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Abstract 

Nonnative invasive species result in sizeable economic damages and expensive 
control costs. Because dynamic optimization models break down if controls depend in 
complex ways on past controls, non-uniform or scale-dependent spatial attributes, etc., 
decision support systems that allow learning may be preferred. We compare three models 
of an invasive weed in California’s grazing lands: (1) a stochastic dynamic programming 
model, (2) a reinforcement-based, experience-weighted attraction (EWA) learning model, 
and (3) an EWA model that also includes stochastic forage growth and penalties for 
repeated application of environmentally harmful control techniques. Results indicate that 
EWA learning models may be appropriate for invasive species management. 
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Introduction 

Non-indigenous plant species established in the United States include an 

estimated fifty thousand species that have escaped and now exist in natural ecosystems, 

threatening survival of native species and causing damage and control costs of 

approximately $137 billion annually (Pimentel et al. 2000). As one example, yellow 

starthistle (Centaurea solstitialis L., hereafter YST) is a non-indigenous invasive plant 

species native to Eurasia that is believed to have been introduced to California as a 

contaminant in imported alfalfa seed in the 19th century (DiTomaso and Gerlach 2000). It 

has become naturalized in much of the U.S., but the heaviest infestations are in western 

states including California, Idaho, Oregon and Washington (USDA 2005; USGS 2005). 

California has become particularly heavily infested since the species’ accidental 

introduction. Surveys of county agricultural commissioners in California reveal that the 

area infested by YST has increased significantly over the past five decades, from 1.2 

million acres in 1958 to 1.9 million acres in 1965, 7.9 million acres in 1985, and 14.3 

million acres in 2002  (Maddox and Mayfield 1985; Pitcairn et al. 2004). As an annual 

plant, the weed spreads through prolific seed production, with dispersion aided by birds 

and, more commonly, human movement and activities such as road building. Each plant 

is capable of producing up to 100,000 seeds (DiTomaso 2001) of which approximately 

95% are viable (Lass et al. 1999); some seeds remain productive for as long as ten years, 

posing significant challenges to control or eradication efforts. Without efforts to control 

YST, potential infestation could reach upwards of 40 million acres of California 

grasslands (Jetter et al. 2003).  
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Negative impacts of YST infestation include reductions in native plant diversity, 

decreased grazing yields, reduced accessibility to recreational trails for hiking and horses, 

and decreased water for agriculture and aquatic life. Due to the scope of the infestation, 

eradication is impossible (Eiswerth and van Kooten 2002; Thomsen et al. 1993). Yet, the 

State of California has deemed worthwhile efforts to control YST as damages can be 

large. For example, it has been estimated that YST alone results in a water loss in the 

Sacramento Valley valued at $16-$56 million per year (Dudley 2000; Gerlach et al. 

1998). 

While the biology of YST and its control have been studied at length, surprisingly 

little is known about the economics of YST infestations. YST control has both a private 

and public good component. Biological controls (e.g., flies that lay eggs in the seed head) 

benefit landowners dispersed across a large area, while direct controls (e.g., burning, 

chemical spraying) that reduce YST infestation on one field have a spillover benefit as 

they can mitigate the spread to adjacent (and even more distant) lands. Therefore, public 

expenditures on YST control are warranted. But so are private efforts to control YST 

because, by reducing infestation levels on one’s own fields, the landowner can increase 

forage production, lower veterinarian costs and reduce the costs of preventing further 

spread in the future. However, private efforts to control YST infestations also have 

negative externalities: Burning range to control YST can result in escapes that lead to 

wildfires, while herbicide use can lead to reduced ecosystem resiliency and human health 

problems.  

For California, Jetter et al. (2003) calculated the costs and benefits of a YST 

biological control program. Their estimates of benefits were based on the views of 
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appraisers concerning land values with and without YST infestation, which assumes that 

all the costs of YST infestation are reflected in land prices.1 The researchers estimate that 

an effective biological control program results in benefits of some $40 million to $1.412 

billion, depending on whether one considers only acres infested or those susceptible to 

YST.  

Economists generally employ dynamic optimization models to determine the most 

effective means for controlling weed infestations. Depending on whether models are open 

or closed loop in form, their solution provides a decision maker with the optimal strategy 

to pursue for each level of infestation at each point in time (Eiswerth and van Kooten 

2002). Dynamic optimization models break down, however, if current decisions depend 

not only on the current state of the system but on the state of the system and controls used 

in the past, on spatial attributes that are not uniform or scale-invariant, on existence of 

multiple stable and unstable equilibria, on potential irreversibility, and so on; uncertainty 

is ubiquitous and there is insufficient information to address it. These modeling problems 

are well known in the context of weed management (Jones and Medd 2000; Wilkerson et 

al. 2002) and ecology more generally (Holling and Meffe 1996). Thus, decision support 

systems that may be helpful in educating the public and in broader policy formation are 

often preferred to dynamic optimization tools. In the case of weeds such as YST, many 

decision-makers advocate taking a systems approach, where goals are carefully 

articulated and the long-term impacts of control efforts are regularly monitored 

(DiTomaso et al. 2000; Randall 1996). The purpose of this paper, therefore, is to compare 

 

1 For land that is identical in every respect except for extent of YST infestation, 
appraisers concluded that there would be no difference in price, only in the time taken to 
sell the property. The foregone interest on the property’s value for one month was used 
by Jetter et al. (2003) as the benefit of non-infested versus infested land.  
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different decision-making tools that seek to implement a control strategy that is optimal 

from both an economic and ecological perspective. 

In particular, the objective in this paper is to compare the results from three 

dynamic decision-making models for managing a nonnative weed species, in this case 

YST. Each model uses essentially the same data and the general objective of each is to 

maximize the future stream of discounted revenues accruing from domestic livestock 

grazing on YST-infested lands. We are not concerned about spillover costs or benefits. 

The evolving stock of YST leads to reductions in the level of the state variable (forage), 

but is influenced by human management interventions in stochastic fashion. Since 

published data on the YST stock dynamics and responses to human control are almost 

nonexistent, we employ data derived from an expert opinion survey administered to 

California land managers, weed scientists and other professionals (Eiswerth and van 

Kooten, unpubl. data, 2002), and data from a survey administered to agricultural 

producers in the state of California (Eiswerth and van Kooten, unpubl. data, 2003).  

The three models that we employ are (1) a stochastic dynamic programming 

(SDP) model, (2) a reinforcement-based experience-weighted attraction (EWA) learning 

model similar to that used by Hanaki et al. (2005), and (3) a model similar to (2) except 

that it introduces more information and specifies a stochastic forage growth equation in 

which the intrinsic growth rate is a function of precipitation. EWA learning models may 

be an appropriate tool for this context given substantial uncertainties regarding control 

effectiveness and the variation in effectiveness from period to period. In the following 

sections, we provide more background on the biology of YST, develop the decision-

making models in more detail, describe the data, and present and compare the results of 
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the models.  

Yellow Starthistle: Background to an Invasive Weed Species 

YST competes vigorously with native plants, especially grasses, that are the staple 

for livestock grazing on rangeland, and also reduces yield and quality in non-native 

pasture and cultivated crops. Deep roots enable the weed to remove soil moisture at 

depths greater than six feet, competing with perennial grasses and causing drought 

conditions for native species where YST infestation is high (Gerlach et al. 1998). 

Although YST provides some forage value in early growth stages, the spiny nature of the 

weed means that livestock and wildlife avoid grazing in heavily infested areas, as the 

spines cause damage and discomfort to grazing animals. Pastures infested with YST 

contain considerably less crude protein and total digestible nutrients compared to 

uninfested pastures (Barry 1995). Prolonged ingestion of YST by horses causes a mostly 

fatal neurological disease called equine nigropallidal encephalomalacia (ENE) or 

“chewing disease” (Cordy 1978). 

Burning, cultivation, mowing, timed grazing, application of chemical herbicides, 

and biological controls have been tried at various times against YST. The weed’s 

tendency to germinate throughout the rainy season and to re-grow after mowing or 

grazing means that such control practices must be repeated throughout the growing 

season. Regular prescribed burns and controlled grazing reduce YST seedbank stocks, 

seedling density, and mature vegetative cover, but, because seeds can remain viable for 

many years, new plants can establish in subsequent years (Kyser and DiTomaso 2002; 

Thomsen et al. 1993). Thus, one study showed that burned grassland was not 
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significantly different from unburned grassland after four years because of YST recovery 

(Kyser and DiTomaso 2002). Effective biological control agents introduced into 

California are seedhead attackers (flies and weevils), but seed reduction in areas where 

these insects are well-established has not been sufficient to reduce starthistle abundance 

(Jetter et al. 2003). Research into additional natural enemies is ongoing. As a result of the 

ineffectiveness of individual control methods and the persistence of the YST seed bank, 

effective management may require a combination of methods on a long-term basis.  

An important consideration in adopting a particular strategy is its effectiveness 

and ecological impacts over time. Some controls will not work well because, if applied 

too often in a given period, they not only reduce the YST infestation but also damage the 

overall ecosystem by reducing the abundance of ‘good’ forbs relative to weeds and other 

forbs that are more resistant to the particular herbicides used to control YST, such as 2,4-

D, triclopyr, dicamba and glyphosate (Jetter et al. 2003, p. 229). In particular, despite the 

economic viability of such a strategy, repeated use of chemical controls will have 

significant negative impacts on the surrounding ecosystem and the strategy may lose 

effectiveness over time as YST builds resistance to the chemical (Jetter et al. 2003, 

p.229).  

As noted by Holling and Meffe (1996), because “ecosystems are moving targets, 

with multiple potential futures that are uncertain and unpredictable”, management has to 

be flexible and adaptive rather than based on command and control that results from most 

dynamic optimization approaches. Therefore, an integrated adaptive-management 

approach to reducing YST infestations in the long run is likely more desirable. 

 6
 

 



Decision-Making Methods 

We employ three different programming approaches, each representing a 

decision-maker seeking to find a dynamically ‘optimal’ control strategy under conditions 

of uncertainty of varying degrees. For the current purposes, all three approaches are 

characterized by a common state transition probability matrix that describes the 

probability of a YST infestation increasing or decreasing given the application of various 

control methods, including no control.2 The models differ in how they subjectively 

interpret this information. The objective probability of a control’s true effectiveness is 

unknown to the decision-maker. 

Stochastic dynamic programming model 

The stochastic dynamic programming model offers one way to deal with 

uncertainty related to the effectiveness of controls (decisions about what to do) and how 

the state variable (weed infestation level, forage for livestock) evolves as a function of 

precipitation, intrinsic growth and human interventions. Since first introduced by Burt 

and Allison (1963), SDP has been used to determine optimal dynamic decisions for 

natural resource and agricultural decision making (see Kennedy 1986). The SDP model 

of the current study deals with optimal decision making on the part of agricultural 

producers faced with a harmful biological invasion.  

The producer’s objective is to maximize the present value of a future stream of 

net returns from the enterprise, where the enterprise consists of forage production and 

 

2 We use the same state transition probability matrices for convenience only. In practice, 
the transition matrices would not be markovian, depending on the level of the state 
variable and the controls applied in the preceding several periods. Further, we do not 
employ a continuous-time method for solving SDP problems because of the nature of the 
available data (e.g., see Miranda and Fackler 2002). 
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grazing on native and improved pastures. The per-acre net returns at time t are affected 

by the extent of infestation of YST at time t (xt). The producer’s objective function is: 

(1)  ρ∑
−

=

1

0

T

t

t Rt(xt, kt) + ρT S(xT), 

where kt is the choice of technology for YST control, S(xT) is the value of the producer’s 

land in end period T as a function of the YST infestation level (salvage value), and ρ is 

the discount factor. Our analysis is partial in the sense that it focuses on the impact of the 

invasive species on net revenues, ignoring other determinants of R. Specifically, we 

assume that the net revenue is only affected by the yield (Y) reduction caused by YST and 

YST management costs. We thus define R as the per-acre net revenue exclusive of YST 

control costs (i.e., net returns include non-YST-related production costs) and c(kt) as the 

per-acre cost of the YST control strategy k at time t – production costs are invariant with 

YST infestation.  

The general form of the equation of motion for the invasive species stock xt is: 

(2)  xt+1 = g(xt, kt) + εt, 

where ε is a random variable with zero mean and variance σ2, and the initial condition is 

x0 = x . Equation (2) is the Markov condition: current infestation levels are a function 

only of last period’s infestation level and the control applied. The evolution of the YST 

stock over time thus depends on the level of the infestation in period t, the choice of YST 

control option in period t, and stochasticity given by ε.  

We parameterize the model, including the stochastic state equation (2), using data  
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collected from an expert judgment survey of weed scientists, county farm advisors, public 

land managers and other specialists familiar with YST (see below). The Bellman 

equation for the SDP problem is: 

(3)  Vt(xt, kt) = {E[R(x
110 ,...,,

max
−Tkkk

t) – c(kt)] + ρ P(i, j, k∑
=

k

j 1
t) Vt+1[xt+1(j)]} 

where P(i,j,kt) represents the probability that a biological invasion of state i (i=1,…,n) in 

period t will transition to state j (j=1,…,n) by period (t+1), given that control option k is 

chosen in period t. Vt denotes the expected discounted value of the future stream of net 

revenues in period t, given the level of the invasive weed stock in period t and assuming 

that the optimal path is taken in every future period.  

To implement the SDP approach, a routine was written in MATLAB to solve the 

Bellman equation (3). The data used for the model are described later in this paper.   

Experience-weighted attraction (EWA) model  

While the SDP model allows for uncertainty in current period returns and in the 

evolution of the system (i.e., state equation), it neglects other types of uncertainty. In 

particular, it does not address uncertainty related to the control itself, and the fact that the 

effectiveness of a control might be diminished if it is applied for several periods in a row. 

For example, sequential application of herbicides will cause YST to become resistant, 

reducing the ability to continue to apply chemicals. Burning can destroy the roots of 

valuable perennials in a range ecosystem if burns follow each other too closely, while 

both burning and chemicals can damage ecosystems because ‘good’ forbs have been 
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targeted by accident. These types of uncertainty are important features of the manager’s 

problem and therefore it is desirable to test other types of tools. Reinforcement-based, 

experience-weighted attraction (EWA) learning models that are employed in game theory 

(Camerer and Ho 1999; Hanaki et al. 2004) are potential frameworks that could 

accommodate these types of uncertainty.  

Our EWA models simulate a decision-maker who learns about the effectiveness 

of different strategies in a preliminary experimental phase before taking this information 

to a second phase. In the second phase, decisions are based on the observed results from 

the experimental phase as well as results from previous periods. In each period, the 

decision-maker has information about the net benefit from particular strategies that have 

been used in the past. The decision-maker tracks the average net benefit, or average 

payoff, that has resulted by time period τ from choosing strategy s in any given number 

of time periods in the past. These average payoffs are then termed the ‘attractions’ to 

strategy s by time period τ (denoted as Aτ,s) and are calculated according to:  

(4)  
∑

∑

=

== τ

τ

τ

1
,

1
,

,

t
st

t
st

s

d

R
A , 

where Rt,s denotes net returns in period t from selecting strategy s, and dt,s is a binary 

indicator variable equal to one if strategy s is chosen in period t, and zero otherwise.   

Next, the model converts the ‘attractions’ to each strategy into probabilities of 

selecting the various strategies. The probability of selecting strategy s in time period t 
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depends on the attractions as follows (Camerer and Ho 1999, p.835): 

(5)  
∑ ∈

=
Sk

A

A

st
kt

st

e
ep

,

,

, λ

λ

 

where At,s is the attraction at time t to strategy s (as before) and the parameter λ ≥ 0 

represents the extent to which strategies with higher attractions are favored in strategy 

choice. When λ=0, all strategies are equally likely to be selected. As λ increases, 

strategies with higher attractions increasingly have a greater probability of being selected 

for decreasing differences in attractions between strategies. In the experimental phase, λ 

is set to zero so all strategies are used and results can be obtained for each one. Then, in 

the second phase, λ is increased (in our case) to 0.25 so that the better strategies are 

chosen with greater probability. The value of λ is chosen to give the highest average 

performance in terms of accumulated net returns over time. Although it may be expected 

that a higher value for λ, where the highest paying strategy is chosen with greater 

probability, would better maximize profits, this is not necessarily true because the 

benefits of any particular strategy may be realized over several periods following the one 

in which the control is applied. As in SDP and other dynamic optimization approaches, 

strategies that do not provide high current benefits may lead to greater benefits in future 

periods thereby yielding a higher net present value (NPV). In that sense, EWA is like 

dynamic optimization, with some strategies given significant probability weight despite 

providing lower single-period payoffs because they lead to higher profits over the longer 

run. 
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To model the evolution of the stock of YST within the EWA decision model, we 

use transition probability matrices P(i,j,s) of the same form and embodying the same data 

as those used in the SDP approach (data described below). The EWA model was also 

solved in MATLAB using a routine that selects a YST control strategy in each time 

period t based on the attraction-based probabilities for each strategy s in (5). Once a 

strategy is selected, the stock (more precisely, percent cover) of YST (x) evolves between 

period t and period t+1 according to the appropriate strategy-specific transition matrix 

P(i,j,s). Discounted net returns to agriculture for that period are then computed as R(x)– 

c(s))/(1+r)t, in similar fashion to the SDP model. Unlike the SDP model, however, the 

new time period’s net returns are then used to update the learner’s information on the 

historical average payoff for that chosen strategy. Specifically, historical annual net 

returns, by YST control strategy, are summed in each period to compute cumulative and 

average net returns for each strategy. These average payoffs by strategy are then used to 

update the attractions and probabilities in (4) and (5) for the next round of strategy 

selection. In our analysis, the learning period was set to 2,000 years to establish the 

strategy attractions, followed by a 75-year period of strategy selection over which the 

final net returns are tracked. This two-phase learning/implementation process can be 

repeated any number of times; we conducted 30 iterations.  

Enhanced EWA model 

We refer to the third decision-making model as ‘enhanced EWA’ since it is 

similar to the EWA model described above, except that it provides more information to 

the decision-maker. Specifically, the EWA model is similar to the SDP model in that the 
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amount of livestock forage in any period t is a simple function of the stock of YST at t, 

based on data from an expert judgment survey described in the next section. In contrast, 

the enhanced EWA model introduces more information via a forage growth equation: 

(6) 







−

−××=− −
− ))(1(

1 1
1 YSTK

FPRFF
t

t
ttt η

γ ,  

where PR refers to the amount of precipitation in period t relative to historical mean 

precipitation, Kt is the maximum forage carrying capacity or maximum animal unit 

months (AUMs) that can be grazed in period t in the absence of YST, γ is the intrinsic 

growth rate of the forage stock, and η (0 ≤ η < 1) is an adjustment parameter describing 

the reduction in carrying capacity due to the presence of YST (see Holechek, Pieper and 

Herbel 1989). Precipitation is a random normal variable with mean and variance given by 

historical data from the Sonora, CA weather station where the climate is representative of 

our study area.3 The intrinsic growth rate γ is multiplied by the ratio of current-period 

precipitation to mean precipitation.  

To ensure adequate forage for the future and provide some resiliency of the range 

ecosystem, we include in the model as a management criterion that grazing can occur on 

a field only if available forage (biomass) exceeds half of the carrying capacity. To reflect 

the ecological benefits of a diversified control strategy and the problems discussed 

previously, we introduce penalties in the ‘enhanced EWA’ model when consecutive 

instances of burning or herbicide applications are implemented as controls. The penalties 

increase with the number of times the same strategy is used over a specific interval so 

 
3 The website is www.wrcc.dri.edu/summary/climsmnca.html. 
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that the agent will learn not to repeat the same control in consecutive periods. The penalty 

function for a given time period i (in which strategy s is chosen) is of the form: 

(7) , where , β
i

10t
si,s )α( ∑

−=

=
i

xpen




=
otherwise 0

 periodin  used is strategy  if 1 is
x

and α and β (α, β>1) are parameters that may be adjusted to determine the degree of 

penalty (pen). 

The enhanced EWA model was solved by writing an algorithm in MATLAB 

similar to that described for the EWA model, with an experimental learning phase of 

2,000 years and second phase of 75 years. In the enhanced EWA simulations, the 

baseline values of all parameters were set equal to those in EWA, with additional 

baseline parameter values of α=1, β=2 (equation 7) and γ=1.18 (equation 6). Data for η, 

which in equation (6) describes the reduction in forage carrying capacity as YST 

increases, were collected from the expert judgment survey discussed below.  

Data used in the Models 

There is very little published data on the influence of various management 

strategies on YST. Further, the effectiveness of management strategies is sensitive to a 

number of site-specific characteristics. In order to collect data that is useful for decision-

making models, we implemented the Expert Judgment Questionnaire: Expansion Rate 

Behavior of Yellow Starthistle Infestations in partnership with the California Department 

of Food and Agriculture in 2002 (see Eiswerth and van Kooten 2002). The survey sample 

frame included extension specialists, weed scientists, county farm advisors, public land 
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managers and other specialists familiar with YST and YST control techniques in 

California. Since the relevant group of knowledgeable professionals is relatively small, 

we only surveyed 21 experts. Since uncertainty and high variability are salient features of 

the key relationships in which we are interested (e.g., state variable transition 

probabilities, impact of YST on usable forage), the survey was designed to allow 

respondents to reflect uncertainties in their estimates.   

The survey collected several types of information, but for the purposes of this 

study two types of data are most relevant. First, we obtained estimates of the quantitative 

reduction in livestock forage as a function of YST infestation. For example, for rangeland 

grazing contexts (we assume a baseline potential of 2 AUMs per acre per year), the 

estimated reductions in grazing potential are 6-10% for minimal YST infestations, 22-

28% for moderate, 38-50% for high, and 60-78% for very high YST infestations. The 

survey also collected estimates of grazing reduction for two other land profiles: irrigated 

tall wheatgrass forage with one growing season per year (baseline productivity of 5 AUM 

ac–1 yr–1), and spring hay harvest plus summer grazing on tall fescue/irrigated 

orchardgrass (baseline productivity of 10 AUM ac–1 yr–1). We used the means of the 

estimated ranges to estimate net grazing returns contingent upon the state of YST 

infestation and baseline grazing productivity.  

Second, the survey elicited responses regarding different YST control strategies 

and the likelihood of their success. Experts provided assessments on the probabilities 

that, given a field has a current level of YST infestation (which was given by a 

descriptive category, such as ‘minimal’) and a particular control (burning, herbicide 

application, etc.) is employed, it will transition to any of the four possible future states 
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(including the probability of remaining in the same state in the next period). From these 

responses, we generated five subjective probability transition matrices, one for each 

control option, which were used to determine a stochastic YST invasion process for each 

of the three models. The five control options available to the decision maker are as 

follows: 

1. do nothing to control YST; 

2. a one-time chemical weed control program without follow-up treatment; 

3. any of a number of combinations of strategies (e.g., chemical, burning, mowing, 

grazing) that results in ‘successful weed management’ or ‘best practice’ (as defined 

individually by survey respondents) without follow-up chemical treatment;  

4. as 3, but with follow-up treatment; and  

5. as 3, plus a program of site revegetation with desirable species, specifically perennial 

grasses or forbs that provide palatable forage and good protein content for livestock.  

Control costs increase as one moves from options 1 to 5, with the degree of YST 

control rising as well. Costs for control strategies are assumed to be $0 for no control 

(NC); $3.50 for chemical (CH); $13.50 for best practice (BP); $25.85 for best practice 

plus follow up management (BP+F); and $43.50 for best practice plus revegetation 

(BP+R). The value of an AUM is set equal to $25 (University of California Cooperative 

Extension, unpubl. data; Resource Concepts, Inc. 2001).  

Results 

The YST management strategies selected by the SDP model are indicated in 

Table 1.  Solution of the SDP model using an infinite time horizon results in the selection 
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of a single ‘best’ approach (based on maximum long-run net returns to grazing) for each 

combination of initial YST state condition, land productivity type, and assumed discount 

rate. As the baseline grazing potential of the land rises, the optimal strategy choice begins 

to transition from relatively low-cost techniques (CH) to higher-cost strategies (BP+F or 

BP+R), as expected. The optimal strategy also tends to gravitate toward higher-cost 

approaches as the initial state of YST infestation worsens.  

A salient feature of the SDP approach is that some control should be used in each 

time period. This essentially is because the SDP model chooses the strategy that 

maximizes long-run expected net return, and not controlling YST does not maximize 

long-run net return under any of the conditions assumed.  However, the results in Table 1 

refer to the optimal strategy for each level of the state variable, regardless of time. Hence, 

it does not take into account the possibility that consecutive application of the same 

control can result in reduced effectiveness of the strategy. This begs two questions: First, 

how would the results of a learning model such as EWA differ from those of SDP given 

that the decision-maker can learn over time about strategy effectiveness? Second, how 

would the introduction of penalties for repeated strategies (to reflect environmental 

externalities), as in EWA-enhanced approach, alter the ‘optimal’ pattern of strategies over 

time? 

The results presented in Table 2 shed some light on these questions. In the table, 

we provide the proportional choices of various strategies over a 75-year time horizon 

following the learning period of 2000 years. The number of iterations (n) is 30. The most 

frequently chosen strategies under EWA are NC (no control) and CH (chemical 

application), with NC chosen more frequently than CH for low land productivities and 
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CH chosen more frequently than NC at higher land productivities, as might be expected. 

The choice proportion for BP+F is relatively low but rises to 9% as the baseline 

productivity of the land increases to its highest level. Mean choice proportions for the 

other strategies (BP+F, BP+R) are relatively low but also rise as land becomes relatively 

more productive (e.g., mean choice proportion for BP+F is 7% assuming 10 AUM ac–1 

yr–1). Again, this is as expected since benefits of YST control increase with land 

productivity.  

To summarize, EWA differs from SDP in a few aspects. First, NC (no control) is 

frequently chosen (and even more with EWA-enhanced). Second, it appears that the 

higher-cost options involving ‘best practice’ display attractions high enough to draw 

implementation after the learning period, but the relative frequency with which they 

would be chosen is modest. EWA may provide an indication of the frequency with which 

decision-makers may wish to apply such methods. 

The results in Table 2 for the EWA-enhanced model display the same general 

patterns as the EWA model results. However, as expected the strategy choice proportions 

from EWA-enhanced are weighted more towards no control, reflecting the impact of the 

penalty functions for repeated strategy implementation. The mean choice proportions for 

each of the active management strategies are smaller under the EWA-enhanced model. In 

other words, accounting for potential external ecosystem costs results in a reduction in 

the frequency of applying control strategies.  

 18
 

 



The performance of the three models is compared in Table 3 in terms of mean net 

present value (NPV) of returns to agriculture, and the standard deviation of returns.4 SDP 

yields the highest values of NPV, while the EWA-enhanced model yields the lowest 

average NPV. The information provided by the EWA–enhanced model results in lower 

agricultural returns, but also significantly reduced financial risk compared to EWA. 

However, because EWA and particularly EWA-enhanced employ fewer controls in every 

situation, it implicitly leads to higher long-run ecological returns, which are not explicitly 

taken into account in any of the models.  

Conclusions 

The analysis presented in this paper needs to be extended in several ways. The 

focus of the analysis here is primarily on exploring and comparing the properties of 

alternative decision-making models and the results they yield when they use the same 

uncertain data. That is, the three models consider only one source of uncertainty, but 

ignore uncertainty related to the ecosystem more generally, namely, the problems of 

chemical resistance, loss of ‘good’ forbs and perennials as a result of consecutive burning 

or chemical applications, and so on. Given that the EWA and enhanced EWA models are 

designed to address these more complicated forms of uncertainty, the comparisons that 

are made in this study are biased in favor of the SDP model, which also provides the 

greatest long-run expected net returns. However, one needs to keep in mind that the 

 

4 The standard deviation of returns is calculated differently for the SDP model than for 
the EWA and EWA-enhanced approaches. For SDP, it is calculated in the standard way 
from the markov solution’s long-run transition probability matrix; for the experience-
weighted approaches it is determined from the monte carlo simulations. As n increases, 
therefore, one would expect the standard deviations to decline. As a result, however, we 
do not compare the SDP model with the others on the basis of the dispersion of returns. 
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paucity of data on YST growth and spread, and its response to management, imposes a 

real obstacle to dynamic optimization modeling. Therefore, there is a paramount need to 

explore properties of decision-support systems that can (1) accommodate substantial 

uncertainty, which may be fuzzy, but (2) also allow the decision-maker to learn. At the 

same time, better data need to be generated by intermediate- and long-term scientific field 

studies before definitive conclusions can be reached about the optimal frequencies of 

various management strategies. 

With the particular caveat above, we offer the preliminary results of a learning 

model that includes penalty functions for repeated management strategies. Thus far our 

focus in that model has been solely on exploring the general sensitivity of the learning 

model results to the incorporation of a stochastic forage growth equation and introduction 

of a generic penalty function. Better empirical data on the externalities of the various 

YST control strategies (chiefly, chemical controls and controlled burns) are necessary 

before one may view results of the EWA-enhanced model as accurately accounting for 

these external effects. Incorporating such data, however, would eventually allow a 

decision-maker to optimize over a wider set of (economic and environmental) 

management objectives. 

Because ecosytems are incredibly complex, ‘command-and-control’ management 

(as provided by most dynamic optimization models) is naïve at best, because it assumes 

that all future contingencies can be appropriately taken into account. Because of 

complexity and uncertainty, adaptive management, such as that offered by the EWA 

models, is often preferred. Indeed, by erring on the ‘conservative’ side, the EWA-

enhanced model presented here leads to resource management that more closely applies 
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Holling and Meffe’s (1996) ‘Golden Rule’ of natural resource management: “Natural 

resource management should strive to retain critical types and ranges of natural variation 

in ecosystems. That is, management should facilitate existing processes and variabilities 

rather than changing or controlling them” (p.334).  

References 

Barry, S., 1995. Cattle Fecal Fax, October Report. UCCE Newsletter. Red Bluff, CA: 
University of California Cooperative Extension. 

Benefield, C. B., J. M. DiTomaso, et al. 1999. "Success of mowing to control yellow 
starthistle depends on timing and plant's branching form." California Agriculture 
53(2): 17-21. 

Burt, O.R. and J.R. Allison, 1963. Farm Management Decisions with Dynamic 
Programming. Journal of Farm Economics 45(1): 121-136. 

Camerer, C. and T-H. Ho, 1999. Experienced-Weighted Attraction Learning in Normal 
Form Games, Econometrica 67(July): 827-874. 

Cordy, D.R., 1978. Centaurea Species and Equine Nigropallidal Encephalomalacia. In 
Effects of Poisonous Plants on Livestock, edited by R.F. Keeler, K.R. Van 
Kampen and L.F. James. New York: Academic Press. 

DiTomaso, J.M., 2001. Yellow Starthistle Information University of California, Davis 
[accessed 27 May 2004]. Available from http://wric.ucdavis.edu/yst/. 

DiTomaso, J.M., and J.D. Gerlach. 2000. Centaurea solstitialis L. In: C.C. Bossard, J.M. 
Randall, and M. Hoshovsky. Invasive Plants of California’s Wildlands. University 
of California Press, Berkeley, CA. pp. 101-106.  

DiTomaso, J. M., G. B. Kyser, et al. 1999. "New growth regulator herbicide provides 
excellent control of yellow starthistle." California Agriculture 53(2): 12-16. 

DiTomaso, J.M., G.B. Kyser S.B. Orloff, and S.F. Enloe, 2000. Integrated Strategies 
Offer Site-Specific Control of Yellow Starthistle. California Agriculture 54(6): 
30-36. 

Dudley, D.R., 2000. Wicked Weed of the West. California Wild 53: 32-35. 

Eiswerth, M. and G.C. van Kooten, 2002. Uncertainty, Economics, and the Spread of an 
Invasive Plant Species. American Journal of Agricultural Economics 84(5): 1317-
1322. 

Gerlach, J.D., A. Dyer and K.J. Rice, 1998. Grassland and Foothill Woodland 
Ecosystems of the Central Valley. Fremontia 26(4): 39-43. 

Hanaki, N., R. Sethi, I. Erev and A. Peterhansel, 2005. Learning Strategies. Journal of 
Economic Behavior and Organization 56(April): 523-542. 

 21
 

 

http://wric.ucdavis.edu/yst/


Holechek, Jerry L., Rex D. Pieper and Carlton H. Herbel, 1989. Range Management 
Principles and Practices. Englewood Cliffs, NJ: Prentice Hall. 

Holling, C.S. and Gary K. Meffe, 1996. Command and Control and the Pathology of 
Natural Resource Management. Conservation Biology 10(April): 328-337. 

Jetter, K.M., J.M. DiTomaso, D.J. Drake, K.M. Klonsky, M.J. Pitcairn and D.A. Sumner, 
2003. Biological Control of Yellow Starthistle. In Exotic Pests and Diseases: 
Biology and Economics for Biosecurity, edited by D.A. Sumner. Ames: Blackwell 
Publishers. 

Jones, R.E. and R.W. Medd, 2000. Economic Thresholds and the Case for Longer Term 
Approaches to Population Management of Weeds. Weed Technology 14(2): 337-
350. 

Kennedy, J.O.S., 1986. Dynamic Programming. Applications to Agriculture and Natural 
Resources. London and New York: Elsevier Applied Science Publishers. 

Kyser, G.B. and J.M. DiTomaso, 2002. Instability in a Grassland Community after the 
Control of Yellow Starthistle (Centaurea Solstitialis) with Prescribed Burning. 
Weed Science 50(2): 648-657. 

Lass, L.W., J.P. McCaffrey, D.C. Thill and R.H. Callihan, 1999. Yellow Starthistle: 
Biology and Management in Pasture and Rangeland. Cooperative Extension 
Bulletin. Moscow, ID: University of Idaho. 

Maddox, D.M. and A. Mayfield, 1985. Yellow Starthistle Infestations Are on the 
Increase. California Agriculture: 10-12. 

Miranda, Mario J. and Paul L. Fackler 2002. Applied Computational Economics and 
Finance. Cambridge, MA: The MIT Press. 

Pimentel, D., L. Lach, R. Zuniga and D. Morrison, 2000. Environmental and Economic 
Costs of Nonindigenous Species in the United States. BioScience 50(1): 53-65. 

Pitcairn, M.J., S. Schoenig, J. Gendron, R. Yacoub and R. O'Connell, 2004. Yellow 
Starthistle Infestations Are Still Increasing. Working Paper. Sacramento, CA: 
California Department of Food and Agriculture. 

Randall, J.M., 1996. Weed Control for the Preservation of Biological Diversity. Weed 
Technology 10(2): 370-383. 

Resource Concepts, Inc., 2001. Nevada Grazing Statistics Report and Economic Analysis 
for Federal Lands in Nevada. Carson City, NV: Resource Concepts, Inc., 2001. 

Thomsen, C.D., W.A. Williams, M.P. Vayssiéres, F.L. Bell and M.R. George, 1993. 
Controlled Grazing on Annual Grassland Decreases Yellow Starthistle. California 
Agriculture 47(6): 36-40. 

USDA (U.S. Department of Agriculture). 2005. Plants profile: Centaurea solstitialis L. 
Available on: http://plants.usda.gov [accessed February 2005]. 

USGS (U.S. Geological Survey). 2005. Centaurea solstitialis L. Available on: 
http://el.erdc.usace.army.mil [accessed February 2005].  

 22
 

 

http://plants.usda.gov/
http://el.erdc.usace.army.mil/


Wilkerson, G.G., L.J. Wiles and A.C. Bennett, 2002. Weed Management Decision 
Models: Pitfalls, Perceptions, and Possibilities of the Economic Threshold 
Approach. Weed Science 50(4): 411-424. 

 23
 

 



Table 1: Optimal YST strategies selected by SDP model 
 Scenarios defined by productivity and discount rate 
Productivity (AUM ac–1 yr–1) 2.0 2.0 5.0 5.0 10.0 10.0 
Discount rate (%) 0 5 0 5 0 5 
YST states 

• Minimal CH CH CH CH BP+F BP+F 
• Moderate CH CH BP+F BP+F BP+F BP+F 
• High CH CH BP+R BP+R BP+R BP+R
• Very high BP+F BP+F BP+F BP+F BP+F BP+F 

a Strategies are: CH = one-time chemical control; BP+F = best YST management practice 
followed by spot spray of chemicals; BP+R = best YST management practice plus 
revegetation. 

 

 

Table 2: Control strategies resulting from learning modelsa 

Model 
Land productivity 

(AUM/ac/year) Mean Strategy Choice Proportions (n=30) 
  NC CH BP BP+F BP+R 
EWA-enhanced 2.0 0.696 0.283 0.017 0.003 0.001 
  (0.062) (0.064) (0.016) (0.005) (0.004)
       
EWA 2.0 0.565 0.384 0.044 0.005 0.002 
  (0.058) (0.055) (0.019) (0.008) (0.005)
       
EWA-enhanced 5.0 0.691 0.283 0.021 0.003 0.002 
  (0.082) (0.080) (0.019) (0.005) (0.005)
       
EWA 5.0 0.438 0.484 0.059 0.014 0.004 
  (0.078) (0.075) (0.029) (0.013) (0.007)
       
EWA-enhanced 10.0 0.724 0.248 0.021 0.003 0.003 
  (0.127) (0.127) (0.017) (0.006) (0.006)
       
EWA 10.0 0.170 0.660 0.094 0.073 0.003 
  (0.077) (0.117) (0.066) (0.051) (0.006)
a Standard deviations given in parentheses. 
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Table 3: Comparing Model Performance 

Model Max AUMs Discount rate
(%) Years Mean NPV

($)
Standard 

Deviation
2 5 75 309.49 70.96
2 0 75 1,044.40 155.66
5 5 75 866.69 105.29
5 0 75 2,763.90 659.63
10 5 75 1,672.60 291.52

Enhanced 
EWA 

10 0 75 5,758.50 764.69
    

2 5 75 572.48 106.24
2 0 75 1,940.50 284.07
5 5 75 1,445.50 285.04
5 0 75 5,327.70 772.13
10 5 75 3,408.50 367.48

EWA 

10 0 75 11,968.00 1,373.30
    

2 5 75 605.70 53.66
2 0 75 2,243.22 58.78
5 5 75 1,758.85 101.64
5 0 75 6,583.38 108.74
10 5 75 3,834.98 174.21

SDP 

10 0 75 14,350.50 189.98
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