent
Used at least one technology 2122 89.2 567 82.8
Did not use any technology 256 10.8 118 17.2

4.5 Production, technology adoption, and preharvest
Table 7 presents the mean and median values of harvests by crop type, technology adoption
status, and whether the household experienced pre-harvest loss. The results indicate that, on
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average, both the mean and median harvest values are consistently higher for households that
adopted modern farming technologies and did not experience pre-harvest losses. Moreover, even
among non-adopters, households that did not experience pre-harvest loss reported higher
harvests than their counterparts who faced losses.

Table 7: Mean and Median values of harvests (in tons) by Crop Type, technology adoption
status, and whether the household experienced pre-harvest losses

Description Mean Median
Maize  Adopters Experienced preharvest loss 427 240
Did not Experience loss 1845 666
Non-Adopters Experienced preharvest loss 211 100
Did not Experience loss 640 50
Paddy Adopters Experienced preharvest loss 1114 700
Did not Experience loss 2631 2100
Non-Adopters Experienced preharvest loss 621 300
Did not Experience loss 1204 900

4.6 PSM Estimation output
4.6.1 Summary of Balance for Matched Data

As indicated (Table 8), the balance diagnostics from the propensity score matching show that the
balance was equally achieved. Statistics on the standardized mean differences are close to zero,
with smaller systematic differences between groups on observed characteristics after matching.
For distance to main road, despite its means being similar among the two groups, its variance
ratio was a relatively higher, signaling residual imbalance. However, the findings indicate an
overall good balance, enough for estimating the treatment effects.

Table 8: Summary of Balance for Matched Data

. Means Means STD.Mean .

Variable treated control Diff Var.Ratio eCDF Mean
Distance 0.87 0.87 0.0149 1.2001 0.0058
Age 48.97 48.27 0.0469 0.8179 0.0224
Hhhead: male 0.73 0.72 0.0421 - 0.0191
Hhhead: female 0.26 0.28 -0.0421 - 0.0191
Distance to home 5.88 5.34 0.0239 8.4962 0.0346
Distance to main road 2.07 2.38 -0.0825 1.3475 0.0265
Location: rural 0.85 0.84 0.0261 - 0.009
Location: urban 0.15 0.16 -0.0261 - 0.009

4.6.2 Average Treatment Effect (ATE)

Table 9 presents the Average Treatment Effect (ATE). For the maize, the ATE is negative (-0.161)
and significant (p-value < 0.01). Similarly, the ATE for paddy is also negative (-0.150) and
significant (p-value < 0.01). The findings indicate that technology adoption during production
imposes a negative impact on pre-harvest loss, such that technology adopters are less likely to
experience pre-harvest loss than non-adopters. Accordingly, adopting technology in production,
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on average, reduces preharvest losses of maize and paddy by 16.1 and 15.0 percentage points,
respectively.

Table 9: Estimates of the Average Treatment Effect (Odds) on the probability scale by

crop type.
Term Estimate Std. Exrror Z Value Prob. 2.5% 97.5%
Maize -0.161 0.0318 -5.05 <0.001 -0.223 -0.0985
Paddy -0.150 0.0369 -4.08 <0.001 -0.223 -0.0781

4.6.3 Average Comparisons
Table 10 presents the predicted probabilities of crop loss for technology adopters and non-
adopters. As depicted, the predicted probabilities of experiencing pre-harvest losses in maize are
higher for non-adopters (90.1 percent) as compared to adopters (74.4 percent). Equally, from
paddy farming households, adoptors had a 73.8 percent predicted probability of experiencing
pre-harvest losses as opposed to the 88.8 percent of the non-adoptors.

Table 10: Estimates of the average predicted probability of pre-harvest loss by levels of
technology adoption scale and crop type.
Tech. Adoption Estimate  Std. Error Z Value Prob. 25% 97.5%

Maize
Adopters 0.744 0.0111 66.8 <0.001 0.722 0.766
Non-adopters 0.905 0.0299 30.3 <0.001 0.846 0.9064
Paddy
Adopters 0.738 0.0150 49.3 <0.001 0.708 0.767
Non-adopters 0.888 0.0355 25.0 <0.001 0.818 0.958

4.7 Generalized Additive Model

4.7.1 Parametric regression output
The Generalized Additive Model (GAM) enabled analysis of the effect of individual technology
adoption variables on pre-harvest loss. The results, based on odds ratios, indicate that farmers
who intercrop maize with other food crops are 57 percent more likely to experience pre-harvest
losses. In contrast, the use of organic and inorganic fertilizers reduces the probability of pre-
harvest loss by 25 and 44 percentage points, respectively. The application of herbicides is
associated with a 35 percent reduction in the likelihood of pre-harvest loss, while mechanization
lowers the probability of loss by 28 percent. Similarly, the use of animal traction is linked to a 43
percentage point reduction in the probability of experiencing pre-harvest losses. Furthermore, the
adoption of improved seeds reduces the likelihood of pre-harvest loss by 46 percent, meaning
farmers who use improved seeds have a 0.46 lower probability of incurring losses.

In the case of paddy production, pre-harvest losses were significantly influenced by the use of
organic fertilizers, animal traction, pesticides, and irrigation. The findings suggest that irrigation
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is associated with a 68 percent reduction in pre-harvest losses, while the use of pesticides and
animal traction reduces the likelihood of loss by 48 percent, each. In contrast, the use of organic
fertilizers increases the likelihood of pre-harvest loss, with farmers applying organic fertilizers

being 2.17 times more likely to experience such losses compared to non-users.

Table 11: Parametric Regression outputs of the Generalized Additive Model

Maize Paddy

Descriptio Coeff. Std.Error Pr( |z]) Coeff. Std.Error Pr( |z])
(Intercept) 2.0141 0.2548 < 0.001 1.8662 0.2647 < 0.001
Household headship:Male | -0.2833 [0.75] 0.1245 0.0228 |-0.1803 [0.84] 0.2365 0.4260
Herbicides:Yes -0.4333 [0.65] 0.1942 0.0257 |-0.1880[0.83] 0.3015 0.5327
Pesticides:Yes 0.1262 [1.13] 0.1374 0.3584 | -0.6565 [0.52] 0.3972 0.0984
Inorganic Fertilizer:Yes -0.5751 [0.56] 0.1262 < 0.001 |-0.3277[0.73] 0.3277 0.3302
Organic Fertilizer: Yes | -0.2874 [0.75] 0.1257 0.0222 | 0.7737 [2.17] 0.4098 0.0590
Main seeds:Improved -0.6236 [0.54] 0.1052 < 0.001 |-0.1176[0.89] 0.2704 0.6636
Mechanization:Yes -0.4728 [0.62] 0.1668 0.0046 |-0.4710 [0.62] 0.3198 0.1409
Animal traction:Yes -0.5663 [0.57] 0.10731 < 0.001| 0.6478[0.52] 0.2142 0.0025
Soil & water control:Yes | -0.0250 [0.98] 0.1073 0.8938 | 0.0501[1.05] 0.2915 0.8436
Intercropping:Yes 0.4480 [1.57] 0.1874 < 0.001| 0.1134[1.12] 0.3910 0.7717
Irrigation:Yes 0.5265 [1.69] 0.1032 0.3858 |-1.1473[0.32] 0.4841 0.0178

4.7.2 Smooth terms and tensor interaction effects

Considering interaction terms, the tensor products of farming experience and distance to home
were significant (p-value = 0.0432) at five percent, similar to the interaction of Distance to home
and distance to main road (p-value = 0.0292). These findings confirm that, the combined
experience of farming experience and distance to home and that of Distance to home and distance
to main road are important in determining preharvest losses.

Table 12: Approximate significance of smooth terms for Maize

Description edf Ref.df Chisq Pr(>|z|)
s(FarmingExp) 1.0002 1.000 4.120 0.0424
s(Distance to home) 2.7190 3.343 1.574 0.8354
te(Distance to main road) 1.0022 1.004 0.832 0.3642
te(Farming Experience ,Distance to home) 1.0014 1.003 4.070 0.0432
te(Farming Experience ,Distance to main road) 0.0004 20.00 0.000 0.6114
te(Distance to home ,Distance to main road) 9.8552 15.00 17.430  0.0292
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For paddy, distance to home was the only univariate smooth term that had a significant influence
(at the 10 percent level) on the outcome variable, while farming experience, proxied by age of
the head of household and distance to main road, showed a non-significant effect at all
conventional levels. For tensor interactions, the effect of farming experience and distance to
home, as well as distance to home and distance to main road, was not significant. However, the
study found the significant influence of the interaction effect of farming experience and distance
to the main road on paddy pre-harvest losses.

Table 13: Approximate significance of smooth terms for Paddy

Description edf Ref.df Chisq Pr(>|z|)
s(FarmingExp) 1.0000 1.000 1.383 0.2397
s(Distance to home) 1.0001 1.000 2.807 0.0939
te(Distance to main road) 1.0000 1.000  0.020 0.8877
te(Farming Experience, Distance to home) 1.0000 1.000 1.310 0.2524
te(Farming Experience, Distance to main road) 0.7576  8.000  1.645 0.0940
te(Distance to home, Distance to main road) 2.0684 15.000 3.203 0.15714

5.0 Conclusions and Recommendations

Based on the survey findings, analysis from the PSM model confirms that the adoption and use
of technologies are critical in reducing pre-harvest losses. The study, therefore, concludes that
households that use modern agronomic practices or mechanization have a lower likelihood of
experiencing such losses. Equally, based on the insights from the GAM, the study concludes that
the impact of agricultural practices on pre-harvest losses is not uniform: it is subject to and
responsive to crop type, as well as the nature of the technology applied.

Based on the findings, the study recommends promoting farming technologies such as herbicides,
mechanization, improved seeds, and fertilizers, all of which significantly reduce pre-harvest
losses when properly applied. The study emphasizes the importance of crop-specific
interventions: for maize, the focus should be on herbicides, mechanization, and inorganic
fertilizers, while for paddy, irrigation, animal traction, and effective pest control should be
prioritized. Additionally, the use of organic fertilizers should be guided by crop-specific
recommendations, as their benefits vary depending on soil and water conditions. Improved
irrigation infrastructure and training on water-saving techniques are particularly crucial for paddy
cultivation to address water management challenges. The study also calls for a re-evaluation of
intercropping practices, as these may inadvertently increase losses in maize farming if not
properly managed.
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