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1. Introduction

For millennia, human population growth remained relatively stable, but the Industrial
Revolution fundamentally altered this dynamic, ushering in an era of rapid population
increase driven by enhanced availability of food, water, energy, and medical care. This
unprecedented growth has exerted immense pressure on Earth's systems, leading to
resource extraction, increased freshwater usage, expanded land conversion for
agriculture and urbanization, and, critically, a dramatic rise in pollutants and waste,

most notably CO2 emissions that accelerate climate change

Human beings impact the Earth system in a variety of ways. First, they extract resources
from the environment, including minerals, fossil fuels, trees, water, and wildlife. Second,
they use freshwater extracted from lakes, rivers and ground reservoirs for drinking and
hygiene, agriculture, recreation, and industrial processes. Third, they increase land
usage for agricultural activities to grow crops and livestock, and fishing and hunting,
exploiting several species populations. Fourth, natural habitats are converted into urban
areas including the construction of homes, businesses, and roads to accommodate
growing populations. Finally, production and consumption processes, burning fossil
fuels, increasingly release pollutants and waste, which reduce air and water quality,

harm the health of humans and other species and contribute to climate change.

The consideration of the growing population environmental impact dates back at least
to the eighteenth century with the Malthusian concern about the rate of growth of food
supply vis-a-vis the growth of population. Much later in the early 1970s, a debate
focused on two competing explanations of the environmental impact, namely
overpopulation or polluting technologies, which were eventually captured by the well-
known IPAT equation (Erlich and Holdren, 1971). The relationship highlights the
contribution of population, affluence, and technology to explain environmental impacts
and to guide policy action. In the IPAT equation population acts in a sense as a “scale
factor” for the environmental impact, whereas affluence is a “deepening factor” with

technology controlling for the “intensity” of the environmental impact.

Alarge literature has documented the effects of population on the environment. Within
the stochastic version of the IPAT equation, first proposed by Dietz and Rosa (1994),

several papers have been interested in assessing the population elasticity of CO2



emissions versus the per capita GDP elasticity, the latter proxying affluence in the
equation. However, this established understanding has largely treated population as a
homogeneous entity, overlooking crucial demographic distinctions. While some
research has touched upon factors like urbanization, age structure, and household
composition, there remains a critical gap in the literature: a thorough empirical analysis
of the potential different impacts of international migrants on a country’s CO2 emissions

compared to native-born individuals.

The aim of the paper is to fill this gap, estimating a new model which can distinguish the
impact of migrants on the environment relative to that of native-born individuals.
Demographers and sociologists have long studied migrants’ integration and
acculturation, with research largely examining migrants from the Global South moving
to the Global North. As noted by Winkler and Matarrita-Cascante (2020), cultural
differences are important determinants of energy consumption at the household level
(Lutzenhiser, 1993; Stephenson et al.,, 2010; Warde, 2015). Cultural understandings of
what kind, how many, when, and how often we use a variety of energy-intensive devices
(cars, electronic devices, hot water, appliances, air conditioning, etc.) shape
consumption patterns beyond differences due to income, market, or policy. In other
words, what we want/need is shaped by cultural norms and prior experiences and daily
practices (Warde, 2005). The focus on consumption generally follows the dominant
assumption that immigrants (wanting to become a part of the new culture) adopt the

habits of the majority norm (Wallendorf and Reilly, 1983).

This paper proposes two new contributions to literature. First, we estimate a variant of
the STochastic Impacts by Regression on Population, Affluence, and Technology
(STIRPAT) equation, analyzing separately the impact of native-borns and migrants on
carbon emissions of a (destination) country. Estimating the emission elasticity of these
two groups of people allows us to assess whether the difference is statistically different
from zero. Second, this paper looks at the different impact within the OECD and the non-
OECD as the group of destination countries. The reason is that OECD “rich” countries
have been traditionally the destination of international migrants, though an increasing
portion of international migration has been taking place across countries also belonging

to the non-OECD group.



Our findings challenge the simplistic assumption that migration necessarily increases
emissions. We reveal an important asymmetry: in both OECD and non-OECD countries,
the emissions elasticity of native-born populations is significantly higher than that of
migrants. Furthermore, our study uniquely demonstrates that while migrants in OECD
countries initially contributed more per capita to emissions than natives, this impact has
steadily and significantly declined over time, becoming smaller than that of native-born
individuals after 2003-2004. This dynamic shift is a novel finding that contrasts with

earlier static assumptions.

These insights underscore the urgent need for differentiated climate policies that
consider the evolving energy consumption behaviors and socio-economic realities of
both native-born and migrant populations. By recognizing this demographic
heterogeneity, governments and firms can craft more efficient and equitable mitigation

strategies, focusing interventions where they will have the most significant impact.

The paper is organized as follows. In Section 2 we selectively review the relevant
literature. In Section 3 we describe the methodology and the estimation strategy. Section
4 presents the data and Section 5 the estimation results. Section 6 discusses the results.

Concluding remarks follow.
2. Selected literature review

This paper lies at the intersection of two strands of literature.

The first strand is the impact of population on the environment. A growing population
has significant and multifaceted impacts on the environment, from resource depletion
to environmental degradation - pollution, land use, deforestation, biodiversity loss -
and climate change. These impacts stem from the increased demand for resources like

food, water, and energy, as well as the greater production of waste and pollution.!

Because climate change represents the biggest challenge faced by humanity, the role of
its main drivers has given rise to a large body of research, focusing specifically on
population along with affluence, technology, and other factors. In the case of a global
pollutant like there are two types of evidence for how CO2 emissions are affected by

demographic factors such as population growth or decline, ageing, urbanization, and

1 On this topic there is an extensive literature starting perhaps with Holdren and Ehrlich (1974).



changes in household size (O’Neill et al., 2012). The first type is provided by results of
empirical analyses of historical trends which tend to show that energy-related carbon
dioxide emissions respond almost proportionately to changes in population size and
that ageing and urbanization have less than proportional but statistically significant
effects. The second type of evidence is provided by scenario analyses showing that
alternative population growth paths could have substantial effects on global emissions
of CO2 several decades from now, and that ageing and urbanization can have important

effects in particular world regions.

Focusing on the first type of evidence, the impact of population on the environment has
been central to the debate that developed during the late 1900s when the so-called IPAT
identity was first proposed by Ehrlich and Holdren (1971) as a framework to distinguish
between the impact of population and that of income (or GDP). Specifically, the
environmental impact (I) was taken equal to the product of population (P), affluence
(A), and technology (T). Twenty years later Dietz and Rosa’s (1994) proposed the
econometric version of the IPAT identity known as the STIRPAT (STochastic Impacts by
Regression on Population, Affluence, and Technology) equation. This representation
enabled researchers to use data to estimate the sensitivity of the environmental impact

to the main IPAT drivers.

While the empirical studies based on the STIRPAT model abound (see Vélez-Henaoa et
al,, 2019, for a recent review), a small subset focus on population as a crucial driver of
climate change and aim to estimate the elasticity of CO2 emissions to population. This
elasticity is often evaluated against that of affluence (per capita GDP). The general
finding is that the population elasticity is larger than the affluence elasticity, with the
former often exceeding unity. In this vein the early study by Dietz and Rosa (1997) found
a population elasticity of CO2 emissions equal to 1.15 and York et al. (2003) presented
estimates ranging from 0.97 to 1.02 depending on the presence of additional controls.
While Shi (2003) produces an elasticity in the range 1.41-1.65 while the GDP elasticity
is much lower around 0.71-0.82. Cole and Neumayer (2004) apply a STIRPAT equation
in first differences producing an elasticity of emissions with respect to population to be
unity across different specifications in which they control for urbanization, household
size, and age structure. Other cross-country studies are Martinez-Zarzoso et al. (2007),

Poumanyvong and Kaneko (2010), and Bargaoui et al. (2014). More recently, Liddle



(2015)’s findings indicate that the carbon emissions elasticity of income is highly robust
and less than one for OECD countries and not significantly different from one for non-
OECD countries. By contrast, the carbon emissions elasticity of population is not robust,
but likely not statistically significantly different from one for either OECD or non-OECD
countries. Casey and Galor (2017) use a STIRPAT equation in first differences and show
that the elasticity with respect to population is nearly seven times larger than the
elasticity with respect to income per capita and that this difference is statistically
significant. Thus, the regression results imply that 1% slower population growth could
be accompanied by an increase in income per capita of nearly 7% while still lowering

carbon emissions.

As noted by Jiang and Hardee (2011), the findings from statistical analyses of historical
data reported above are important because they have been used to inform the
projections of future carbon emissions and climate change, including the IPCC Special
Reports on Emission Scenarios (SRES). In addition, and importantly, the evidence
implies that policies that slow population growth would probably also have climate-

related benefits.

The second strand of literature looks at the impact of migration on the environment. The
environment-migration relationship is a complex one and causality runs both ways. A
large and increasing body of research looks at the role of climate change as a push factor
of international migration. Recent surveys include Millock (2015), Berlemann and
Steinhardt (2017), Cattaneo et al. (2019) and Piguet et al. (2011). We do not review this
literature here as we look at the impact that migration has on the environment. The
difference is between the impact of climate change on migration flows and the impact
that a population stock has on CO2 emissions. The literature in this second area is also
abundant. Actually, according to Hugo (2008), this body of research is considerably
greater than that on the environment as a cause of migration, though it mostly focuses
on internal migration, rather than on the ecological consequences of international

migration. There are many case studies where expanding land settlement into fragile



ecosystems in LDCs have led to desertification, deforestation and other environmental

degradation.?

While the U.S., Canada, and more recently Europe, are characterized by large inflows of

international migrants, China has large cross-provincial internal migration flows.

In the U.S. case, Kolankiewicz and Camarota (2008) consider immigration to the United
States and the implications for GHG emissions. They increase because population
transfers from lower-polluting parts of the world to the United States, which is a higher
polluting country. The study finds that on average immigrants increase their emissions
four-fold by coming to America. The estimated CO2 emissions of the average immigrant
(legal or illegal) in the United States are 18% less than those of the average native-born
American. However, immigrants in the U.S. produce an estimated four times more CO2
in the United States as they would have in their countries of origin. On the whole, the
impact of immigration to the United States on global emissions is equal to approximately

5 percent of the increase in annual world-wide CO2 emissions since 1980.

Squalli (2009) investigates the immigration-environment relationship using data for a
about 200 U.S. counties and a STIRPAT-type approach. Census data for the year 2000 on
U.S.-born and foreign-born populations are combined with county-level data COz, NOz,
PM1o, and SOz emissions. The author finds that counties with a relatively larger U.S.-born
population have higher NO2 and SOz emissions. On the other hand, counties with a

relatively higher number or share of foreign-born residents have lower SOz emissions.

Dedeoglu et al. (2021) examine the relationship between immigration, human capital,
economic growth, financial development, energy, and environmental pollution in the
USA with the STIRPAT model. The data cover the years 1975-2014. According to the
results, while migration, financial development, and energy consumption have an
increasing effect on environmental pollution, economic growth has a decreasing impact
on pollution. There is no statistically significant relationship between human capital and
the environment. On the other hand, immigration contributes to human capital

accumulation in the long run.

2 One type of international migration which has attracted attention because of its environmental impacts
is the refugee movement. The sudden unplanned arrival of large numbers of people into a generally
spatially restricted area, often already vulnerable to environmental degradation, can have huge
environmental impacts.



Morris (2021) uses data at both global (175 countries) and national (Canada and the
USA) scales to analyze the anticipated effects of human migration on the abilities of
nations to attain the 2030 UNFCCC CO2 emission targets. The analyses reveal that mean
per capita COz emissions are nearly three times higher in countries with net immigration
than in countries with net emigration. This implies that any increase in population size
and its associated demand for energy, whether through births or net immigration, will
necessitate an even greater effort to reduce CO2 emissions. Immigration, except during
the 2020-2021 COVID-19 pandemic, is higher than ever and represents a substantial
contributor to population growth in many of the World’s richest and high carbon-

emitting nations, and especially so in Canada and the USA.

Hill (2024) studies the impact of migration of people within the U.S. on energy
consumption and therefore the environment, combining county-level migration data,
structural energy consumption estimation techniques, and the AP3 environmental
damage model to estimate the emissions impact of migration by county over time. When
people move to a new county, they change the size of their house, their commute to
work, the quantity and fuel used for home heating, and the emissions content of the
electricity they consume as well as its amount. The effect of this change, along with the
environmental impact of total personal energy consumption, is a priori unknown. The
analysis showed that migration was a net environmental positive in the U.S. in the 1990s

but turned negative beginning in the 2010s.

Considering a small selection of papers on China, Wang et al. (2020) examine the
relationship between urban environmental pollutant emissions and migrant
populations at the prefectural level using data for 90 Chinese cities evidencing net in-
migration. By dividing the permanent populations of these cities into natives and
migrants in relation to the population structure, they estimate an improved STIRPAT
equation that also includes variables on the cities’ attributes. The findings are that
migrant populations have significant impacts on environmental emissions both in terms
of their size and concentration. Specifically, impacts are negative for PMz.s emissions and
positive on emissions of NO2 and COz. In addition, the impacts of migrant populations on
urban environmental pollutant emissions are 8 to 30 times weaker than that of local

populations. Finally, urban environmental pollutant emissions in different cities differ



significantly according to variations in the industrial structures, public transportation

facilities, and population densities.

Long atal. (2022) begin by noting that human activities and associated carbon emissions
are mainly concentrated in cities. As big cities usually offer more job prospects than
small cities, residents are increasingly migrating from small cities to big cities within a
country. During such an internal migration process, production and consumption
patterns typically change, inducing change in ecological footprint (see also Falco et al.
2019). Using the Index Decomposition Analysis (IDA) method to identify impacts of
internal migration across cities in China on carbon emission changes, the authors find a
positive impact of internal migration on the national carbon emissions, which increased
China's aggregate carbon emission by 16% from 2001 to 2016. The positive impact of
internal migration is achieved through greater demand for energy services (e.g.
transportation, heating, cooling, etc.) in big cities than in small cities. They also find that
the positive impact of internal migration on carbon emissions was even larger than that

of net population growth.

Based on the panel data of 30 provincial regions in China from 2000 to 2019 Bu et al.
(2022) perform a spatial econometric investigation to capture the spatial spillover
effects of population migration on emissions. The authors find that population migration
increases energy consumption and energy poverty, but energy poverty is more severe
in provinces with net outward population migration. On the other hand, population
migration increases the carbon emissions and carbon reduction barriers of the
provinces with net outward population migration and has no significant impact on the
carbon emissions and carbon reduction barriers of the provinces with net inward

population migration.

Yuan et al. (2023) investigate the impact of interprovincial population migration on
household energy footprints (HEFs) in China in 2010 and 2015. The findings show that
interprovincial migration resulted in an 8% and 6% increase in HEFs in the two years
considered respectively, with the main impact occurring in developed coastal regions
due to massive immigration from neighboring provinces. In 2010, increased HEFs were
mainly due to consumption of housing and services, while in 2015 consumption of

household facilities and transport became major contributors.



We close by mentioning lifestyle migrants. In this vein Winkler and Matarrita-Cascante
(2020) investigate the role that migration from highly developed countries with high
consumption lifestyles to lower income regions plays in shifting the latter's adoption of
energy-intensive residential goods. Because lifestyle migrants tend to be relatively
wealthy, they are expected to consume at higher levels than the typical household in
either the sending or receiving nation. The study considers the case of Costa Rica, a well-
established recipient country for lifestyle migration and finds that lifestyle migrants not
only consume more energy-intensive goods than native Costa Ricans, but that their

presence elevates consumption among native neighbors as well.
3. Methodology

Following the bulk of the literature we adopt the stochastic extension of the well-known
IPAT equation originally proposed by Erlich and Holdren (1971). Our version of the
STIRPAT model originally put forth by Dietz and Rosa (1994) accommodates the stocks
of native-borns and of migrants when considering their impact on emissions of carbon

dioxide. Assuming a cross-country panel dataset is available, the model is:
(1) €Oy = (N MEZ) AT

where CO, ;. are the COz emissions of country i at time ¢, N and M are the stocks of
native-born and of migrated people, or migrants, respectively, A is affluence proxied by
real per capita GDP and T is technology.3 Note that unlike the other variables, technology
is treated differently across studies. While some studies use a specific variable or a
combination of variables representing technology (e.g. energy intensity or
energy/environmental R&D, population structure such as urbanization rate or
population density), others consider technology to be included in the error term. Here

we follow Casey and Galor (2017) by assuming that:

(2) InTyy = a; +y: + Z{,6 + €;¢

3 The STIRPAT specification (1) postulates that the stocks of native-born and migrant people are
characterized by a separate impact on CO2 emissions captured by the two elasticities §; and S,. The
original IPAT formulation allows substantial flexibility as to the variables which should be actually
included in the equation. If one, however, recognizes that the sum of native-born and migrants amounts
to the overall population, a “standard” STIRPAT equation is specified. On the basis of the estimated
population coefficient one can compute separate emission elasticities to native-born and migrants. We
take this different tack and present the results in Appendix B.
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where q; is a fixed effect capturing time-invariant differences between countries, y; is a
fixed effect capturing differences in global technology over time that affect all countries,
and Z;, is a set of control variables affecting carbon emissions. Our STIRPAT

specification thus becomes:
(3) InCOy4 = a; +v¢ + BrInNye + BoInMy + B3ln Ay + Z3,6 + €3¢

While the previous literature has been especially interested in the population elasticity
and in the difference between the elasticities of emissions with respect to (total)
population on the one hand and to affluence on the other, we are especially interested
in comparing the emissions elasticities of native-borns and of migrants and assessing

whether or not they differ from each other.*

4. Data and sources

We collect annual data for a panel of 172 countries covering the period 1990-2022 (33
years of data). Specifically, we have all the 38 OECD countries and 134 Non-OECD
countries where this number depends on the availability of the variables included in our

empirical analysis.>

The primary interest of this paper is the potential different impact on domestic
emissions of native-born and international migrant populations. Separate annual
(destination) country-level data for the stock of native-borns and the stock of migrants

are not available. We first describe how we obtained this data.é

4 QOur specification is similar to the one implemented by Wang et al. (2020). These authors consider
emissions of several air pollutants including CO2 in several Chinese cities for the two years 2005 and 2015
pooled together. The problem is that the way the migrant population data is constructed is ad hoc. Rafiq
et al. (2017) estimate variants of the STIRPAT equation where they include as separate regressors both
the Chinese provincial total population and the number of internal migrants (calculated by subtracting
from total population the total number of permanent residents in the province). Here the interpretation
of the migrant elasticity is unclear, given that total population rather than native population is included
as an additional regressor. A similar problem applies to Guo (2024).

5 The list of countries is presented in Appendix A, separately for OECD and Non-OECD.

6 The primary sources for the data are: (1) United Nations, Department of Economic and Social Affairs,
Population Division (2024). World Population Prospects 2024, Online Edition, available at:
https://population.un.org/wpp/. (2) Census reports and other statistical publications from national
statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population
and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6)
Secretariat of the Pacific Community: Statistics and Demography Programme. See:
https://databank.worldbank.org/source/world-development-indicators/Series/SP.POP.TOTL.
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Total population (POP) is based on the de facto definition of population, which counts
all residents regardless of legal status or citizenship. The values we use are midyear
estimates and come from the World Bank. The World Population Prospects 2022 of the
U.N. Population Division provides annual data on the Net Number of Migrants
(thousands) (NM) for the period 1950-2022. For each country, they represent the
difference between the people who have migrated into the country and the people who
have migrated from the country in a given year.” In addition, the International Migrant
Stock 2020 dataset provides estimates of the number (stock) of international migrants
disaggregated by age, sex and country or area of origin. We denote these stocks as OP
and DP for origin or destination country respectively. The data are available at five-year
intervals for 1990, 1995, 2000, 2005, 2010, 2015 and 2020 and are available for 232

countries and areas of the world.8

To obtain annual data on the number of migrants to a country by destination country,

we proceed as follows.

Let DPr and OP; be the year T stocks of migrants by destination and origin country
respectively, where T = 1990, 1995, 2000, 2005, 2010, 2015, 2020.

1) For every five-year interval we compute the change for both stocks: DPr — DPy_g

and OPT - OPT_5;

See:
https://population.un.org/wpp/downloads?folder=Standard%20Projections&group=Most%20used
and
https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/EXCEL_FILES/1_General
/WPP2024_GEN_F01_DEMOGRAPHIC_INDICATORS_COMPACT xlsx

8 The United Nations Population Division provides data on net migration and migrant stock. Because data
on migrant stock is difficult for countries to collect, the United Nations Population Division takes into
account the past migration history of a country or area, the migration policy of a country, and the influx
of refugees in recent periods when deriving estimates of net migration. The data to calculate these
estimates come from a variety of sources, including border statistics, administrative records, surveys, and
censuses. When there is insufficient data, net migration is derived through the difference between the
overall population growth rate and the rate of natural increase (the difference between the birth rate and
the death rate) during the same period. Such calculations are usually made for intercensal periods. The
estimates are also derived from the data on foreign-born population - people who have residence in one
country but were born in another country. When data on the foreign-born population are not available,
data on foreign population - that is, people who are citizens of a country other than the country in which
they reside - are used as estimates. The data are based on national statistics, in most cases obtained from
population censuses. Additionally, population registers and nationally representative surveys provided
information on the number and composition of international migrants. See:
https://www.un.org/development/desa/pd/content/international-migrant-stock
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2) We obtain the annual change (flow) in the migration stock by origin country as:
OM; = (OP, — OP;_5)/5 where t € {T,T — 5};

3) We construct an annual series of migration to destination DM; as the sum of the
annual net migration NM; plus the change in migration by origin OM;, thatis: DM, =
NM; + OM,;

4) We use the constructed series DM; to interpolate and construct a series of annual
stock of migrants by destination country DP; subject to the constraint DP, = DP;
when t = T. We set MIG; = DM,.

5) Once we have annual data of migrants to a (destination) country, we obtain the

population of natives as follows: NAT; = POP; — MIG,.

In Table 1 we present summary statistics for these variables for the two country groups.
We can see that the migrant ratio, i.e. the ratio of the migrants’ stock to total population,
is on average 9% in rich countries and only 2% in Non-OECD countries. The variability
is quite large in the OECD block as it goes from 6% to 11%, not so for the Non-OECD
group where the ratio is very stable. In Figure 1 we present the migrant ratio for the two

blocks.

Table 1: Descriptive statistics: OECD and Non-OECD countries

Variable Mean Std. Dev. Min Max
OECD Countries

POP 32.927 53.406 0.254 333.288

NAT 30.123 47.836 0.245 281.420

MIG 2.804 6.661 0.010 51.868

Migration ratio 0.087 0.039 0.059 0.115

Non-OECD Countries

POP 38.863 152.975 0.009 1417.173
NAT 38.171 152.554 0.007 1412.105
MIG 0.692 1.606 0.000 14.599
Migration ratio 0.020 0.000 0.016 0.020

Source: calculations based on the sample of 1254 observations for OECD and 4422 observations for Non-
OECD.

Figure 1: Migrants ratio - OECD and Non-OECD countries
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Source: ratio of total migrants over total population for OECD and Non-OECD countries based on our data
sample.

The ratio between migrant population to total population has been systematically higher
in OECD countries compared to the other block. It also shows a continuous increase over
time, whereas the ratio has remained low and stable in Non-OECD countries. This is due
to the attractor role of migration historically played by rich countries and to the fact that
in relevant non-OECD countries such as China within-migration is more important than

between-migration.

Data for carbon dioxide emissions (CO,) come from Climate Watch, Historical GHG
Emissions.? These emissions, expressed in Mtons, are those stemming from the burning
of fossil fuels and the manufacture of cement. They include carbon dioxide produced
during consumption of solid, liquid, and gas fuels and gas flaring. The data on GDP per
capita (GDPpc) are sourced from the World Development Indicators database of the
World Bank. They are in constant 2017 international dollars based on purchasing power

parity (PPP).10 As additional covariates used in empirical work, we consider both

9 https://www.climatewatchdata.org/ghg-emissions.

10 https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD.
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energy-related and demographic variables. Specifically, the renewable energy share
(RESH) is the share of renewable energy in total energy consumption sourced from the
IEA Extended Energy Balances. The urbanization rate (URB) from the World Bank is the
urban population as a percentage of the total population, the people living in urban areas
as defined by national statistical offices.1! The median age (AGEMED) is an indicator of
the age distribution of a population: it gives the age where there are the same number
of people who are older than the median age as there are younger than it. These two
series are sources from the World Bank World Development Indicators and the United

Nations Population Division.
Descriptive statistics are presented for OECD and Non-OECD countries in Table 2.

Table 2: Descriptive statistics: OECD and NON-OECD countries

Variable Mean Std. Dev. Min Max
OECD Countries

Co; 321.364 843.646 1.447 5775.807
GDPpc 37188.35 18217.06 6853.473 120647.8
RESH 18.668 15.836 0.4 82.9
URB 75.663 11.170 47.915 98.153
AGEMED 35.974 5.409 18.7 48.4
No. Countries 38
No. Years 33
No. Observations 1254

NON-OECD Countries
COo; 110.799 657.654 0.006 11396.939
GDPpc 11542.95 15390.9 430.4135 111879.75
RESH 38.213 32.618 0.000 98.3
URB 49.475 22.073 5.416 100
AGEMED 22.988 6.902 13.6 44.5
No. Countries 134
No. Years 33
No. Observations 4422

Note: CO2 emissions are expressed in Mtons. GDPpc is in constant 2017 PPP dollars. RES is renewable
energy relative to total energy consumption in percentage terms. ENINT is energy intensity expressed in
ktoe per constant 2015 dollars of GDP. URB is urban population as a percentage of the total population.
DENS is population per square km. SEX is ratio of male births to female births. LEXP is life expectancy at
birth expressed in number of years.

11 For the urbanization rate the data are collected and smoothed by United Nations Population Division,
World Urbanization Prospects: 2018 Revision. See:
https://databank.worldbank.org/metadataglossary/world-development-
indicators/series/SP.URB.TOTL.IN.ZS.
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5. Estimation results

We estimate (3) where the stocks of natives and migrants are denoted by NAT and MIG,
affluence is proxied by per capita GDP GDPpc, and our controls are Z =
{RESH,URB,AGEMED}, all in log terms. These variables control for the technology
component of the IPAT equation and for the structure of population. Following the
standard procedure, unobserved country heterogeneity is dealt with by including fixed

country and time effects in all estimated equations.

Considering the presence of non-stationarity and cross-sectional dependence, in this
paper we follow the estimation strategy described in Eibinger et al. (2024) for

estimating macro panel data models which typically characterize STIRPAT applications.

As a preliminary step the standard approach requires testing for the non-stationarity of
the variables involved. This can be done with usual Dickey-Fuller ADF tests or variants
thereof, possibly allowing for cross-sectional dependence. If all variables are found to be
(1), then a test of cointegration is performed. Also in this case, besides the standard
Engle-Granger test, there are several other statistics proposed in the literature. If the
null hypothesis of no cointegration is rejected, a long-run relationship among CO2
emissions and the determinants specified in (3) is said to exist. At this point one

proceeds with the estimation of the modified STIRPAT equation (3).

A convenient alternative to the above approach is the Bounds Testing methodology of
Pesaran et al. (2001) as it can accommodate a mixture of I(0) and I(1) variables, thus
requiring no prior unit root test, and where different variables can be assigned different

lag lengths as they enter the model.

Once along-run relationship is established, the STIRPAT equation (3) it can be estimated
with one of several panel estimation methods available, ranging from the classical Least
Squares Dummy Variable (LSDV) estimator to cointegration techniques such as
Dynamic Ordinary Least Squares (DOLS) (Kao and Chiang, 2000), Fully Modified
Ordinary Squares (FMOLS) (Pedroni, 2000), and Canonical Cointegration Regression
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(CCR).12 We will use panel DOLS, which is a cointegrating estimator that is robust to

endogeneity and autocorrelation without requiring the use of instruments.

A well-known result of Engle and Granger (1987) is that if cointegration cannot be
rejected the long-run relationship also admits an Error Correction Mechanism (ECM)
representation.13 This is a dynamic specification involving both levels and first
differences of variables, thus providing a separation of the long-run equilibrium and the
short-run dynamic components. More generally, the ECM specification is nothing but a
reparametrization of an appropriate Auto-Regressive Distributed Lag (ARDL) model.
The dynamic approach assumes that CO2 emissions of the last year have an impact on
this year’s emissions. However, dynamic models suffer from a bias which is caused by
the endogeneity of the lagged dependent variable. This problem can be solved by an
Anderson-Hsiao estimator that instruments the lag endogenous variable. However,
Generalized Methods of Moments (GMM) instrumental variable estimators such as the
Arellano-Bond and Blundell-Bond methods use more instruments and are more

efficient.

In this paper we are interested in quantifying for the first time the CO: elasticities of
native-borns and migrants and thus base our analysis of the evidence provided by the
long-run augmented STIRPAT relationship (3). The separation between short-run and

long-run effects are relevant in this respect.
5.1 Existence of a long-run augmented STIRPAT relationship

The first step of the estimation procedure is to test for the existence of a long-run
relationship among the variables involved. For the reasons explained we implement a
Bounds Testing methodology of Pesaran et al. (2001) which requires estimation of the
ARDL version of (3) where we assume that the maximum lag length is 2. The ARDL(2,2)

specification reads as follows:

12 The panel methods we use include fixed (country and time) effects (FE). Relative to random effects (RE)
approach a fixed effects is appropriate because we consider nearly all existing cross-sectional units
(countries). The LSDV estimator, which is an OLS method applied to a model with countries and time
dummy variables, is equivalent to the Within estimator for FE models.

13 Some STIRPAT papers, e.g. Casey and Galor (2017), estimate the model directly in first differences, thus
omitting the long-run level component. The problem with this strategy is that, if the variables are indeed
cointegrated a first-differenced specification will suffer from omitted variable bias, as the long-run
equilibrium elements are missing.
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(4) AlnCO,4 = a; + by + Y32, GAINCO 54— j + X5y Yoy diejAlnXpe_; +
0oInCO e—1 + Yoy OInXper—1 + €5

where X;; = {NAT,MIG,GDPpc,RESH,URB, AGEMED};,. This expression is in fact an
“unrestricted” ECM model. Before estimating (4), we have to preliminarily make sure
that none of the variables involved is [(2), which would invalidate the methodology. To
this end, we take the second log difference of each variable and apply the panel unit root
test proposed by Im, Pesaran, and Shin (2003) (IPS). For both OECD and Non-OECD
samples all tests had a p-value equal to 0.000 in all cases.* We thus conclude that no

variable was I(2).

We then estimate the ARDL(2,2) model (4) and determine the appropriate lag structure.
We allow for either time dummies or a time trend As said, given the use of annual data,
our starting assumption is a maximum of two lags. We estimate four ARDL(p,q)
specifications where p,q = 1,2 and select the specification characterized by the lowest
value of the BIC "information criterium".1> The criterion selects an ARDL(1,1) both for

OECD and Non-OECD countries cases, regardless of the specification of time effects.

We proceed to perform a "Bounds Test" to see if there is evidence of a long-run
relationship as given by (3). To that end we carry out an F test of the null hypothesis
Hy: 0y = 6, = 0 Vk against the alternative that Hj is not true. The distribution of the
test statistics is non-standard and exact critical values for the F-test are not available for
an arbitrary mix of [(0) and I(1) variables. However, Pesaran et al. (2001) provide lower
and upper bounds on the critical values for the asymptotic distribution of the F-
statistics. Small-sample critical values are given by Narayan (2005). In each case, the
lower bound assumes that all of the variables are [(0) and the upper bound is based on
the assumption that all of the variables are I(1). If the computed F-statistics fall below

the lower bound we conclude that the variables are I(0), so no cointegration is possible.

14 The IPS test does not assume a common autoregressive parameter, nor does it require balanced panels.
The null hypothesis is that all panels contain a unit root whereas the alternative hypothesis is that some
panels are stationary. We conducted the test with and without a trend and controlling for serially
correlated errors with the number of lags selected by the BIC criterion. We do not report these results
here, but they are available, as all unreported results in this paper, from the authors upon request.

15 Information criteria are based on a high log-likelihood value with a "penalty" for including more lags to
achieve this. The form of the penalty varies from one criterion to another. Each criterion starts with -
2log(L), and then penalizes, so the smaller the value of an information criterion the better the result. The
results of the lag length selection are not reported to conserve on space.
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If the F-statistics exceeds the upper bound, we conclude that we have cointegration.

Finally, if the F-statistic falls between the bounds, the test is inconclusive. We conduct

the F test for all our specifications and the results are presented in Table 3.

Table 3: Bounds F Test

OECD Non-OECD
Time dummies Time trend Time dummies Time trend
ARDL(2,2) 15.89 14.79 41.78 42.42
(0.000) (0.000) (0.000) (0.000)
ARDL(2,1) 17.05 16.16 42.85 43.89
(0.000) (0.000) (0.000) (0.000)
ARDL(1,2) 16.41 15.23 41.79 42.52
(0.000) (0.000) (0.000) (0.000)
ARDL(1,1) 17.15 16.20 42.55 43.59
(0.000) (0.000) (0.000) (0.000)
Narayan (2005)’s critical values of the F test
Case I Case IV
Lower bound Upper bound Lower bound Upper bound
2.06 3.24 2.33 3.46

Notes: The values reported are the F test statistics of the null hypothesis that all long-run coefficients are
zero. The associated p values are in round brackets. Narayan (2005)’s critical values refer to the case k =
10 and a = 5%. Case Il is the option with intercept and no trend, whereas Case IV has intercept and trend.

Irrespective of the lag length of the ARDL model, the bounds tests in the table reveal that
in all cases the existence of a long-run relationship among the variables involved is a

hypothesis that cannot be rejected.
5.2 Estimation of the long-run augmented STIRPAT relationship

The second step of the procedure is the estimation of the long-run "levels relationship”
(3). To this end we use three different estimators to also account for cross-sectional

dependence, as discussed below.

We first use a standard least squares dummy variable (LSDV) estimator. In a country-
by-country setup, estimating the long-run "levels relationship” (3) corresponds to
applying the Engle-Granger procedure which generates a consistent estimator of the
long-run parameters, which, in a panel context, have been shown to be biased.
Heterogeneity and persistence in short-run dynamics can create substantial variability
in single-equation cointegration vector point estimates. This small sample fragility can
be encountered despite the super consistency of these estimators. It is recommended to

correct these problems using an alternative method, such as the Fully Modified OLS
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(FMOLS) or the DOLS estimators which can provide more precise estimates. In the latter
case a correction is made by assuming that there is a relationship between the residuals
from the static regression and first differences of the leads, lags and contemporaneous

values of the regressors in first differences:16
(5) AlnCO4 = a; + by + X3 @rInXpemg + i 2y 0pp AlnX e, +
where H = 1 or 2 with annual data.

In addition, there is the possibility of cross-sectional dependence (CSD) among the units
of a panel. When the units are countries, variables like GDP per capita and COz emissions
are likely to exhibit cross-sectional dependence because of regional and macroeconomic
linkages due to common global shocks, common institutions (World Trade Organization,
World Bank, International Monetary Fund, Paris Agreement) or local spillover effects

between countries or regions (see e.g. Liddle, 2015).

We perform Pesaran (2007)’s CIPS test which belongs to the class of so-called second-
generation unit root tests, i.e. those that account for the potential presence of cross-
sectional dependence. The results show that non-stationarity is never rejected in the
OECD sample, whereas the are a few cases where homogenous non-stationarity is
rejected in the Non-OECD sample.l” This evidence motivates the usefulness of the

Bounds testing approach above.

There are essentially two proposed methods for panel regressions that are cross-
sectionally correlated. These are the Common Correlated Effects (CCE) (Pesaran, 2006)
and the AMG (Eberhardt and Teal, 2010) approaches. They have been shown to perform
equally well. In Table 4 we present the results of estimating our basic specification (3)

using three methods: a standard LSDV estimator, DOLS and AMG.

16 Properties of panel DOLS have been discussed by Kao and Chiang (2000) and Mark and Sul (2003).
Panel DOLS is straightforward to compute, and relevant test statistics have standard asymptotic
distributions.

17 The results are not shown to conserve on space. They are available from the authors upon request.
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Table 4: Estimation of long-run “levels” relationship

OECD Countries Non-OECD Countries
LSDV DOLS AMG LSDV DOLS AMG
(1) (2) (1) (2) (1) (2) (1) (2)
Inat 0.999%** 1.040%** 0.885%+* 0.902%** 1.196** 0.987%** 0.994%%* 0.905%** 0.980%** 0.994%*
(0.053) (0.054) (0.190) (0.161) (0.571) (0.036) (0.036) (0.166) (0.076) (0.432)
Imig 0.124%%* 0.1271%** 0.094%+* 0.091%** 0.258%* 0.063%** 0.063%** 0.086%** 0.040%* 0.138*
(0.010) (0.010) (0.028) (0.023) (0.129) (0.010) (0.009) (0.024) (0.020) (0.078)
ledppc 0.163%** 0.227%%* 0.574%%* 0.594%** | (.515%** 0.332%%* 0.337%%* 0.587%** 0.774%%* 0.465%%*
(0.027) (0.026) (0.074) (0.063) (0.101) (0.019) (0.018) (0.065) (0.039) (0.071)
resh -0.173%%% | -0.179%%% | -0.260%** | -0.206*** | -0.337%* | -0.198%** -0.198%** -0.205%%* -0.241%%* -1.576%**
(0.009) (0.010) (0.023) (0.021) (0.059) (0.009) (0.009) (0.022) (0.018) (0.253)
lurh 0.497%%* 0.524%%* 0.052 0.104 4.494 0.871%%* 0.866*** 0.078 0.387%** -0.393
(0.092) (0.095) (0.374) (0.309) (3.331) (0.320) (0.734)
lagem 1.282%+* 1.298%** 0.223 0.751** -0.189 0.540%** 0.543%%* 0.826** 0.656%+* -0.413
(0.115) (0.118) (0.322) (0.326) (0.771) (0.080) (0.080) (0.337) (0.170) (0.529)
-0.020%** -0.018%** -0.006 -0.003%** -0.017%%*
year/trend (0.001) (0.003) | (0.010) (0.001) (0.003)
N 1254 1254 1102 1102 1188 4418 4418 1064 3857 4418
F test 4211.6%* | 6666.0%** 2357.3%%% | 297(0.5¥**
Wald test 357.52% | 359 78¥* | (6 G4¥k* 340.17*%* | 334.40%** 83.91%**
R-sq 0.996 0.996 0.990 0.990
CD test -1.697 0.086
p-value (0.000) (0.931)

Notes: Estimates in columns (1) and (3) are obtained including time dummies, while estimates in columns (2) and (4) allow for a linear time trend. Standard errors or p-
values in parentheses. The DOLS specifications assume 1 lead and 1 lag. The results do not change with 2 leads and 2 lags. F and Wald tests are test of the joint significance
of the included regressors. The null hypothesis of the CD test is weak cross-sectional dependence, the alternative is strong cross-sectional dependence. Asterisks indicate
statistical significance with p-values as follows: * p<0.1, ** p<0.05, *** p<0.01.
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All estimated coefficients, with some exception for the median age control, are strongly
significant. This is especially notable for the parameters that refer to native and migrant
population and affluence. The elasticity of per capita GDP is smaller than that of native
population, although the difference is less marked in the DOLS case relative to the LSDV
one. Finally, and most importantly for the present purposes, we see that the emissions
elasticity of native-borns is eight to ten times larger than that of migrants. One first
conclusion we can draw is that, in the OECD “rich” countries natives contribute to CO2

emissions more than migrants in percentage terms.

Turning to the group of OECD countries the evidence is equally sharp. In this case we
see that migrants’ elasticity is significantly lower than in OECD. All the other parameters
are strongly significant and confirm the previous pattern. Population is more impactful
on carbon emissions than affluence in elasticity terms. According to Table 5, in the Non-
OECD country group natives also appear to contribute to CO2 emissions more than

migrants in percentage terms.

All the models perform well in statistical terms according to F and Wald tests, with some
specific weaknesses related to cross-sectional dependence and to the AMG estimator.
The AMG estimation of the OECD sample excludes Denmark and Sweden, because within
Northern Europe these two countries have developed an increasing share of renewables
(hence a sharp decrease in the trend of CO2 emissions) that contribute to generate a
large part of electricity exports from Sweden to Denmark and then from Denmark to
Germany. For these two countries there is a negative correlation between COz emissions
and population which could be partly attributed to the peculiar electricity export
pattern toward Germany. As to the Non-OECD panel we see that while the AMG
coefficients are statistically significant, Pesaran (2015)’s CD test of cross-sectional
dependence is not significant. Thus, the AMG method is not able to completely purge

cross-sectional dependence in the estimated residuals.
6. Discussion

The novelty of the present investigation lies in the analysis of the contribution of a
country’s population to CO2 emissions by considering separately the role of native-borns
and of migrants. Table 5 summarizes our estimated elasticities stemming directly from
estimation of equation (3), the STIRPAT model with separate elasticities. The emissions

elasticity of natives in on average equal to 0.89/1.20 for the OECD sample and 0.91/0.99

22



for the NON-OECD sample. In the case of migrants, we have an elasticity of 0.09/0.26 for
OECD and 0.06/0.14 for Non-OECD. The estimated elasticities are slightly higher for the
estimation methods LSDV and AMG and slightly lower for the estimation method DOLS.
This pattern holds for both elasticities of natives and migrants and also in both areas

OECD and Non-OECD.

Table 5: CO2 emission elasticities of native-borns and migrants

OECD NON-OECD

LSDV1 | LSDV2 | DOLS1 | DOLS2 | AMG | LSDV1 | LSDVZ2 | DOLS1 | DOLS2 | AMG

Estimated emissions elasticities from Equation (3)

Migrants | 0.12

Natives 1.00 1.04

0.12

0.89
0.09

0.90
0.09

1.20
0.26

0.99
0.06

0.99
0.06

0.91
0.09

0.98
0.04

0.99
0.14

Notes: Estimated coefficients from Table 6 based on equation (3) and computed elasticities from Table 9 based
on equation (7) and the overall average ratios between emissions and natives and between emissions and
migrants respectively. (+) indicates an elasticity computed using a statistically insignificant coefficient as

reported in Table 7.

We see that in percentage terms native-born individuals have a one-to-ten larger impact
on carbon emissions than migrants within a country. On the basis of this solid evidence,
one mightbe led to conclude that for a variety of reasons, including economic conditions,
cultural attitudes, habits and beliefs, individuals who migrated to and now reside in a
country contribute to domestic emissions way less than individuals who are native to a
country. Notice that this holds regardless of whether or not the country belongs to the

club of the rich.

However, given the discrete nature of the population variable, it is also interesting to
think of marginal contributions to emissions, that is, the increase in domestic emissions
brought about by an additional individual residing in that country. Given our estimated

elasticities from (3) we can easily calculate the marginal effects as follows:

6602_“ _ COZit 6C02,it _ COZit
(6) TN, B1 N and oM. B2 M
it it it it

The marginal effects are country and time-varying. If we use the time average of the

“carbon intensity” of the two population groups we obtain the results of Table 6.
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Table 6: Average marginal effects of one additional native-born and one
additional migrant on CO2 emissions

Natives

Migrants

OECD Non-OECD
LSDV1 | LSDV2 | DOLS1 | DOLS2 | AMG | LSDV1 | LSDV2 | DOLS1 | DOLS2 | AMG
7.05 7.23 5.53 562 | 439 | 0.35 0.35 0.29 0.29 0.48
8.30 8.52 6.51 6.61 5.17 0.34 0.34 0.29 0.29 0.47

Notes: (*) indicates a coefficient statistically insignificant at conventional levels.

Here we obtain a very different picture showing that, on average, one native individual

contributes an additional 6.33 tons of carbon dioxide emissions if she resides in one of

the rich countries, while a migrant contributes an additional, slightly larger, 6.74 tons.

The contribution is dramatically smaller in NON-OECD countries where the contribution

to emissions is only 0.41 on average, regardless of the origin of the individual. These

relevant findings hide interesting trends over time that are shown in Figure 2.

Figure 2: Marginal effect on CO2 emissions of native-borns and migrants
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Source: values computed according to equation (3), using the estimated coefficients from regression
results of Table 5 and the OECD and Non-OECD average COz/N and COz/M for period 1990-2022.

In fact, while the marginal contribution to emissions of NON-OECD country residents

has been small and stable throughout the period considered, we see that the marginal

impact of migrants has been steadily declining over time, while that of native-borns has
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remained relatively stable. The consequence of this fact is that the marginal impact to
emissions of the average migrant in an OECD country that during the 1990s was higher
than that of native individuals, it has become smaller after 2003-2004 to show at the end
of the sample a contribution by 2-2.5 tons of carbon dioxide smaller than that of a native-

born person.

These findings demonstrate a clear relationship between population dynamics (native-
borns versus migrants) and CO2 emissions, offering a critical contribution to the
literature on environmental economics and migration studies. The evidence indicates
that while native-born populations generally contribute more to emissions than
migrants in percentage terms, the marginal impact of migrants has declined over time
in OECD countries. These trends align with cultural, economic, and policy dynamics that
shape energy consumption patterns across demographic groups. For instance, the lower
emissions elasticity of migrants may reflect differences in consumption behaviors,
resource access, or the adoption of more sustainable practices due to economic
constraints or cultural norms. In general, a diminishing marginal contribution is
indication of a phenomenon characterized by diminishing marginal returns, which in
this case points to the idea that additional migrants in time are integrating in the hosting

society better than their predecessors.

In NON-OECD countries, the stable, low contribution of migrants to CO2 emissions
points to significant regional differences in economic and infrastructural development.
This stability may be tied to limited industrialization, smaller energy footprints of
households, and less energy-intensive urbanization. On the contrary, OECD countries
face more dynamic shifts due to advanced infrastructure, evolving energy policies, and

migrants' integration into existing high-consumption norms.
7. Conclusions and policy implications

This study represents an advancement in understanding the complex relationship
between human population dynamics and CO2 emissions, moving beyond conventional
analyses that treat population as a homogeneous entity. Our methodological
contribution lies in the estimation of an extended STIRPAT model that explicitly
accounts for the distinct roles of native-born and migrant populations, utilizing robust

econometric techniques across a comprehensive 1990-2022 dataset for 172 OECD and
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Non-OECD countries. This approach provides a more granular and accurate view of
demographic influences on emissions, aligning with recent tendencies in the literature
to refine the demographic components of the IPAT and STIRPAT frameworks (O’Neill et
al., 2012). In addition, the study employs advanced econometric techniques to ensure
robustness against issues of non-stationarity and cross-sectional dependence,

presenting empirical results of Dynamic OLS and Augmented Mean Group estimations.

The findings show that in OECD countries the emissions elasticity of native-born
populations is on average 0.9-1.2, while that of migrants is significantly lower, averaging
0.10-0.26. Moreover, the marginal contribution of migrants to emissions in OECD
countries has declined from over 8 tons of CO2 per individual in the 1990s to
approximately 6 tons by 2022. In NON-OECD countries, native-born populations exhibit
emissions elasticities of approximately 0.91-0.99, compared to migrants whose
elasticities range between 0.04 and 0.14, highlighting the stark differences in carbon

intensity across regions.

The findings of this study introduce a novel perspective to the literature on population
and CO, emissions by distinguishing between the contributions of native-born
individuals and migrants. Previous research has consistently demonstrated that
population growth is a significant driver of carbon emissions, often exhibiting an
elasticity close to or above one. However, those studies have largely treated population
as a homogeneous entity, without differentiating the emissions impact of different
demographic subgroups. By explicitly modeling the separate effects of native-born
individuals and migrants, this paper reveals an important asymmetry: in both OECD and
non-0ECD countries, the emissions elasticity of native-born populations is significantly

higher than that of migrants.

This key finding aligns with broader evidence that affluence and consumption patterns
are primary drivers of emissions. Native-born populations in OECD countries tend to
have well-established consumption habits that contribute to higher energy use,
particularly in transportation, residential energy demand, and consumer goods. In
contrast, migrants, especially those from lower-income countries, may maintain more
conservative consumption behaviors due to economic constraints or cultural

preferences (Hill, 2024). This aligns with research suggesting that migrants often
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consume less energy than native-born populations even after settling in high-income

countries (Squalli, 2009).

An additional finding of this study is that in NON-OECD countries the marginal
contribution of migrants to CO, emissions remains relatively stable over time, whereas
in OECD countries it has significantly declined. This suggests that migrants in wealthier
nations initially adopt higher emissions lifestyles upon arrival but, over time, their
emissions footprint diminishes, possibly due to economic assimilation patterns or the
adoption of energy-efficient behaviors. This finding is novel and contrasts with earlier
studies, such as Kolankiewicz and Camarota (2008), which suggested that migration to
high-income countries generally leads to an increase in per capita emissions. The
present study, however, highlights that this effect is not static and evolves over time,

with migrants' emissions contributions declining in later periods.

The evidence provided here that migrants have a lower emissions elasticity than native-
born individuals, and that their marginal emissions contributions decline over time in
OECD countries, provides a compelling new angle to discussions on climate policy and
migration. These results challenge simplistic narratives that equate migration with
increased emissions and suggest that policy approaches should consider the dynamic
nature of consumption patterns among migrant populations. Future research could
further explore the underlying behavioral and economic mechanisms driving these
differences, particularly in terms of long-term integration and adaptation to local energy

consumption norms.

We confirm the existing literature that emphasizes the greater relative impact of
population growth compared to affluence. In both OECD and NON-OECD countries, the
emissions elasticity of population exceeds that of GDP per capita, reinforcing earlier
work by several authors. However, by disaggregating population into native-born and
migrant subgroups, this study provides additional nuance: while population growth
among native-born individuals remains a strong driver of emissions, migrant
populations appear to integrate into existing economic structures with a lower or
declining emissions intensity. This introduces an important policy dimension,
suggesting that migration, rather than being an unqualified environmental burden, may

have complex and evolving effects on emissions that require further examination.
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The findings of this study yield distinct implications for both market actors and
policymakers, particularly when considering the regional divide between OECD and
Non-OECD countries. Significant policy implications arise from our findings. First, the
higher emissions elasticity of native-born populations in OECD countries calls for
targeted interventions that encourage sustainable consumption and energy efficiency
within these groups. For example, fiscal policies such as carbon taxes or subsidies for
energy-efficient appliances could be tailored to address the higher consumption
patterns of native-born populations. In addition, climate policies should prioritize
targeting established consumption patterns among natives. Policymakers could
implement differentiated carbon pricing, energy efficiency incentives, or behavioral
nudges tailored to long-term residents who contribute more heavily to emissions. For
market players, this opens avenues for expanding green consumer products and
services aimed at established households, especially in sectors like transportation, home

energy systems, and durable goods.

Simultaneously, integrating migrants into green energy initiatives and urban planning
strategies could harness their potential for adopting sustainable behaviors while
mitigating emissions. Policies such as subsidized public transportation, access to
affordable renewable energy sources, and culturally tailored outreach programs to
educate migrant communities about energy-saving practices can be highly effective. The
differentiated policies increase efficacy by aligning strategies with the consumption
habits, cultural norms, and socioeconomic realities of each group, ensuring broader

adoption and impact.

In Non-OECD countries, sustainable urbanization and investment in low-carbon
technologies should be prioritized. Policies encouraging compact urban development,
renewable energy projects, and the provision of affordable, energy-efficient housing can
preemptively address the environmental pressures associated with rapid
industrialization and urban migration. For these countries, the opportunity lies in
leapfrogging into low-carbon development pathways by investing in renewable energy,
affordable efficient housing, and mass transit solutions before high-emissions lifestyles
become entrenched. By proactively planning for future population growth, these

measures reduce long-term carbon footprints and enhance resilience to climate change.
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Overall, by recognizing the demographic heterogeneity of emissions contributors,
governments and firms can craft more efficient and equitable mitigation strategies that

reflect the underlying behavioral and structural drivers revealed by this study.

This paper represented a first cut to the issue. We think that future research could gain
more interesting insights using more granular data, such as the income of different
demographic groups, sectoral employment and wages for migrants and native-borns,
disaggregated energy consumption patterns and leveraging granular household-level

data on energy use and carbon footprints.

In conclusion, this study provides a critical contribution to the literature on population-
environment interactions by revealing the heterogeneous impacts of demographic
groups on CO2 emissions. The results underscore the need for differentiated policy
approaches that account for demographic diversity, regional economic contexts, and
evolving consumption patterns. By aligning policy measures with the specific behaviors
and contributions of different demographic groups, policymakers can enhance the
efficacy of climate change mitigation strategies. These targeted interventions not only
improve environmental outcomes but also promote equitable and inclusive approaches

to achieving global sustainability goals.
Acknowledgments

The authors acknowledge the financial support of the EU Grant Next Generation EU
Mission 4 Component 1 CUP G53D2300676001 and CUP ]J53D23015200001 (prot.
P2022A82P3).

References

Aguir Bargaoui, S., Liouane, N. Nouri, F.Z., 2014. Environmental Impact determinants:
An empirical analysis based on the STIRPAT model. Procedia - Social and Behavioral

Sciences 109: 449 - 458.

Berlemann, M., Steinhardt, M.F.,, 2017. Climate change, natural disasters, and migration

- a survey of the empirical evidence. CESifo Economic Studies 63(4): 353-385.

Bu, Y., Wang, E.,, Most, D., Lieberwirth, M., 2022. How population migration affects
carbon emissions in China: Factual and counterfactual scenario analysis.

Technological Forecasting and Social Change 184: 122023.

29



Casey, G., Galor, G., 2017. Is faster economic growth compatible with reductions in
carbon emissions? The role of diminished population growth. Environmental

Research Letters 12, 014003.

Cattaneo, C., Beine, M., Frohlich, C.J., Kniveton, D., Martinez-Zarzoso, 1., Mastrorillo, M.,
Millock, K., Piguet, E., Schraven, B., 2019. Human migration in the era of climate

change. Review of Environmental Economics and Policy 13(2): 189-206.

Cole, M.A,, Neumayer, E., 2004. Examining the impact of demographic factors on air

pollution. Population and Environment 26: 5-21.

Dedeoglu, M., Kogak, E., Uucak, Z.S., 2021. The impact of immigration on human capital
and carbon dioxide emissions in the USA: An empirical investigation. Air Quality,
Atmosphere & Health 14: 705-714.

Dietz, T. Rosa, E.A, 1994. Rethinking the Environmental Impacts of Population,
Affluence and Technology. Human Ecology Review 1(2): 277-300.

Dietz, T, Rosa, E. A, 1997. Effects of population and affluence on CO2 emissions.
Proceedings of the National Academy of Sciences 94(1): 175-179.

Eberhardt, M., Teal, F., 2010. Productivity analysis in global manufacturing production.

Oxford University, Department of Economics Discussion Paper N. 515.

Eibinger, T., Deixelberger, B., Manner, H., 2024. Panel data in environmental economics:
Econometric issues and applications to IPAT models. Journal of Environmental

Economics and Management 125 (2024) 102941.

Falco, C., Galeotti, M., Olper, A., 2019. Climate change and migration: Is agriculture the

main channel? Global Environmental Change 59: 101995.

Guo, H., 2024. Impact of population mobility on regional carbon emissions: Empirical

evidence from Australia. Frontiers in Environmental Science 12:1392267.

Hill, A., 2024. The great U.S. emissions migration. Journal of Environmental Economics

and Management: 103018.

Holdren, ].P.; Ehrlich, P.R, 1974. Human Population and the Global Environment:

Population growth, rising per capita material consumption, and disruptive

30



technologies have made civilization a global ecological force. American Scientist 62:

282-292.

Im, K.S., Pesaran, M.H., Shin, Y., 2003. Testing for unit roots in heterogeneous panels.

Journal of Econometrics 115: 53-74.

Jiang, L., Hardee, K., 2011. How do recent population trends matter to climate change?

Population Research and Policy Review 30(2): 287-312.

Kao, C., Chiang, M., 2000. On the estimation and inference of a cointegrated regression
in panel data. In Baltagi, B. (ed.), Nonstationary panels, panel cointegration, and
dynamic panels. Advances in Econometrics, 15. Amsterdam; New York and Tokyo:

Elsevier Science, 179-222.

Kolankiewicz, L., Camarota, S.A., 2008. Immigration to the United States and World Wide
Greenhouse Gas Emissions. Center for immigration studies Discussion Paper No. 10-

08.

Liddle, B., 2015. What are the carbon emissions elasticities for income and population?
Bridging STIRPAT and EKC via robust heterogeneous panel estimates. Global
Environmental Change 31: 62-73.

Long, H., Lj, ], Liu, H.,, 2022. Internal migration and associated carbon emission changes:

Evidence from cities in China. Energy Economics 110: 106010.

Long, H., Lj, ], Liu, H.,, 2022. Internal migration and associated carbon emission changes:

Evidence from cities in China. Energy Economics 110: 106010.

Lutzenhiser, L., 1993. Social and behavioral aspects of energy use. Annual Review of

Energy and the Environment 18(1): 247-289.

Mark, N.C., Sul, D., 2003. Cointegration vector estimation by panel DOLS and long-run
money demand. Oxford Bulletin of Economics and Statistics, 65(5): 655-680.

Martinez-Zarzoso, I., Bengochea-Morancho, A., Morales-Lage, R., 2007. The impact of
population on CO2 emissions: evidence from European countries. Environmental

and Resource Economics 38:497-512.

Millock, K., 2015. Migration and environment. Annual Review of Resource Economics

31



7:35-60.
Morris, D.W., 2021. On the effect of international human migration on nations’ abilities

to attain CO2 emission-reduction targets. PLoS ONE 16(10): 1-15.

Narayan, P.K., 2005. The saving and investment nexus for China: Evidence from

cointegration tests. Applied Economics 37(17): 1979-1990.

O’Neill, B.C,, Liddle, B., Jiang, L., Smith, K.R.,, Pachauri, S., Dalton, M., Fuchs, R, 2012.

Demographic change and carbon dioxide emissions. The Lancet 380: 157-164.

Pedroni, P., 2000. Fully-modified OLS for heterogeneous cointegrated panels. In Baltagi,
B. (ed.). Nonstationary panels, panel cointegration, and dynamic panels. Advances in

Econometrics, 15. Amsterdam, Elsevier Science: 93-130.

Pesaran, M.H., 2006. Estimation and inference in large heterogeneous panels with a

multifactor error structure. Econometrica 74(4): 967-1012.

Pesaran, M.H., 2007. A simple panel unit root test in the presence of cross-section

dependence. Journal of Applied Econometrics 22: 265-312.

Pesaran, H.M., Shin, Y., Smith, R.J.,, 2001. Bounds testing approaches to the analysis of
level relationships. Journal of Applied Econometrics 16(3):289-326.

Pesaran, H.M., 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric

Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.

Piguet, E., Pecoud, A. de Guchteneire, P., 2011. Migration and climate change: An

overview. Refugee Survey Quarterly 30:1-23.

Poumanyvong, P., Kaneko, S., 2010. Does urbanization lead to less energy use and lower

CO2 emissions? A cross-country analysis. Ecological Economics 70(2): 434-444

Rafiq, S., Nielsen, L., Smyth, R., 2017. Effect of internal migration on the environment in

China. Energy Economics 64: 31-44.

Sarafidis, V., Wansbeek, T., 2012. Cross-sectional dependence in panel data analysis.

Econometric Reviews 31(5): 483-531.

Shi, A., 2003. The impact of population pressure on global carbon dioxide emissions,

1975-1996: Evidence from pooled cross-country data. Ecological Economics 44: 24-

32



42.

Squalli, J., 2009. Immigration and environmental emissions: a US county-level analysis.

Population and Environment 30(6):247-260.

Stephenson, ]., Barton, B., Carrington, G., Gnoth, D., Lawson, R., Thorsnes, P., 2010.
Energy cultures: a framework for understanding energy behaviours. Energy Policy

38(10): 6120-6129.

Vélez-Henaoa, J.-A., Vivanco, D.F., Hernandez-Riverosa, J.-A., 2019. Technological change
and the rebound effect in the STIRPAT model: A critical view. Energy Policy 129:
1372-1381.

Wallendorf, M., Reilly, M.D., 1983. Ethnic migration, assimilation, and consumption.

Journal of Consumer Research 10(3): 292-302.

Wang, G., Shi, X,, Cui, H,, Jiao, J., 2020. impacts of migration on urban environmental
pollutant emissions in China: A comparative perspective. Chinese Geographical

Science 30: 45-58.

Warde, A., 2005. Consumption and theories of practice. Journal of Consumer Culture

5(2): 131-153.

Warde, A., 2015. The sociology of consumption: its recent development. Annual Review

of Sociology 41: 117-134.

Winkler, R.L., Matarrita-Cascante, D., 2020. Exporting consumption: Lifestyle migration
and energy use. Global Environmental Change 61: 102026.

York, R, Rosa, E. A, Dietz, T., 2003. STIRPAT, IPAT and ImPACT: analytic tools for
unpacking the driving forces of environmental impacts. Ecological Economics 46(3):

351-365.

Yuan, R, Li, N,, Zheng, S., 2023. Impacts of interprovincial migration on the household

energy footprints in China. Applied Geography 161: 103137.

33



Appendix A: List of countries

OECD countries:

Australia, Austria, Belgium, Canada, Chile, Colombia, Costa Rica, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel,
Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Mexico, the Netherlands, New
Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden,

Switzerland, Turkey, the United Kingdom and the United States of America.
Non-OECD countries:

Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia,
Azerbaijan, The Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belize, Benin,
Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei Darussalam,
Bulgaria, Burkina Faso, Burundi, Cabo Verde, Cameroon, Central African Republic, Chad,
China, Comoros, Congo Democratic Republic, Congo Republic, Céte d’Ivoire, Croatia,
Cyprus, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eswatini,
Ethiopia, Fiji, Gabon, Gambia, Georgia, Ghana, Grenada, Guatemala, Guinea, Guinea-
Bissau, Guyana, Haiti, Honduras, India, Indonesia, Iran, Iraq, Jamaica, Jordan,
Kazakhstan, Kenya, Kiribati, Kuwait, Kyrgyzstan, Lao, Lebanon, Lesotho, Liberia, Libya,
Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Marshall Islands, Mauritania,
Mauritius, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Nauru, Nepal,
Nicaragua, Niger, Nigeria, North Macedonia, Oman, Pakistan, Palau, Panama, Papua New
Guinea, Paraguay, Peru, Philippines, Qatar, Romania, Russia, Rwanda, Samoa, Sao Tome
and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore,
Solomon Islands, South Africa, Sri Lanka, St. Kitts and Nevis, St. Vincent and the
Grenadines, Sudan, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago,
Tunisia, Turkmenistan, Tuvalu, Uganda, Ukraine, United Arab Emirates, Uruguay,

Uzbekistan, Vanuatu, Vietnam, Zambia, Zimbabwe.
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Appendix B: Robustness

Our STIRPAT specification (3) in the main text postulates that the stocks of native-born
and migrant people are characterized by a separate impact on CO2 emissions captured
by the two elasticities £, and 8, in (1). The original IPAT formulation allows substantial
flexibility as to the variables which should be actually included in the equation: the only
message is that an environmental impact is due to the combined effect of demographic,

economic, and technological factors.

If we recognize that the sum of native-borns and migrants amounts to the overall

population, we should specify a standard STIRPAT equation:

(B.1) COy; = PVAYTY: = (My + N )ViALZT)

it “it it it

The estimated STIRPAT specification becomes:
(B.2) InCO, i = a; + pe + y1[InMye + InNy ] + v, In Ay + Z;,0 + €54

On the basis of (B.2) we can evaluate the population elasticity y; which can be directly
compared with the estimates available in the literature and discussed in Section 2 of the
main text. In addition, we can evaluate the elasticity of carbon emissions with respect to

both native-borns and to migrants by computing the following quantities:

M _ 6lnCOZ,it _ 6lnCOZ,it _ alnCOZlit Mlt
(B.3) Vi = oo, T 3 = Mj; . M, Y1M v = YVi\p
it M_itaMit it ittNit it
B 4 N _ alnCOZ'it _ alnCOZ'it _ alnCOZVit _ Nl.t
(B.4) i =N, 3 3 = Nit =5 Ni¢ Y1M Yl Bl A VS
it Ny Nit it itTNVit it

We followed the same estimation procedure of the main text. We estimate ARDL(p,q)

specifications based on (B.2) with p,q = 1,2. Table B.1 shows the values of the BIC.

Table B.1: Lag length selection

OECD Countries Non-OECD Countries
ARDL(p,q) Time dummies Time trend Time dummies Time trend
(2,2) -3364.795 -3436.448 -5445.589 -5578.057
(2,1) -3396.269 -3467.807 -5490.176 -5622.041
(1,2) -3369.985 -3441.899 -5448.273 -5580.417
(1,1 -3401.394 -3473.049 -5492.937 -5624.046

Notes: See Table 3 in the main text.
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We first note that the two specifications of time effects give the same outcome. Secondly,
the Bayes Information Criterion selects an ARDL(1,1) both for OECD and Non-OECD
countries. We proceed to perform a "Bounds Test" to see if there is evidence of a long-
run relationship as given by (B.2). To that end we carry out the Bounds F test as seen

above and the results are presented in Table B.2.

Table B.2: Bounds F Test

OECD Non-OECD
Time dummies Time trend Time dummies Time trend
ARDL(2,2) 18.29 17.55 51.88 52.83
(0.000) (0.000) (0.000) (0.000)
ARDL(2,1) 20.06 19.30 53.12 54.33
(0.000) (0.000) (0.000) (0.000)
ARDL(1,2) 19.06 18.24 51.79 52.85
(0.000) (0.000) (0.000) (0.000)
ARDL(1,1) 20.31 19.48 52.63 53.86
(0.000) (0.000) (0.000) (0.000)
Narayan (2005)’s critical values of the F test
Case Ill Case IV
Lower bound Upper bound Lower bound Upper bound
2.06 3.24 2.33 3.46

Notes: See Table 4 in the main text.

From the outcome of the bounds tests in the table we can conclude that in all cases the
existence of a long-run relationship among the variables involved is a hypothesis that
cannot be rejected. We can then proceed to the estimation of the long-run "levels
relationship” (B.2). As done in the main text, we present in Table B.3 the results obtained
from standard least squares dummy variable (LSDV), Dynamic OLS, and Augmented

Mean Group estimator.
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Table B.3: Estimation of long-run “levels” relationship

OECD Countries Non-OECD Countries
LSDV DOLS AMG LSDV DOLS AMG
(1) (2) (1) (2) (1) (2) (1) (2)
Ipop 12517 | 1.284** | 0981** | 0997 | 0.780 12029 | 1204 | 1.022%% | 1.023** | 1.660%*
(0.048) (0.050) | (0.177) | (0.156) | (0.596) (0.033) (0.033) (0.084) (0.106) (0.385)
0.184%% | 0250%* | 0.603** | 0.578%* | 0.558%* | 0410%* | 04110 | 0.746%% | 0.746%* | 0.409%
lgdppc (0.026) (0.026) (0.076) (0.062) | (0.096) (0.018) (0.018) (0.038) (0.038) (0.066)
e L0471 | -0.178%% | 02510 | -0.195%% | -0.350% | -0.199%% | -0.198%%* | -0221% | -0213%% | -1.644**
res (0.009) (0.009) (0.023) (0.020) | (0.064) (0.009) (0.009) (0.018) (0.018) (0.258)
- 0.283%% | (0.314% 0.009 0.078 7.795% | 0.860%* | 0.858%% | 0401%% | 0.412%% 0.472
(0.090) (0.093) | (0.388) | (0.303) | (3.848) (0.044) (0.044) (0.132) (0.135) (0.737)
lagem 1.936%% | 1.940% 0.116 0.818%* | 0535 0.583%* | 0.583%* | 0475%% | 0.613%% -0.642
(0.107) (0.110) | (0.315) | (0.316) | (0.803) (0.074) (0.074) (0.167) (0.225) (0.461)
year/trend 20,0245 20.019%% | -0.010 -0.009%%* L0.011%%*
(0.001) (0.003) | (0.011) (0.001) (0.003)
N 1254 1254 1102 1102 1188 4418 4418 3857 3857 4418
F test 4399.87 7079.3 262385 | 3216.59
p-value 0.000 0.000 0.000 0.000
Wald test 297.13 314.59 82.56 154158 | 1208.89 100.5
p-value 0.000 0.000 (0.000) 0.000 0.000 (0.000)
R-sq 0.996 0.996 0.990 0.990
CD test 2,077 1.176
p-value (0.038) (0.240)

Notes: See Table 5 in the main text.
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The performance of all models is quite good when judged on the basis of F tests and
Wald tests of joint significance of coefficients. The estimated parameters referring to
population and affluence are generally strongly significant. Notably, the LSDV method
returns a population elasticity that is higher than the one estimated with DOLS, while

the opposite occurs for the affluence elasticity.

The emission elasticity of population is always significantly higher than the emission
elasticity of per capita GDP, confirming previous findings in the literature. A summary
of the findings of selected STIRPAT studies in the existing literature reviewed in the

main text is presented in Table B.4.

Table B.4: Estimated impact of population on carbon emissions from literature

Percentage increase in carbon
emissions per 1% increase in
population
Dietz and Rosa (1997) 1.15
York et al. (2003) 0.98
Shi (2003) 1.43
Cole and Neumayer (2004) 0.98
Martinez-Zarzoso et al. (2007) 1.37-1.87
Poumanyvong and Kaneko (2010) 1.07 - 1.27
Bargaoui et al. (2014) 0.97 -1.16
Liddle (2015) 1.38-1.85
Casey and Galor (2017) 1.36 -1.47

Note: (i) when different cross-country panels are estimated, the elasticities in the table refer to all
countries samples; (ii) when different specifications are estimated, elasticities in the table refer to static
models. Elasticities stemming from dynamic models are typically lower.

It is generally recognized that the population elasticity is larger than the affluence
elasticity. We confirm this finding, as summarized by our estimated coefficients in Table

B.5.

Table B.5: COz emission elasticities of population and affluence

OECD Non-OECD
LSDV1 | LSDV2 | DOLS1 | DOLS2 | AMG | LSDV1 | LSDV2 | DOLS1 | DOLS2 | AMG
POP 1.25 1.28 0.98 1.00 | 0.78 | 1.20 1.20 1.02 1.02 1.66
GDPpc | 0.18 0.25 0.60 0.58 0.56 0.41 0.41 0.75 0.75 0.41

Notes: Estimated coefficients from Table B.3. (*) indicates a coefficient statistically insignificant at conventional
levels.

The average of the coefficients in the table for population is 1.12 for the OECD sample

and 1.43 for the Non-OECD block, whereas it is for affluence 0.37 in the OECD case and
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0.41 in the Non-OECD case. Relative to the literature on population elasticity, our
findings are in line with the figures in the literature as summarized in Table B.4. In
passing we note that, unlike the studies in literature, we cover all OECD countries and
the large majority of Non-OECD countries for which data is available. Moreover, our

sample is updated to the last publicly available data released at the time of writing.

Turning to the distinction between native-borns and migrants, the elasticities are time-
varying. Therefore, we used the sample average of the ratios in equations (B.3)-(B.4), as

shown in Table B.6.

Table B.6: COz emission elasticities of native-borns and migrants

OECD Non-OECD

LSDV1 | LSDV2 | DOLS1 | DOLS2 | AMG | LSDV1 | LSDVZ | DOLS1 | DOLS2 | AMG

Implied emissions elasticities from Equation (B.3)

Natives 1.13 1.16 0.89 0.90 | 0.71® | 1.18 1.18 1.00 1.00 1.63
Migrants | 0.12 0.12 0.09 0.09 0.07 0.02 0.02 0.02 0.02 0.03

Notes: Estimated coefficients from Table B.5 based on equation (B.3) and computed elasticities from Table B.5
based on equations (B.3) and (B.4) and the overall average ratios between emissions and natives and between
emissions and migrants respectively. (+) indicates an elasticity computed using a statistically insignificant
coefficient as reported in Table B.3.

The results confirm the pattern already evidenced in the main text where a STIRPAT
specification with separate elasticities for native-born and migrant populations was
estimated. In percentage terms native-born individuals have about an impact on carbon
emissions one-to-ten larger than that of migrants within a country. This fact holds

regardless of whether or not the country belongs to the club of the rich.
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