
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


 

 

Institute for Food and Resource Economics 

University of Bonn 

Discussion Paper 2025:3 

Reflections and recommendations on Software Quality 

Management in economic models 

Wolfgang Britza, Torbjoern Janssonb, David Schäferc 

a Institute for Food and Resource Economics, Bonn University, Germany. 

b AgriFood Economics Centre and Department of Economics, Swedish University of Agricultural 

Sciences, Uppsala, Sweden 

c EuroCARE Bonn GmbH, Bonn, Germany 

The series " Food and Resource Economics, Discussion Paper" contains preliminary manuscripts which are not (yet) published in 

professional journals, but have been subjected to an internal review. Comments and criticisms are welcome and should be sent to the 

author(s) directly. All citations need to be cleared with the corresponding author or the editor. 

 

Editor: Thomas Heckelei 

Institute for Food and Resource Economics 

University of Bonn  Phone: +49-228-732332 

Nußallee 21  Fax: +49-228-734693 

53115 Bonn, Germany  E-mail: thomas.heckelei@ilr.uni-bonn.de 



Agricultural and Resource Economics, Discussion Paper 2025:3 

1 

Reflections and recommendations on Software Quality 

Management in economic models

Wolfgang Britza, Torbjoern Janssonb, David Schäferc 

aInstitute for Food and Resource Economics, Bonn University, Germany. 

bAgriFood Economics Centre and Department of Economics, Swedish University of Agricultural 

Sciences, Uppsala, Sweden 

cEuroCARE Bonn GmbH, Bonn, Germany 

Abstract 

Software Quality Management (SQM) for economic simulation models includes different aspects of 

software development, such as using a version control system, developing, and applying coding 

guidelines, proper documentation of code, and a testing strategy to systematically locate and remove 

errors. This paper focuses on testing as the main element of SQM to decrease the probability of incorrect 

outcomes and reduce debugging costs. Other elements of SQM are discussed more briefly and in 

relation to testing. Due to differences in developer competence, in software used for coding, and in the 

organisational structure of research projects, approaches for testing in industry projects are not always 

applicable to economic models. Based on real-world examples, we show how a testing strategy can be 

implemented in economic modelling, spanning from automated checks and tests to a release strategy 

for the economic model. Overall, we recommend developing a test strategy for an economic model as 

early as possible to save cost and to ensure reliable model outcomes. 

Keywords: Software Quality Management, Testing, Economic Modelling 

JEL classification: C8, C88 

1 Introduction 

The correctness and replicability of results generated with scientific tools is vital for building trust in 

policy impact assessments (Podhora et al. 2013). In the field of economic research this trust is questioned 

by the replication crisis, which criticizes incentive structures and research conventions that prevent 
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replication studies and fosters practices such as selective result reporting and using designs with low 

statistical power (Ferraro and Shukla 2020, Kasy 2021, Finger et al. 2023, Storm et al. 2024). While that 

discussion revolves primarily around empirical methods, economic simulation models face similar 

challenges in maintaining credibility. Many journals require researchers to provide the data and code 

used in their economic empirical and simulation studies for replication purposes (Christensen and 

Miguel 2018, Journal of Global Economic Analysis 2024). However, the code size of economic 

simulation models often makes it difficult to assess their quality and the correctness of the generated 

results. Hence, to ensure the accuracy and reliability of the results, they should adhere to specific 

research software quality standards. These standards are supposed to enable researchers to understand, 

replicate, and further improve upon existing and new research (Anzt et al. 2021). The aim of this paper 

is to introduce approaches and tools to facilitate the development of high-quality research software in 

economic simulation models, drawing on concepts of software quality management (SQM) and change 

management. This addresses a gap in the literature as little has been written about good scientific 

practices in the development and application of economic models, even if their results can have 

significant impacts on policy debates, such as the article by Searchinger et al. (2008) on land use impact 

of biofuel mandates. 

Researchers face strong dependencies on own developed and third-party research software (Hannay 

et al. 2009). Faults in such software are not a mere nuisance but can impact published results. Soergel 

(2015) gives an example of an assumed software with just 1,000 lines of code in which one line 

comprises an error. This is well below the reported error rates in complex software projects (Boehm and 

Basili, 2007). He assumes further that this error has a 10% chance of meaningfully changing the outcome 

for any input data set (i.e., not letting the program finish with an error) and that a researcher will consider, 

on average, 50% of the wrong outcomes as plausible. This results in a 5% chance of wrong output. He 

argues further that error propagation in software code is likely, such that results are likely “inaccurate, 

not merely imprecise” (Soergel et al. 2015). This gives a further argument for a more rigorous approach 

to SQM for economic simulation models with their broad societal impact. 

Economic simulation models contain software code and can be subjected to the same quality 

management considerations as other software products. In the literature, related considerations include, 

for example, the definition of relevant software quality criteria such as accuracy, reproducibility, 

reliability, and usability (O’Regan 2019, Antz et al. 2021). Further, they entail quality control measures 

with key components of testing and code reviews and other quality management aspects such as 

versioning and release strategies in change management (O’Regan, 2019). 

This paper focuses on using quality control, primarily testing, to ensure reliable research and 

discusses concrete approaches for testing. Our focus on testing reflects that searching for and correcting 

errors is a large part of software development and maintenance costs. These costs tend to be higher the 
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later errors are found in the development cycle (Westland 2002). For instance, if incorrect model results 

are detected only when a report is almost finished, many working steps need to be repeated and result 

sections re-drafted. 

The paper is structured as follows. First, we introduce the specific role of SQM for economic 

simulation models compared to industry software development. Second, we present key SQM elements 

relevant to economic simulation models as research software, including a thorough description of test 

types and test strategies. Finally, we discuss the different implementation strategies and the general role 

of economic simulation models in the domain of research software and arrive at some recommendations. 

Concrete examples of testing strategies for the code of two economic simulation models are presented 

in annexes: continuous testing in FarmDyn, a single-farm bio-economic model, and testing of stable 

releases in CAPRI, a partial equilibrium model. 

2 Economic models as research software 

2.1 Comparison with industry software 

Although basic concepts and challenges are similar, the development of an economic simulation model, 

from here on referred to as economic model, differs from that of general software in some crucial ways, 

as we illustrate in Table 1, with consequences for how SQM is handled. Table 1 summarises some 

differences, focusing on those posing challenges to SQM in economic modelling, acknowledging that 

professional software developers partly face the same problems (O’Regan, 2019). 

The developers have different aims and competences. In the software industry, the deployed code 

is often the main output of the department, if not the company. An internal or external client defines 

requirements for newly developed or adapted code. Developers have some training in computation or 

software engineering (e.g., Exter and Ashby, 2019), which lets them use established approaches to 

prototyping, code development, testing and deployment, etc. Their project managers have incentives to 

consider aspects such as future maintainability and reusability of code parts in overall code design. SQM 

focuses on ensuring that the client’s expectations in the software are met, defined by the client's 

requirements. 

For most researchers, including those working with economic models, the software is merely a tool 

to create their main outputs, such as scientific articles. Clients, such as research project sponsors, will 

hardly scrutinise this code. Instead, the perceived quality of an economic model foremost depends on a 

methodologically sound approach, correct and up-to-date data, and an empirically derived proper 

parameterisation. The typical researcher working on economic models has no formal training in software 

engineering, develops code for her research and might not expect to work with the same model 

afterwards. Research project leaders have mostly no training in software engineering, either, but senior 
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expertise in fields such as methodology or research project management. This might lead them to 

delegating central decisions about software design and implementation to (junior) researchers, such as 

which language or packages to use or overall code design. Initiatives to improve the quality of the 

model’s code are mostly indirectly honoured, for instance, by allowing for more refined results or 

avoiding delays from using erroneous or inefficient code. Depending on researchers’ competence, 

incentives, and management, considerable differences emerge across economic models concerning 

coding style or aspects of SQM. 

Another key aspect impacting SQM is differences in programming languages used. Most industry 

software projects use general-purpose programming languages, such as C++, C#, or Java, which require 

formal training for proper code design and efficient coding. Their code is structured in callable 

functional units that operate with each other by interfaces that define inputs and outputs. This structure 

is supported by encapsulation and scoping. Such language features facilitate the development of libraries 

which can be shared across projects and the construction of test suits, which are collections of pairs of 

inputs and expected outputs of a functional unit. Tools related to SQM, such as for testing or automated 

documentation of the code structure, complement the languages, along with tutorials on how to use 

them.  

In contrast, economic models here are often developed in highly specialised Algebraic Modelling 

Languages (AML) such as GAMS1 or GEMPACK2. They allow efficient definition/declaration of 

equations in economic models and related data manipulations without lengthy training or deeper 

knowledge of software engineering, which makes them popular tools. Overall, code design in an AML 

is often a minor issue, at least as long as the project remains small, and the model is not modular. AMLs 

largely lack encapsulation concepts to facilitate unit testing (Britz and Kallrath 2012). Tasks such as 

data preparation and reporting for the core model are hence not realised as functions or similar but 

instead carried out by a sequence of compiled or interpreted statements that manipulate variables with 

global scope. The core of an economic model consists of a system of equations and/or inequalities that 

are simultaneously solved or act as constraints to an optimisation. It is often hard or impossible to test 

these equations independently. Few tools related to SQM are available for AMLs, if any, and related 

information is scarce. However, error-prone constructs such as pointers are absent in AMLs, and a 

syntax close to mathematical notation eases writing self-explaining code. These differences blur if 

developers embed code of general-purpose programming languages into their AML scripts, as is 

possible in GAMS with Python, for example. 

 

 

1 https://www.gams.com/ 

2 https://www.copsmodels.com/gempack.htm 
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Table 1: Comparison of software development for an economic model with an industry software product 

  Economic model Industry software 

Aim of 

software 

development 

 Provide simulation results 

feeding into academic 

theses/papers or policy briefs. 

Meet software requirements with 

functionality and usability as agreed 

with internal or external clients. 

Competence 

profiles 

Primary 

developer 

Trained economist, typically with 

no or little knowledge of software 

engineering 

Software engineer 

Project lead Senior economist with typically 

limited knowledge of software 

engineering 

Senior software engineer 

Focus Primary 

developer 

Contributions to own career such 

as papers under the guidance of 

project lead (methods, data), 

coding to produce results for 

current project 

Deliver code adhering to aims and 

standards set by the project lead 

(including SQM) 

Project lead On-time delivery of project 

deliverables such as reports, 

ensure state-of-the-art 

methodology and up-to-date data 

use 

Meeting project timelines and agreed 

software requirements, overall code 

design, ensure future code 

maintainability 

Programming 

software 

Type Algebraic modelling languages 

(GAMS, GEMPACK, AMPL…) 

requiring limited training 

General-purpose programming 

languages (C++, Java, Python…) 

requiring intensive training 

SQM Software structure makes unit 

testing difficult; no or limited 

SQM tools and related tutorials 

are available. 

Software structure supports unit-to-

system testing, ready-to-use SQM tools 

as part of language, related (online) 

tutorial. 

Development 

cycle 

Drivers New research project or 

application 

New requirements 

 Link to 

software 

development 

Often not clear if code from the 

current project will be used in 

future ones 

Building on existing code 

(maintainability) is essential to be cost-

effective 

Source: The authors 

As all symbols have global scope and the concept of functions or similar is missing, GAMS and 

GEMPACK largely prevent publicly shared libraries or packages such as those found for Python or R. 

Instead, communities of economic modellers have gathered around specific implementations of model 
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types, such as in the case of global CGE models around GTAP, GLOBE or MIRAGE. Each such model 

has its specific pros and cons when analysing a research question but combining components from 

different models to create a new model is difficult. A key reason is that the building blocks of each 

model, such as the code for simulation equations, their benchmarking5 and post-model reporting cannot 

be easily ported across models as these blocks are not encapsulated. This has triggered a discussion 

around more generic modelling platforms, which require, for instance, modularity to support different 

methodological solutions for model parts and/or to add extensions on demand (Britz and Van der 

Mensbrugghe 2018, Britz et al. 2021b) or to deploy portable modules for specific trade model 

specifications to be used in equilibrium models (Britz et al. 2021a). 

2.2 The development cycle of economic models 

Industry software and economic models are often developed in project cycles, with development periods 

following one another. However, rooted in diverging objectives, competencies, and foci, as discussed 

above, the economic model development cycle exhibits specific characteristics that delay or even inhibit 

the initiative of a sophisticated SQM or test strategy in the early to mid-development phase.  

Figure 1 illustrates, in a stylised manner, our understanding of the project cycle for an economic 

model. A similar pattern is described in the discussion by Baxter et al. (2012) on the “Research software 

engineer.” Many economic models evolved originally from a PhD thesis in 3 to 5 years, with a PhD 

student writing the model’s code, procuring necessary data, and estimating parameters to generate 

results. Contingent on the student’s ambitions and success, a second project might extend the economic 

model and apply it to new topics, involving new researchers with little to no programming experience. 

As for the initial developer, their fundamental goal is further academic qualification. Some researchers 

leave the development team after one project, while others stay and continue using the model to take 

further steps in their academic careers. Once the team and number of projects reach a critical size, falling 

fixed costs allow for new activities, such as dedicated websites on the model. Combined with an 

increasing number of academic papers, this lets the model develop its brand and attract new projects and 

contributors, potentially working at different institutions. As the number of developers across 

institutions and projects grows and with them the overall code size of the model, deficits of missing 

software quality management become apparent, such as hard-to-read and to-debug code due to different 

personal coding styles and missing documentation, diverging model versions with incompatible 

 

 

5 In economic modelling, a benchmark means an assumed equilibrium situation to which the model is calibrated so that it 

becomes the optimal solution if no shock is introduced. Benchmarking is the process of creating the benchmark, for instance 

by calibrating behavioural equations or adjusting balances and flows. 
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features, and a growing number of errors. At the same time, newcomers face increasing barriers to 

successfully work with the model’s code. 

Figure 1: Development-/Life cycle of an economic model 

 

Source: The authors 

3 Key SQM elements for economic models 

Quality in software comes from quality in the processes that develop it (O’Regan 2019). There are 

several models for software processes and lifecycles, such as the Waterfall model and Agile. Here, we 

describe a selection of tools and concepts that, in our experience, are important for producing quality 

software for an economic model, regardless of the development lifecycle model. 

3.1 Tests 

Unit tests are fundamental for testing in the industry (Runeson 2006). They feed predefined inputs into 

functional units and compare outputs to known results. Defining these control data lets coders consider 

the range of potential inputs, related error conditions, and outputs early, which leads to the concept of 

test-driven development (Beck 2002). The example below, taken from the Junit package for automated 

unit testing in Java (Hunt and Thomas 2003), demonstrates a test for a code unit: 

@Test 

void testCalculatorAdd(){assertEquals(2,calculator.add(1,1));} 
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The test function called “testCalculatorAdd” checks if using the pair of arguments “1,1” on the method 

“add” of the class named “calculator” returns the results “2”. Unit tests also check how code handles 

non-regular input, for instance, special values such as INF. In the following exposition, we will 

frequently use the term check. By a check, we mean code in the production software that throws an error 

if certain conditions for input or output data are not satisfied. Tests are often run to see if such checks 

are triggered. 

The example with testCalculatorAdd above underlines the challenges of applying unit testing to 

the equation system of an economic model. It assumes that the results returned by the model (or a smaller 

block of model equations) for a given set of input data and a shock are known for certain, which is hardly 

the case when code development starts. However, test cases with expected outputs exist, such as a 

benchmark check for which no infeasibilities should occur or a no-shock check that should replicate the 

benchmark. Unit testing can also be applied regularly to code for transformations of input data or 

benchmarking with their clearly defined tasks, such as producing closed market balances. Besides 

conceptual challenges related to unit testing; the grammar of GAMS also hinders their use. Whereas 

functional units in general-purpose language have clearly defined interfaces based, for instance, on 

arguments passed into functions, this concept does not exist in the grammar of GAMS. This implies that 

other approaches to testing must be used in AMLs; we propose checks built in the code besides testing 

whole applications.  

The International Software Testing Qualifications Board (ISTQB, 2024) lists seven principles of 

testing that we find worthwhile to cite here. 

• Testing shows the presence of mistakes. Testing aims to detect defects within software but can 

never remove all defects. However, it can reduce the number of unfound issues.  

• Exhaustive testing is impossible. It is impossible to test all combinations of data inputs, 

scenarios, and preconditions within an application.  

• Early testing. The cost of an error grows exponentially throughout the stages of the Software 

Development Lifecycle, motivating testing as early as possible.  

• Defect clustering. Errors are typically clustered in certain modules; often, around 20% of the 

modules comprise 80% of the errors. Modules where errors are found should, therefore, be 

tested extra carefully.  

• Pesticide paradox. After errors detected by a test are fixed, rerunning it cannot help to find new 

issues. Testing strategies need to be reviewed and updated regularly.  

• Testing is context dependent. It must focus on the key aspects of quality management, with 

reliability essential for research software.  

• The absence-of-errors fallacy. Error-free software is not necessarily successful—there is a 

difference between doing things right (no errors) and doing the right things. 
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3.1.1 What to test. 

A testing strategy for an economic model requires a precise definition of the model’s code base, which 

can prove challenging due to project-specific files used to prepare data or represent shocks. The fraction 

of the code base covered by a set of tests is a metric called “test coverage” or “test completeness”, and 

it is desirable to have a high-test coverage. Tests should cover the whole production chain, which 

prepares input data and parameters, solves the model, and carries out reporting. Equally, it must consider 

all options which add or remove code on demand, such as in the case of different reporting options or 

modular model extensions6. A test strategy must reflect that code changes at any point of the chain can 

affect outcomes in follow-up code. Projects need additional tests for code not covered by the central 

strategy. Assuming existing code is properly tested, testing becomes necessary once code is added or 

changed and might require updates to the tests. 

3.1.2 Test strategy and types of checks and tests 

Different types of tests or checks address different classes of errors. Compile-time errors are caused by 

syntactically incorrect code and cannot affect outcomes as they prevent code execution. Related checks 

are fast as they don’t require code execution. Detected by the compiler, these errors are mainly dealt 

with during code writing. Conditional use of whole files or code passages hides code from the compiler 

such that all potential configurations need to be tested. Run-time errors let the executing program throw 

an error. Again, they cannot result in wrong outcomes but might severely delay a research project. Run-

time tests are more computing-time intensive as actual model runs are needed. Both types of errors are 

technical; the software typically indicates offending statements, which eases their correction. This is 

typically not the case for the third type of error, which we term outcome errors. In contrast to runtime 

errors, checks for them cannot be part of the production code. They relate to results considered incorrect 

given the input data. Simulation runs with an economic model produce typically large results sets such 

that outcome errors might go unnoticed even if implausible.  

The test strategy is jointly defined by designing tests that address the different types of errors, 

deciding what events in the development cycle should trigger tests, and assigning responsibilities to run 

tests and deal with detected errors. Related efforts must be balanced with competing measures to 

improve the quality of research. Designing a test strategy must also consider the required resources for 

 

 

6 For CGEBox, a modular platform for CGE modelling, the number of GAMS files used in a simulation run with the same 

shock files and database varies between 35 and 100, depending on which modules and reporting options are present. At the 

same time, the number of code lines (not considering comments) increases from around 12.000 to 30.000. In parallel, due to 

conditional use of code passages, different sections of the same file might be in use. 
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its maintenance, such as human capital, hardware, and software. The following paragraphs will detail 

the different test types and related test strategies. 

3.1.3 Compile-time checks and tests 

Compile-time checks rely on syntax checks built into the compiler and are addressed mainly during code 

development. Code compiled during project specific developments often comprises only part of the 

whole code base. Due to the global scope of all symbols in AMLs, changes in symbol names, their 

dimensions, or the sets defining their domains during development can provoke compile-time errors in 

other parts. This motivates again a testing strategy that encompasses all possible code configurations. 

AMLs allow the coder to program compile-time tests, which are useful to raise errors that otherwise 

provoke run-time errors, to save time for the user, and to ease understanding the cause of potential errors. 

For instance, testing that required files exist at compile time, which are later used at run time, can avoid 

unnecessary computing time7: 

$$if not exist “required.gdx” $abort “Necessary file “required.gdx” not found, 

file: %system.fn%, line: %system.incline%”  

It can also be helpful to refrain from further compilation after compile-time errors occurred to avoid a 

flood of follow-up errors by inserting a line as follows at the end of each file: 

$$if not errorfree $abort “Compilation error after file: %system.fn%”   

Compile-time tests are easy to assess as they fail (some error or warning raised) or not. They are fast as 

they do not execute the code. A testing strategy for an economic model should, therefore, cover all 

possible model configurations, as illustrated by the FarmDyn example in Annex A1. 

3.1.4 Run-time checks and tests 

Like compile-time checks, run-time checks are partly built into the software itself, such as mathematical 

error trapping, and complemented by checks coded by the developer. Tests with predefined test sets 

ensure that coded checks work correctly and that all cases are caught, which otherwise throw run-time 

errors by the software. Coders tend to catch cases that otherwise would result in run-time errors with if 

clauses (the $ operator in the GAMS code below), such as: 

yield(crop) $ land(crop) = production(crop)/land(crop) 

This example of a check is deliberately poorly designed. Both negative land inputs and crop production 

without land use go unnoticed and might provoke follow-up errors. A better solution addressing these 

 

 

7 Examples are coded in GAMS, but the underlying ideas can be ported to other AMLs as well. 
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issues is shown below. The computation of yield, highlighted, in grey is only a minor part of the code; 

it mainly consists of checks8: 

Loop(crop,  

 curCrop(crop) = yes; 

 if(production(crop) gt 0, 

  if(land(crop) le 0, 

   abort “Production, but land use <=0 ”,curCrop,land,production, 

      "file: %system.fn%, line: %system.incline%, "; 

  else 

   yield(crop) = production(crop)/land(crop); 

  ); 

 elseif production(crop) lt 0, 

  abort “Negative production ”,curCrop,production,  

"file: %system.fn%, line: %system.incline%"; 

 elseif land(crop) <> 0: 

  abort “No production, but non-zero land use “,curCrop,land, 

"file: %system.fn%, line: %system.incline%"; 

     ); 

); 

Besides mathematical error trapping, run-time checks by the software itself might relate to input/output 

errors, such as missing files or full disks. Errors and warnings by AMLs can also relate to model 

generation and solving. Catching warnings related to solves and solver statistics, such as on the number 

and size of infeasibilities, avoids otherwise unnoticed error propagation and useless follow-up 

computations, or worse, analysts reporting results of unsuccessful model runs. Not catching 

unsuccessful solves should be considered faulty code. The following code snippet shows an example 

where the coder has decided to accept model solutions with a maximal infeasibility below a certain 

threshold and otherwise throw an error: 

abort $ (myModel.maxInfes > 1.E-4) "Infeasibilies ",myModel.maxInfes,  

"file: %system.fn%, line: %system.incline%";     

To avoid errors, for instance, related to benchmarking and solving the model, developers might want 

(and need) to add a plethora of additional run-time checks, such as testing for missing input data as 

shown in an example below (GAMS code), which first checks if there is any region without capital 

demand (symbol p_cap) and then populates a dynamic set rs to report the regions where the problem 

occurs:  

if(sum(reg $ (not p_cap(reg)),1), 

    rs(reg) = yes $ (not p_cap(reg)); 

    abort "Missing capital demand for regions (rs) in %dataset%.gdx",rs, 

 

 

8 A singleton set curCrop is used to report the offending crop and a display of the set crop in the loop 

will show the full list. 
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          "file: %system.fn%, line: %system.incline%, "; 

); 

Similar checks can test for non-negativity or mutual compatibility between different data items 

(exhaustion conditions such as closed market balancing, value = price times quantity, etc.).  

The examples above checked for regularity of inputs. Compile-time checks can also be added after 

a code sequence to assert that it has worked as intended, i.e., to test for bugs in the code. The following 

piece of GAMS code, for instance, can be executed after code balancing a SAM9 to assert that the SAM 

is indeed balanced against a chosen accuracy threshold acceptedError, reports the offending cases and 

stops further code execution (is and js are the accounts of the SAM): 

parameter sambal(is),colSum(is),rowSum(is); 

colsum(is) = sum(js,sam(is,js)); 

rowsum(is) = sum(js,sam(js,is)); 

sambal(is) = colSum(is) - rowSum(is); 

colsum(is) $ (abs(sambal(is)) < acceptedError) = 0; 

rowsum(is) $ (abs(sambal(is)) < acceptedError) = 0; 

sambal(is) $ (abs(sambal(is)) < acceptedError) = 0; 

  

abort $ card(samBal) "SAM not balanced”, samBal,colSum,rowSum, 

 “file: %system.fn%, line: %system.incline%"; 

Catching cases of inputs or results of data transformations with undesired properties as early as possible 

in the code is recommended to avoid time-consuming debugging exercises of resulting follow-up errors. 

Run-time checks should also address required properties of final model outcomes, such as for closed 

market balances or non-negative prices. Reports that, for instance, generate a SAM from the results of 

a Computable General Equilibrium (CGE) model should throw an error if the resulting SAM is not 

balanced. This can prevent faulty outcome from being analysed; reported imbalances also can help to 

find conceptual errors in model equations or post-model reporting. Test-driven development requires to 

conceptualise these checks before code development, to define desired or undesired testable attributes 

of inputs and outcomes of (new) code, as highlighted by examples above. 

Run-time checks can test for successful model calibration by generating – but not solving – the 

model at benchmark values and throwing an error in case of infeasibilities. For CGE models, a Walras 

test as part of the equation system can check for correct economy-wide exhaustion, and a run with a 

numeraire shock can test for homogeneity. It is recommended to develop coding guidelines that help to 

 

 

9 Social Accounting Matrix: A way to report all flows in an economy between accounts such as production sectors, 

household(s), government, and the Rest of the World, with revenues of each account in the rows and related expenditures in 

the columns. According to the principle of National Accounting, each account must be closed, a state termed a balanced SAM. 
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design and implement run-time checks; the examples underline that these recommendations are partly 

specific to certain model types.  

3.1.5 Outcome tests  

Run-time checks should include automatically detectible errors in outputs produced, such as negative 

prices or violated exhaustion conditions. In contrast, what we call an outcome test typically requires a 

human to decide on the plausibility of model results. Exemptions are code changes not intended to affect 

model outcomes, such as code updates aiming at faster execution or improved code clarity. They can be 

tested in an automated manner for no change in results, which is an example of a unit test. However, 

most code changes in economic models aim to improve specific model results or add new ones. Some 

changes against previous results are, therefore, intended, but other results can be affected in unforeseen 

ways. Whether results are improved and not worsened might depend on model configuration, 

parameterisation, or input data. This holds especially true for models comprising integer variables that 

show a highly non-linear, jumpy response to changes in model structure and parameterisation. Those 

models are np-hard to solve (Fischetti and Luzii 2009) such that the time needed to find a (quasi-) 

optimal solution for a specific model instance is hard to judge beforehand, challenging the design of a 

test strategy. 

3.1.6 Stability tests 

Stability tests, as a specific class of outcome tests, assess if outcomes differ under different hardware 

and software, to ensure that results depend deterministically on model structure, data, and parameters, 

only. Potential causes for such instabilities are, for instance, models that are not globally convex or 

comprise flat sections in constraints or the objective function such that solutions differ across solver 

versions. Programming blunders can also produce instabilities, such as accepting non-optimal or 

infeasible solutions. Constrained optimisation models might be solved repeatedly with bounds changed 

programmatically after time-outs. These changes in the solution space can imply that the final solution 

depends on the number of trials, which in turn are driven by the soft- and hardware used or current 

processor load. Faulty code might assign start values from old solutions on disk to variable instances no 

longer comprised in the current model which then later are erroneously reported as part of its solution. 

To address such issues, stability tests run the same process, for instance, on different hardware and 

software versions, and collect and compare the resulting solutions.  

3.1.7 Performance tests 

Performance tests (Vokolos and Weyuker, 1998) reflect that performance is one aspect of model code 

quality, such as the time needed to benchmark and solve the model and the required memory and disk 
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space. Performance matters for at least four reasons. First, the importance of sensitivity analyses is 

increasing, which requires solving the model many times. Second, if the model is too slow to solve, a 

solver might not find a feasible or optimal solution. Third, model developments require repeated runs 

with changes in structure or parameterisation, and long solution times might limit possible 

improvements in a given time. Finally, users might react to long run times by reducing model size and 

complexity. Besides less detailed results, this typically implies increased aggregation bias (Britz and 

Van der Mensbrugghe 2016). The chosen hardware and software tend to be more relevant for 

performance compared to stability testing. Stability testing informs about minimum requirements for 

secure replication, and performance testing about necessary requirements to achieve desired 

performance levels. 

3.1.8 Resources needed for testing 

Setting up the test strategy is a one-time activity, and updating the test instances is necessary only when 

new projects start, which require their test instances or after larger structural changes. That leaves regular 

testing as the major workload. Running tests and checking for failed ones is a repeated activity with 

more or less known time requirements, but the resources required to address failed tests are largely 

unknown beforehand. Compile-time and run-time errors are easily detected and often corrected quickly. 

Correcting implausible results found by outcome tests can be more challenging, especially where 

changes to model structure or parameterisation are required. Failed outcome tests can also detect 

combinations of inputs and/or model configurations that cannot be handled, and new checks can be 

added to the code to prevent that the model is executed on them.  

Independent of the type of test, fixing errors can provoke new errors elsewhere. Equally, existing 

errors in follow-up code might be detected only after preceding errors are removed, and more code is 

executed. It is therefore recommended to repeat tests with all follow-up programs after fixing errors in 

the production chain. Moreover, tests should log results in a report indicating what was tested and the 

outcome. That way, test metrics such as test coverage can be developed over time and regression tracked 

(O’Regan, 2019). 

3.2 Software Version control 

Software version control (SVC, Zolkifli et al., 2018) ranked highest as a topic in evaluating good 

practice in software development in life sciences (Artaza et al. 2016). It is based on tools that store the 

history of individual files in a software project and make it accessible from a central repository via an 

internet protocol. This allows for the synchronisation of files in a project across machines and coders. If 

a user fetches the content from the central repository, only updated files are downloaded and integrated 

into their so-called local working copy. The SVC software will automatically replace newer versions of 
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files from the central repository if their local copies do not comprise any changes. Thanks to semantic 

parsing, the tools can often successfully merge changes from the server in specific parts of a file into a 

local version comprising modifications in other parts. If this fails, the user must deal with the resulting 

conflicts. So-called commits of a file or group of files from a local machine to the central repository 

increase the internal version number and store besides the changes to the files’ content, a timestamp, the 

user ID, and a log entry. Suppose errors later can be linked to a particular commit. In that case, the log 

informs about who committed the code, which is essential to generate incentives for testing and to 

assign, where possible and appropriate, responsibility for error correction.  

SVC software also supports so-called branches, which are separate streams of code development 

in one software project. Branches are essential, for instance, to allow for the development of new 

features outside of the main code and to maintain stable releases, as discussed below. SVC allows rolling 

back all or some files to a specific commit in a local working copy. If version control is consequently 

used, this allows to later get all files back used to produce results for a project or paper without the 

necessity to freeze a copy of the whole code. While commits are usually automatically labelled with 

some internal identifier, a user can tag them with a topical label, for instance, to indicate major or minor 

versions of the code. So-called commit hooks allow starting test runs automatically when code is 

uploaded. This is possible even before new code is added to the central repository, so commits can be 

rejected if tests fail. Combined, these functionalities render an SVC an essential part of SQM. Several 

SVC protocols exist, such as GIT10 and Subversion11 (SVN). 

3.3 Release strategies 

By a stable release of a model, we mean a version that (i) never changes and (ii) is made available to 

others other than the developer. A release strategy outlines how and when releases are produced. Bug 

fixes trigger a new minor or maintenance release. Typically, a new release comprises a “sufficient” 

number of changes to the model and is deployed only after passing a predefined set of tests, where 

“sufficient” can be defined based on subjective or objective criteria. Having version control in place 

facilitates the development of a release strategy because it allows one to identify each revision of the 

code and to work with branches of parallel development. Releases are also connected with certain types 

of testing.  

In commercial software development, it is increasingly common to automate the release strategy 

so that specific tests are automatically carried out when the code base has been sufficiently revised to 

 

 

10 https://git-scm.com/  

11 https://subversion.apache.org/ 

https://git-scm.com/
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motivate a new release. Depending on the scope of the strategy, it is common to distinguish three levels 

of automation, illustrated in Figure 2. Continuous integration is a strategy for continuously integrating 

new developments into a central code repository, combined with automated build (compilation) and unit 

tests. Continuous delivery takes the automation one step further by deploying the integrated builds to a 

more evolved test environment where the entire system is tested, which is called integration testing. If 

approved by the release manager, the code can then be deployed. We speak about continuous 

deployment if that final approval is also automated. 

Figure 2: Different scopes for automated testing and release 

 

Source: The authors 

SVC is widely used in economic modelling. As it is difficult to develop unit test suites in an AML, as 

discussed above, automated unit testing for each code change is less common. Automated integration 

tests of the entire software for each commit are unlikely if the computing time for running through all 

steps amounts to many hours. Therefore, the automated testing required for continuous integration, and 

at any rate for continuous delivery, is typically missing. Nevertheless, suppose the production version 

of the model is derived from the central repository. In that case, it is not uncommon for committed code 

to enter the production version immediately without systematic testing or release, leading to fuzzy 

versioning where it is unclear which version of the model and data was used for a particular application. 

As discussed next, a good release strategy can prove valuable for a network of researchers 

developing a model over many years for several reasons. Many of those reasons are also valid for an 

individual researcher developing their model code in the context of some study. 

First, a release strategy supports stability and predictability: The shared code base is in constant 

flux when many researchers collaborate on a modelling project. A mature model accumulates many 

features over time, and not all features are always functional or tested in the head revision of the SVC 

trunk. When a researcher starts working on an applied analysis with such a model, she needs to decide 

which version of the model is the most suitable for the study at hand. The answer is not always the head 

revision of the SVC, which might contain bugs in parts not recently used or tested or changes to raw 

data that cause model results to change. Suppose the model has a stable release that has been thoroughly 
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tested upon publication and not changed. In that case, such a release is a good starting point for an 

applied study that does not critically depend on the latest features or data. 

Second, a release strategy supports peer review: If studies are carried out with a released model 

version, reviewers and readers can access it from a central repository, easing compliance with 

requirements to publish data and publication methods. 

Third, a release strategy supports the network's viability: New users can be directed towards a tried-

and-tested model version with known properties. Stable releases are also useful for training courses, as 

exercise results don’t change. 

Finally, a release strategy can reduce testing costs by not testing everything for every commit. 

Instead, an extensive set of tests is carried out with each new release only. In that way, it is possible to 

test batches of commits that introduce new features, fix bugs or other unforeseen consequences of the 

new features, or data updates to several areas.  

3.4 Documentation 

Documentation serves internal aims related to code development and maintenance, often called 

technical documentation, and external ones to inform software users and others. We distinguish two 

types or scopes of internal documentation. The first type is comments within the source code. While 

code must be programmed using the grammar and vocabulary of the software language, it should be 

written as far as possible in a “self-documenting” style (see section 3.5 on coding guidelines). So-called 

in-line comments provide complementary information in natural human language to inform more 

granularly what specific statements or code passages do from a conceptual viewpoint and motivate the 

specific code implementation (Khamis et al. 2013). Comments should not simply repeat verbally what 

the follow-up statements do. They are important during debugging and reviewing code as they speed up 

its understanding. They can also help to find conceptual and other errors and to structure the code 

visually. These viewpoints provide an obvious link to SQM. 

A second type of internal documentation specifies relations between code elements (functions, 

objects, packages, their organisation in files and folders, etc.) not (directly) visible from the code itself 

and beyond single files. For modern software languages, this type of documentation is typically 

produced automatically by utilities, which are part of the language itself. Such utilities generate 

additional documents beyond the code, often strongly hyperlinked. They refer mainly to the architecture 
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of the software and less to its granular implementation12. Internal documentation can contain technical 

terms or abstract concepts to inform developers and not users, such as diagrams coded in Unified 

Modelling Language or database diagrams. 

External documentation to users bridges the conceptual layers of software functionality and code 

implementation. For research software, this external documentation is often called methodological 

documentation and typically comprises model equations in mathematical notations, including their 

derivations (Herrmann and Fehr, 2022). A methodological documentation should not require that 

readers know the software language in which the model is coded. However, such knowledge is needed 

to check for coherent code implementation given the documentation. Moreover, external documentation 

includes instructions on using the model code, including installation instructions. It should also cover 

how input data needed for the model must be organised concerning format, content, and location in the 

file system, and it should comprise information on how to use a graphical user interface or text-based 

approaches to steer the model code. 

Different teams organise the model documentation differently. For instance, methodological 

documentation and a user manual can go hand-in-hand to inform how parameters belonging to blocks 

of equations are handled in external files, etc., or can be separated. There is also a growing tendency to 

use Wiki-based documentation instead of providing one document. Wikis make it easier to provide 

specific documentation for certain model releases. Still, depending on the granularity of the Wiki pages, 

they are harder to read than a classical document. It is sometimes possible to compile one document 

from the Wiki pages. Important functionalities of good documentation, such as hyperlinking different 

sections and topics and providing a searchable index, can be found in both approaches. 

3.5 Coding guidelines 

Coding guidelines specify rules on writing software to ensure a commonly agreed upon and thus less 

personalised programming style, including naming symbols, structuring code in functional units, 

commenting, and organising code in files and folders (Long et al. 2013, Green and Ledgard 2011). Such 

guidelines are especially relevant in research projects where coders have no formal training in software 

engineering such that they are unaware of accepted rules for writing code. Guidelines, hence, aim to 

produce code that can be more easily understood and maintained. They can also comprise hints to 

 

 

12 The documentation tools as part of GGIG (Gams Graphical Interface Generator, Britz 2014) provide part of this functionality 

for GAMS projects, generating a set of strongly hyperlinked web pages. The tool model2tex from gams.com 

(https://www.gams.com/48/docs/T_MODEL2TEX.html?search=model2tex) can generate LaTeX code of a model's equation, 

including substituting the name of GAMS symbols by names more commonly used in mathematical notation, such as Greek 

symbols. 

https://www.gams.com/48/docs/T_MODEL2TEX.html?search=model2tex
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improve performance, such as speeding up execution or reducing memory load. Due to the specific 

language features of AMLs, guidelines from general-purpose software languages need to be adjusted to 

become sensible. Multiple examples of coding guidelines for GAMS exist13, spanning from single 

internet pages with some valuable hints to documents with dozens of pages and quite detailed rules. 

Comparing them reveals that teams and authors sometimes have differing views on what constitutes a 

desired coding style. This might reflect the specific nature of the projects the guidelines are intended 

for, such as the size of their overall code base, model type, degree of modularity, and personal 

preferences. Developing and applying such guidelines is an integral part of SQM for an economic model 

but discussing them in detail is beyond the scope of the paper.  

3.6 Integration across projects 

Costs of reconciliation of code developed in multiple projects are hard to allocate. Moreover, re-

integrating project-specific code contributions (beyond bug fixes) in a “master version” often hardly 

benefits current projects but is instead an investment into future ones (Pidd 2002). It makes the most 

sense when combined with regular efforts to update data and parameters. Such continuous maintenance 

and development have worked well in number of cases, such as for the global Computable General 

Equilibrium (CGE) Model GTAP (Hertel and Tsigas 1997) and its variants, for the single country CGE 

IFPRI standard model (Löfgren et al. 2002), and to some degree for CAPRI (Britz and Witzke 2014), a 

partial global equilibrium model for agri-food markets which is regionalised to smaller administrative 

units for Europe. The FarmDyn model, used as an example in the annex 1 for a testing strategy, might 

be on a similar path (Britz et al. 2021a). The mentioned examples are template models where the same 

set of equations can be applied to many different data sets. Developing and maintaining such a template 

model allows distributing the fix costs of model development and maintenance over many research 

projects (Britz et al. 2021b). Repeated applications help to generate a trademark for the model, for 

instance, by peer-reviewed publications on which follow-up projects or papers can be built. Realising 

that the model (code) is an asset increases incentives to develop good documentation and handbooks, 

offer courses, etc., and build a user community around an economic model.  

 

 

13 Batmodel project: https://www.batmodel.eu/d7-2-common-guidelines-for-documentation-and-coding/ 

CAPRI: https://capri-model.org/ts/dokuwiki/lib/exe/fetch.php?media=red_book_on_gams_style.pdf 

GAMS.com: https://www.gams.com/latest/docs/UG_GoodPractices.html 

Christope Gouel:  https://github.com/christophe-gouel/gams-style-guide  

Paul Natsuo Kishimoto: https://github.com/mit-jp/style-guides 

https://www.batmodel.eu/d7-2-common-guidelines-for-documentation-and-coding/
https://capri-model.org/ts/dokuwiki/lib/exe/fetch.php?media=red_book_on_gams_style.pdf
https://www.gams.com/latest/docs/UG_GoodPractices.html
https://github.com/christophe-gouel/gams-style-guide
https://github.com/mit-jp/style-guides
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Long-term maintenance of the same model, including its software code, raises additional challenges. 

After years of development, the code in use has mainly been written by people no longer part of the 

current development team. Newer code might draw on software features that were previously 

unavailable. This can provoke, besides personal preferences, differences in coding style. Coding 

guidelines might not have existed in the early phases of model development or might have changed over 

time. The model and its variants might grow, increasing entry costs to new coders and model 

maintenance. Path dependencies might prevent the use of newly emerging data sets, or to integrate 

methodological advances, or to switch to a better suited software package. 

At the same time, the specific grammar of GAMS and GEMPACK largely prevents publicly shared 

libraries or packages such as those found for Python or R. Instead, communities of economic modellers 

have gathered around specific implementations of model types, such as in the case of global CGE models 

around, for instance, GTAP14, GLOBE15, or MIRAGE16. Each such model has its specific pros and cons 

to analyse a research question, but picking what is considered best from different models is almost 

impossible. A key reason is that the building blocks of a model, such as the code for simulation 

equations, their benchmarking, and reporting of final demand, cannot be easily ported across models as 

they are not encapsulated. As all symbols have global scope in these AMLs, copy-and-pasting across 

models leads to name-clashes and the need to harmonise a typically larger number of set, variable and 

parameter names with the namespace of the receiving model. This has triggered a discussion around 

more generic modelling platforms which require, for instance, modularity to support different 

methodological solutions for model parts and/or to add extensions on demand (Britz and Van der 

Mensbrugghe 2018, Britz et al. 2021b), or the development of modules which can be incorporated in 

different equilibrium models (Britz et al. 2021a). 

4 Summary and recommendations 

We argue that a formalised testing strategy is as important in the quality management for an economic 

model as it is in commercial software. However, differences to industry projects make it difficult to 

adopt established SQM methods. The typical researcher and their project leader lack the required 

training on SQM, while their incentives focus on scientific output rather than software stability and 

maintainability. Moreover, economic models are coded in tailored software packages that lack facilities 

supporting, for instance, unit testing and automated documentation. Consequently, SQM in economic 

modelling often turns up late in the life cycle of a model, increasing overall cost for its development and 

 

 

14 https://www.gtap.agecon.purdue.edu/ 

15 http://www.cgemod.org.uk/globe.html 

16 https://mirage-model.eu/ 



Agricultural and Resource Economics, Discussion Paper 2025:3 

21 

maintenance. For guidance, we present in annexes two empirical examples of how research teams have 

implemented SQM for their economic models. We detail the chosen strategy for the bio-economic farm-

scale model FarmDyn and the release strategy and related testing of the partial equilibrium model 

CAPRI. While not all elements of these specific strategies might be relevant or even possible for other 

economic models, many tools and considerations described should remain useful. 

Testing can save considerable costs if it avoids errors which otherwise require that model 

applications must be repeated or reports partially rewritten. It also increases team members' awareness 

of quality management more generally. Central testing exposes errors to the whole team. This 

incentivises each contributor to perform checks during code development, decreasing the number of 

errors faced by others and detected by central testing. Testing strongly relates to ethics in research by 

reducing the probability that findings are based on erroneous model outcomes. It supports initiatives to 

improve the reliability and trust of published research work. For econometric work, some journals 

require that authors provide reviewers with data and scripts to ensure that reported results can be 

replicated. The “Journal of Global Economic Analysis”, closely linked to the GTAP community, 

requires for papers based on model applications, typically of a Computable General Equilibrium model, 

that one reviewer replicates the runs. Authors are also advised to make their code available as 

supplementary material. Such initiatives complement testing strategies by modelling teams. 

Implementing a testing strategy as described above requires tools such as a software versioning 

system. Researchers must be trained in these tools, and the project management must ensure their proper 

usage. The tests itself for the examples described in annex were implemented in GGIG, another tool 

requiring training; the same will hold for alternatives. Like knowledge of statistical packages or AMLs, 

training courses on such tools can also be centralised at department level or above. Especially for young 

researchers, certified participation in SQM related training courses can foster their careers. Given the 

societal debate about ethics in research, knowledge about and application of SQM related tools that 

reduce the probability of incorrect research outcomes might soon no longer be a nice-to-have but an 

essential. 

There are increasing demands to document data used in research and to ensure access after the end 

of projects, as expressed in the ubiquitous requirement to provide data management plans. Similar 

requirements might arise for software use. Early adopters might benefit from a first-mover advantage 

by setting standards. As a research community, economic modellers might be well advised to exchange 

knowledge about the current state-of-the-art to ensure software quality and to jointly develop solutions 

to be proposed to donors, instead of later facing demands which are ill-fitting to their domain. 

A first-time implementation of a testing strategy requires considerable resources, such as licence 

fees, dedicated hardware to host, e.g., the model repository, and staff training. At least in software 

development projects, it has been found that these costs pay off, and related savings increase the earlier 
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errors are detected. The same is likely for economic modelling. Therefore, project managers should 

encourage regular testing already from the earliest stages of research and development of an economic 

model. 
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Annexes 

A1: Strategies for continuous testing in FarmDyn 

A1.1 The farm-scale bio-economic model FarmDyn 

FarmDyn (Britz et al. 2016) is a farm-scale bio-economic model written in GAMS, depicting farm 

management in great detail. Typical model configurations in comparative-static deterministic mode 

comprise 1.000 to 10.000 linear constraints and variables, some of which are integer variables, to yield 

a Mixed Integer Program for which reliable and fast solvers are available. Model sizes can increase 

substantially if stochastic, dynamic, or stochastic-dynamic programming is used. Blocks of equations 

relating to certain farm branches or model extensions, such as for risk or risk behaviour, are integrated 

on-demand only. This modularity, which breaks the model equations into logically related blocks, keeps 

the model manageable and speeds up its solution and checking of results. Equally, modules under 

development can be turned off for production runs. Technically, modularity is mainly realised based on 

conditional compile-time includes. The code is hosted on a software versioning system and written 

loosely following coding guidelines developed originally for the partial equilibrium CAPRI model 

(Britz 2010). FarmDyn was stepwise extended in research projects, following a path discussed in section 

2.2. FarmDyn features a Graphical User Interface (GUI) realised in GGIG (Britz 2014); see annex A2. 

FarmDyn comprises modules for farm branches (arable cropping, dairy, beef cattle, mother cows, 

fattners, biogas) and depicts in detail related farm management. For instance, labour use is differentiated 

on a bi-weekly basis and feeding at a monthly one. Investment decisions relate to specific machinery 

and stables and are based on integer variables to consider return-to-scale.    

Past applications encompass of FarmDyn the assessment of GreenHouse Gas abatement options 

and costs in German and French dairy farm (Lengers et al. 2014, Mosnier et al. 2019), of potential 

changes in the German biogas program (Schäfer et al. 2017), of the German implementation of the 

Nitrates and Water Framework Directives on different farm types (Kuhn et al. 2019), of breeding options 

in German dairy herds (Pahmeyer and Britz 2020), or the interaction of coupled support for legume 

cropping and the implementation of the nitrate directive (Heinrichs et al. 2021). FarmDyn was also 

linked to results of crop growth models (Kuhn et al. 2020). More methodological work in the context of 

FarmDyn related to developing meta-models from detailed farm-scale models, building on large-scale 

sensitivity analysis (Lengers et al. 2014, Kuhn et al. 2019, Seidel and Britz 2020), and to develop a 

calibration method based on bi-level programming (Britz 2020). 
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A1.2 Testing in FarmDyn based on its Graphical Interface Generator 

FarmDyn features a Graphical User Interface (GUI) realised in GGIG (Gams Graphical Interface 

Generator, Britz 2014), a package coded in Java which combines an interface generator for GAMS or R 

based projects with a report generator (Britz et al. 2015). Besides FarmDyn, GGIG is used for other 

economic models, such as the partial equilibrium model CAPRI (Britz and Witzke 2014) and the 

computable general equilibrium model CGEBox (Britz and Van der Mensbrugghe 2018), both mainly 

developed at the University Bonn, the partial equilibrium model PEM (OECD 2011) and the general 

equilibrium model METRO (OECD 2015), and the single-farm model IFMCAP at the EU’s Joint 

Research Center (Louichi et al. 2018). The technical solutions detailed next related to testing for 

FarmDyn draw on features of GGIG and can therefore also be easily applied to these other models. A 

screenshot of the entry page of the GUI for simulation runs can be seen below in Figure A1.1. 

Figure A1.1: FarmDyn GUI 

 

In batch mode, GGIG produces HTML-pages for each started process as shown below in Figure A1.2 



Agricultural and Resource Economics, Discussion Paper 2025:3 

28 

Figure A1.2: HTML page with results from test run generator by GGIG 

 

Source: Screenshot from HTML-Page generated by the GUI of FarmDyn in Batch mode 

An automated reporting of differences can be added to the HTML based reports, as shown in Figure 3, 

usually applied to a smaller vector of key model outcomes. If activated, the HTML page reports the 

number of records where differences larger than a predefined threshold are found, in the (artificial) 

example shown in the upper panel of Figure 3 below these are 23 cases at the chosen threshold of 1%. 

These cases can be inspected directly in the HTML page as shown in the lower panel. If changes are 

considered acceptable, the test is considered successful. Otherwise, the information which indicators 

changed by how much might already provide useful information to find and correct errors. 

Figure A1.3: Automated reporting of differences in GGIG 

 

Source: Screenshot from HTML-Page generated by the GUI of FarmDyn in Batch mode 

Like other GUI generators, GGIG generates user-operable controls from textual definitions that 

primarily define admissible input (ranges). In interactive mode, a user configures the model via these 

controls and starts it. Results are explored via the so-called listing file or reports provided by the GGIG 
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report generator. This interactive mode is not suited for systematic testing. A tester would need to 

manually change settings for many controls according to a document defining each test and wait for 

each run to finish before checking results, an error-prone and tiring process. Therefore, tests use the so-

called batch mode, which automatically runs the model based on control settings predefined in a text 

file. For each run, the settings used and the return code from GAMS are stored on an HTML page (see 

Figure A1.2 above). The batch mode can either be started via a GUI dialogue or deployed from a 

command prompt or other software, which enables automated testing. Input files for the batch mode can 

be created by copy-and-paste from files generated by the GUI in interactive mode and support program 

flow structures such as loops and if-conditions to render them more compact. The GGIG batch mode 

can automatically compare results across code versions if these are stored as parameters in so-called 

GDX containers. GDX is a proprietary, binary format of GAMS for which application programming 

interfaces in different programming languages are available. The two GDX containers with the old and 

new results are compared by the GDXDiff utility from GAMS, called from within GGIG. It produces 

as outcome a parameter in a third GDX container which reports the differences between the two result 

sets, subject to a user chosen threshold. GGIG then reads this GDX container and formats its content as 

HTML code added to the HTML report. 

The input choices of the controls offered to the user also span the potential test range of inputs for 

the economic model. This enables automated tests, subject to the curse of dimensionality if many 

controls, each with multiple settings, are present. The batch mode of GGIG can generate automatically 

test instances from the available input choice for certain types of controls. These tests build on the default 

setting for all controls on the interface. In a loop, for each single selection control such as a checkbox, 

all potential settings are subject to a test, documented on the HTML page. Afterwards, the control is 

reset to its default and the settings for the next control are tested. Controls which define numerical input 

(such as sliders or spinners) are normally not subject to such tests, as introducing a different number in 

the code is unlikely to provoke errors in compile-time tests. It is however possible to define besides the 

default registered with the control a second numerical value for a test. This is useful if the code treats, 

for instance, a zero different from a non-zero value. Equally, controls can be excluded from testing, for 

two reasons. First, the GAMS code itself comprises some tests; they throw an error at compile time for 

certain combinations of input settings which are considered illegal. Including these cases would show 

failed tests, which is actually not true as the user cannot execute the model with these settings. Second, 

the GUI control definitions comprise so-called dependencies. Choosing between risk behavioural 

models, to give an example, is only possible for the user if the stochastic version of the model is used. 

With the deterministic version being the default, tests of the risk behavioural models are not possible 

and therefore excluded from testing. Such cases require defining additional tests manually, as discussed 

below. 
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To develop a test strategy, the frequency of code changes must be reflected, after which testing is 

necessary. A clean checkout of FarmDyn encompasses about 500 files, all added at some point in the 

past the first time to the repository and probably changed multiple times later. Such changes are called 

“commits,” and experience shows that commit activity is not equally distributed over time but shows 

peaks. On average, around 170 commits are taking place each year; the maximum number so far 

encountered was around 400 in 2018. This peak year reflects the generation of a so-called “stable 

release” where changes from various projects were re-integrated into a common master version. 

A1.3 Layered test approach in FarmDyn 

Testing in FarmDyn is based on pre-defined tests of the three types discussed: compile-time, run-time, 

and outcome tests, see also table A1.1 below. These tests require increasing efforts regarding 

computation time, setting up the tests, and controlling their outcomes, as discussed next. 

A1.3.1 Basic layer – compile-time tests 

Compile-time tests with FarmDyn typically take less than a second, so many are performed. The HTML 

pages generated by GGIG indicate failed runs in red to spot failed ones quickly. Compile-time tests are 

mainly defined in an automated manner from the GUI controls. They automatically reflect changes in 

GUI definitions, equivalent to changes in the model’s potential input data set. For Farmdyn, these fully 

automated tests currently comprise about 150 different input sets. They refer partly to different model 

configurations, such as comparative static versus different types of dynamic runs. They also comprise 

technical options that should not affect outcomes, such as switching listings on and off. A few manually 

defined test instances have been added to these automated tests. They complement cases not captured 

by testing each control individually with all others at their default values. 

A1.3.2 Intermediate layer – run-time tests 

The intermediate layer comprises run-time tests where key farm management choices such as herd sizes 

and crop shares are fixed to a known optimal solution for the input data generated based on previous 

projects. These tests aim to exclude that changes in model structure and default parameterisation 

provoke infeasibilities. Fixing key management choices will also reduce solving time, as only a few 

integer solutions match given herd sizes and crop acreages. The GAMS code will throw an error if the 

model is integer or otherwise infeasible, such that these failed test instances can be easily detected. 

Another advantage of these tests is that key indicators such as profits or Greenhouse Gas emissions are 

unlikely to change for a fixed core farm program. Larger changes in such indicators provide a rather 

sure indication of some flaw in recent changes in the code if the former results were deemed correct. 

Run-time tests are developed jointly by the team. 
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A1.3.3 Evolved layer – outcome tests to check numeric results 

The final tests check the plausibility of the model outcome on a carefully selected number of total 

optimisation runs without fixed variables. This is expensive as optimising a single test instance can 

require several minutes due to integer variables. More importantly, deciding if a test has failed, should 

no run-time error occur, requires a plausibility assessment of simulation results. The tests mainly 

comprise cases from ongoing projects to exclude code changes in the same or parallel-running projects 

that lead to unforeseen outcomes in key results. The plausibility assessment focuses on key indicators 

such as profits, herd sizes, crop acreages, and some selected environmental indicators. They can be 

directly retrieved from the HTML pages generated by GGIG; see Annex A2. Additionally, the reported 

key indicators are collected automatically in an EXCEL workbook, with one sheet for each test instance. 

The different indicators are in the rows, while the columns refer to a revision number tested. This shows 

how indicator results change along the history of the code with a colouring scheme visualising 

differences according to relative changes. 

Outcome tests implicitly assume determinism, i.e., that the model will produce the same results on 

a given set of inputs in repeated runs. This is, however, not necessarily the case; see the notes on the 

stability tests above. Moreover, and most importantly for the case discussed here, MIP problems are 

usually not solved to full optimality and often run deliberately in non-deterministic mode, such that the 

solver does not guarantee identical results on the same problem in repeated runs but runs faster. 

Guaranteed determinism from a solver perspective is defined strictly as technical, not from a conceptual 

viewpoint. For instance, changing the order in which the equations enter the model might change results 

even in deterministic mode. The same holds if purely informational equations are added that cannot alter 

the optimal allocation from a conceptual viewpoint. 

What are the consequences of these observations on determinism? First, tests should be run in a 

defined environment, such as the same software release and hardware, avoiding parallel load. Second, 

solvers should be used in deterministic mode. Third, if maximal solution times are deemed necessary, 

exceeding them should trigger a run-time error instead of continuing execution based on intermediate 

optimal outcomes. These test conditions aim to ensure that differences must stem from code changes (or 

input data). Testing becomes much more demanding if (almost) identical results should also be 

guaranteed over a range of software releases and hardware set-ups. This is not discussed here. 

A1.3.4 Test frequency and other details 

Tests often fail when only parts of locally changed code are committed, or local code is partly not 

synchronised with the head revision. Sticking to older versions might be necessary, for instance, to avoid 

the fact that already finalised model runs need to be repeated and re-documented. To avoid inconsistent 

master versions, coders might not commit files during a project’s lifetime. Once a project is ready, all 
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local files are updated to the newest versions, and files with local modifications are committed in one 

large block. This tactic reduces problems related to inconsistent, more fine-grained changes. However, 

it might also lead to very long log entries, which are hard to understand when looking at the history of 

a single file. Commits changing many files might also mean that all other coders must invest 

considerable time to deal with merged files or, even worse, conflicts in their local working copies. 

Moreover, such a strategy makes it hard to relate outcome changes to dedicated code changes. To avoid 

a model version comprising local modifications being (involuntarily) tested instead of the current 

master, it is necessary to use a separate so-called clean working copy for tests, kept synchronised with 

the current head revision. Before tests are run, this local copy must be updated to reflect recent commits.  

Table A1.1: Overview of the testing strategy in FarmDyn 

 Frequency # of test instances Checking efforts 

Compile-time tests Triggered daily if a commit 

occurred 

~150 Very low 

Run-time tests Triggered daily if a commit 

occurred 

~20 Low 

Outcome tests Triggered weekly if a commit 

occurred 

~10 High 

Source: The authors 

Compile- and run-time tests that do not require manual checks are run frequently; see Table 1. They are 

automatically triggered17 each night should a commit have occurred and run on each commit separately. 

It is the task of the current quality manager (QM) to check each working day if a new HTML page with 

test results is available. If the page reports failed tests, the QM will check the commit log to determine 

who performed the commit(s). These team members are informed and asked to correct the errors. They 

decide then if they debug the problem alone or with the help of colleagues, such as in cases where issues 

relate to incompatibilities across modules. 

Outcome tests that require manual checks are run weekly and should be assessed during the week. 

A Jenkins process will trigger these tests automatically over the weekend. The current QM will check 

the resulting HTML page on Monday. The automated GDXDiff output will report changes in key 

indicators. If this is the case, the QM will consult with the coders who committed during the week to 

determine if these changes are intended or deemed implausible and, in the latter case, who will deal with 

the problem. 

 

 

17 Using a Jenkins process, see www.jenkins.io 



Agricultural and Resource Economics, Discussion Paper 2025:3 

33 

References in A1 

Britz, W. (2014): A New Graphical User Interface Generator for Economic Models and its Comparison 

to Existing Approaches, German Journal of Agricultural Economics 63(4): 271-285. 

https://doi.org/10.52825/gjae.v63i4.1964 

Britz, W., & Witze, P. (2014). CAPRI model documentation, version 2014. University Bonn, 

https://www.capri-model.org/docs/CAPRI_documentation.pdf 

Britz, W., Pèrez Dominguez, I., Narayanan, G. B. (2015): Analyzing Results from Agricultural Large-

scale Economic Simulation Models: Recent Progress and the Way Ahead, German Journal of 

Agricultural Economics 64(2): 107 – 119. https://doi.org/10.52825/gjae.v64i2.1987%0A 

Louhichi, K., Ciaian, P., Espinosa, M., Perni, A., & Gomez y Paloma, S. (2018). Economic impacts of 

CAP greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP). 

European Review of Agricultural Economics, 45(2). https://doi.org/10.1093/erae/jbx029 

OECD (2011), "Annex D. The OECD Policy Evaluation Model", in Evaluation of Agricultural Policy 

Reforms in the United States, OECD Publishing, Paris 

 https://doi.org/10.1787/9789264096721-17-en 

OECD 2015: METRO V1 model documentation, 

 https://one.oecd.org/document/TAD/TC/WP(2014)24/FINAL/en/pdf 

Britz, W. (2020): Automated calibration of farm-scale mixed linear programming models using bi-level 

programming. Discussion Paper 2020:4, Download: Discussion Paper. 

Heinrichs, J., Jouan, J., Pahmeyer, C., Britz, W. (2021): Integrated assessment of legume production 

challenged by European policy interaction: A case-study approach from French and German dairy 

farms, QOpen 1(1): 1-19. https://doi.org/10.1093/qopen/qoaa011 

Kuhn, T., Enders, A., Gaiser, T., Schäfer, D., Srivastava, A., Britz, W. (2020): Coupling crop and bio-

economic farm modelling to evaluate the revised fertilization regulations in Germany, Agricultural 

Systems 127(C). DOI: 10.1016/j.agsy.2019.102687 

Kuhn, T., Schäfer, D., Holm-Müller, K., Britz, W. (2019): On-farm compliance costs with the EU-

Nitrates Directive: A modelling approach for specialized livestock production in northwest Germany, 

Agricultural Systems 173: 233-243. https://doi.org/10.1016/j.agsy.2019.02.017 

Lengers, B., Britz, W., Holm-Müller, K. (2014): What drives marginal abatement costs of greenhouse 

gases on dairy farms? A meta-modelling approach, Journal of Agricultural Economics 65(3): 579–

599. https://doi.org/10.1111/1477-9552.12057 

https://doi.org/10.52825/gjae.v63i4.1964
https://www.capri-model.org/docs/CAPRI_documentation.pdf
https://doi.org/10.1093/erae/jbx029
https://doi.org/10.1787/9789264096721-17-en
https://one.oecd.org/document/TAD/TC/WP(2014)24/FINAL/en/pdf
https://ageconsearch.umn.edu/record/303683
https://doi.org/10.1093/qopen/qoaa011


Agricultural and Resource Economics, Discussion Paper 2025:3 

34 

Mosnier, C., Britz, W., Julliere, T., De Cara, S., Jayet, P.-A., Havlik, P., Frank, S., Mosnier, A. (2019): 

Greenhouse gas abatement strategies and costs in French dairy production, Journal of Cleaner 

Production 236: 117589. https://doi.org/10.1016/j.jclepro.2019.07.064 

Pahmeyer, C., Britz, W. (2020): Economic opportunities of using crossbreeding and sexing in Holstein 

dairy herds, Journal of Dairy Science 103(9): 8218-8230. https://doi.org/10.3168/jds.2019-17354 

Schäfer, D., Britz, W., Kuhn, T. (2017): Flexible Load of Existing Biogas Plants: A Viable Option to 

Reduce Environmental Externalities and to Provide Demand-driven Electricity?, German Journal of 

Agricultural Economics 66(2): 109-123 

Seidel, C., Britz, W. (2020): Estimating a Dual Value Function as a Meta-Model of a Detailed Dynamic 

Mathematical Programming Model, Bio-based and Applied Economic 8(1): 75-99. 

https://doi.org/10.13128/bae-8147 

  



Agricultural and Resource Economics, Discussion Paper 2025:3 

35 

A2 Testing model releases in CAPRI 

CAPRI is a comparative static agri-food partial equilibrium model combining several linked models and 

comprising an extensive set of reports of economic and environmental indicators (Britz and Witzke, 

2014). Model development started in 1994, and since then, the group of developers has changed, data 

sources were replaced, while software developments in the GAMS language and supporting tools such 

as Java along with methodological progress implied larger code changes. The model’s code base evolved 

over dozens of research projects, following the processes described in section 2.2. Consequently, the 

system today contains heterogeneous code in terms of style, documentation and software features. 

Large, if not most, parts of the code were developed by people no longer involved. The model code is 

open to all developers, including a few seasoned modellers from the early days, some analysts at 

governmental agencies or the European Commission, and several PhD students and research assistants. 

As a network, they share the model based on public releases to remedy the fuzzy versioning problem 

(see section 3.3 of main paper). 

In response to the challenges of dealing with code developed over more than 25 years and 

continuing parallel developments in projects, the network of CAPRI developers has established since 

2016 a stable release cycle that revolves around major releases, minor releases, and supported features. 

Any stable release is a version of the model, including the associated raw data, that (i) does not change 

and that (ii) has been subjected to an extensive set of tests. A major release is created after significant 

updates to the raw data or introduction of new key features into the model, provided that the network 

has the required resources. 

Technically, the release cycle is based on tags and branches in the versioning control system, 

illustrated in Figure 3. The creation of a new major release, such as Stable Release 2 (STAR 2), starts 

with generating a dedicated branch for this release from the trunk of the code repository (revision 6629 

in Figure 3). On this branch, developers prepare code for the major release, for instance, by removing 

unfinished developments present in the trunk and fixing bugs found during testing and later use. Besides 

bug fixes, continuing code developments in the trunk and other branches do not find their way into the 

STAR branches. 

A release and follow-up sub-versions must pass a test suite of supported features such as a list of 

shocks, model configurations, and data constellations agreed upon by the CAPRI network. Technically, 

a batch execution file for the GUI is set up – using the same techniques as described in the example of 

FarmDyn above – that carries out run-times tests of database preparation steps, baseline forecast, 

benchmark calibration, and selected scenario simulations, with features to support in these different 

steps systematically turned on and off. As a basic stability test, the test suite is run on two different 

machines with two versions of GAMS. Moreover, the tests are repeated with and without starting values 

from existing solutions or a pseudo-random number generator and are also repeated without any change. 
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The results are pairwise compared to find numerical instabilities. Tests of release 2.7 of CAPRI assessed 

the stability of 5.3 million numbers per simulation with the core model under different hardware and 

GAMS versions and with and without a previous existing solution, which defines starting values in some 

sub-processes. The tests revealed that results indeed depend to an astonishing degree on the hardware 

and software versions: 65% of the results were unstable within the numerical precision limits of GAMS. 

However, just 0.61% showed deviations larger than 0.1%, while 0.15% of the results were sometimes 

zero or non-zero. Interestingly, the existence of starting values had no impact at all, but running the 

process twice with the very same software and hardware changed 35 numbers (0.0007%) by up to 10%. 

This probably reflects that other processes running on the machine affect the overall computing load 

and influence the number of repeated solves of certain processes due to time limits. 

No systematic outcome tests are performed in the supported features, albeit many such tests are 

included in the various processing steps. In the terminology of section 3, the integration tests are 

manually triggered. 

The first successfully tested version is “tagged” in the versioning software with a new version 

number, such as STAR 2.0 in revision 6839 in Figure 3. Despite the tests, subsequent use will typically 

reveal some bugs. Once a (subjectively) sufficient amount or severity of bugs is fixed, a new minor 

release is tagged, such as STAR 2.1 in revision 7170 (after 47 commits – the remaining 284 commits 

between 6839 and 7170 were to other branches or the trunk) in Figure 3. As the major release STAR 2 

aged, less errors were found leading to fewer yearly commits, decreasing the frequency of minor releases 

and of tedious integration tests. Due to the version control system, all tagged releases remain 

“perpetually” available, facilitating the reproduction of previous studies and, for instance, the external 

review of the model and its outcomes.  
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Figure 3: Branching and tagging releases in CAPRI, by the example of STAR 2. Numbers in grey boxes 

are the incremental revision numbers created by Subversion at each code commit. Rounded yellow 

terminators represent “tags”, i.e., released versions. 

 

Source: The authors 
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