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Abstract: This study replicates the work of Bucheli et al. (2022) to evaluate the reliability and 
generalizability of their findings on the use of cubic spline methods in weather index insurance 
design in Eastern Germany. The study consists of two parts: a direct replication and an ex-
tended replication using different crops and another regional focus of yield data from Saxony, 
Germany. The direct replication confirms the original findings, while the extended replication 
reveals limitations in the model's risk reduction capacities. The gain in model fit, compared with 
daily temperature data, seems to be modest. It is questionable if an index insurance, which is 
solely based on temperature, will be considered as an attractive risk management tool, given 
the substantial basis risk that remains with farmers. The study highlights the importance of 
considering crop-specific risk profiles, regional climate, and agricultural conditions in insurance 
design. Moreover, our analysis highlights the relevance of FAIR (findable, accessible, interop-
erable, reusable) data for the performance of replication studies. 
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1 Introduction 
Heatwaves induced by climate change have posed significant challenges to global and Euro-
pean crop production, adversely affecting agricultural output and farmers' income (Bras et al., 
2021; Heino et al., 2023; Trnka et al., 2014; Van der Velde et al., 2012). In response to these 
challenges, farmers have explored various strategies to enhance their resilience, including 
risk-sharing mechanisms such as weather index insurance (Vroege, Finger, 2020). This type 
of insurance has become increasingly popular among European farmers due to its objectivity 
and independence; rather than requiring farm inspections to assess damage, it uses an objec-
tive index linked to weather variables over a defined period (Bucheli et al., 2022; Doherty et 
al., 2021). 

However, the effectiveness of weather index insurance is often hindered by basis risk, which 
refers to the mismatch between the triggered insurance payout and the actual yield losses 
experienced by farmers (Odening, Shen, 2014; Woodard, Garcia, 2008). Basis risk poses a 
considerable challenge to the widespread adoption of weather index insurance, and thus, re-
ducing basis risk has become a central focus in the design and implementation of these insur-
ance products. There are two main types of basis risk: spatial basis risk and product basis risk. 
Spatial basis risk arises from the discrepancies between the weather conditions at the insured 
farmland and the weather indices measured at a reference weather station. Various ap-
proaches have been proposed to mitigate spatial basis risk, such as using spatial interpolation 
methods (e.g. Cao et al., 2015) and diversifying insurance contracts across different regions 
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(Ritter et al., 2014). Product basis risk stems from the inability of weather indices to fully cap-
ture the variability in agricultural yields. While weather conditions play a crucial role in crop 
production, they are not the sole determinant. Other factors, such as pests, controllable inputs 
(e.g., fertilizer), and managerial practices, also influence crop yields. Albers et al. (2017) esti-
mated that only 43% of the variability in wheat yield can be attributed to weather conditions. 
This highlights the inherent limitations of reducing product basis risk through weather index 
insurance. 

Despite this challenge, numerous efforts have been made to optimize the design of weather 
index insurance to minimize product basis risk. These efforts can be broadly categorized into 
two main strands of literature: (1) the specification and estimation of the relationship between 
yield and weather indices, and (2) the selection and specification of appropriate weather indi-
ces. 

The first strand of literature focuses on reducing product basis risk by using sophisticated sta-
tistical modeling to estimate the weather-yield relationship. Various methods have been ap-
plied, ranging from traditional statistical approaches such as polynomial regression (Vedenov, 
Barnett, 2004) and generalized additive models (Bucheli et al., 2022; Zhang et al., 2019; Zou 
et al., 2023), to more recent machine learning techniques (Chen et al., 2023; Schmidt et al., 
2022; Zou et al., 2024). However, there is no consensus on the “best” approach, and the com-
plexity of the methods does not always guarantee superior performance (Oikonomidis et al., 
2022). 

The second strand of literature focuses on selecting and designing of appropriate weather 
indices to mitigate product basis risk. Commonly used weather indices include Growing De-
gree Days (GDD), Cumulative Rainfall (CR), and the standardized precipitation index (e.g. 
Turvey, 2001). Additionally, remote sensing data have been used to obtain vegetation indices 
as alternatives to meteorological indices (Möllmann et al., 2019; Vroege, Finger, 2020). The 
beginning and length of the accumulation period, as well as the aggregation level of weather 
indices are important design parameters that can considerably influence the effectiveness of 
weather index insurance. If the accumulation period of the weather indices does not align with 
the vegetation period of the insured crop, a so-called temporal basis risk may arise. This is 
considered a special case of product basis risk. To address this problem, it has been sug-
gested to split the entire vegetation period into distinct plant growth stages and to calculate 
weather indices for each growth stage separately (e.g., Zou et al., 2023). 

The study by Bucheli et al. (2022) contributes to both strands of literature by investigating the 
use of cubic spline methods combined with hourly temperature data in a single peril weather 
index insurance for winter wheat and winter rapeseed producers in Eastern Germany. Cubic 
splines are piecewise-polynomial functions that allow for capturing non-linear relationships be-
tween temperature and crop yield by fitting smooth curves across different temperature ranges. 
While their findings suggest potential for risk reducing through heat index insurance based on 
restricted cubic splines, it is crucial to extend their research to assess the generalizability and 
robustness of their findings across different contexts. Bucheli et al. (2022) do not claim that 
their results are valid for entire Germany and for other crops. They write: “Our payout function 
is generally applicable and future research should assess its performance in other regions, for 
other heat-susceptible crops and also for other hazards than heat stress.” In our paper, we 
take up this suggestion for further research and apply their approach to another region in Ger-
many (Saxony). Therefore, this study does not only aim at evaluating the accuracy and con-
sistency of Bucheli et al. (2022) findings but also extends their analyses. Specifically, we pur-
sue two objectives: First, we replicate the original study using the same methodology but with 
data from different time frames and sources to confirm the reliability of the findings. Second, 
we test the model’s robustness when applied it to different timeframes, crops and region. 

By extending the original study to different contexts, this replication study contributes to the 
existing literature by (i) guiding policymakers in bridging the gap between theoretical models 
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and their real-world effectiveness, (ii) establishing the generalizability of the non-linear insur-
ance design across different crops, regions, and data sources, and (iii) identifying limitations 
of the existing model to aid future researchers in refining their approaches. Understanding 
these limitations is critical: if a model’s performance varies substantially across crops or re-
gions, this has direct consequences for the usefulness of weather index insurance in practice. 
For insurers and policymakers, such findings caution against one-size-fits-all designs and high-
light the need for tailoring contracts to local agro-climatic conditions. For researchers, this study 
underscores the value of replication not only to verify results but also to delineate the bounda-
ries of model applicability. Moreover, by demonstrating the importance of transparent and re-
usable data, the paper contributes to the broader goal of promoting a replication culture 
through FAIR data practices. 

The remainder of the paper is structured as follows: Section 2 describes the methodology and 
Section 3 the data. Section 4 presents the results of the replication study and the extended 
model. Section 5 draws conclusions about the superiority of the proposed statistical model and 
discusses implications for the design of weather index insurance. 

2 Methodology 
This subsection summarizes the methods, and the approach used in Bucheli et al. (2022). We 
use the same methodology as the original study for both the direct replication and the extended 
replication. In their paper, Bucheli et al. (2022) apply cubic spline methods to the insurance 
payout function that depends on hourly temperature exposure during the critical growth period. 
They then use historical farm-level yields to calibrate temperature effects on crop yields. Fi-
nally, they use the expected utility framework to evaluate the overall benefits of insurance for 
risk-averse farmers and the actuarially fair premium. Following Sections 2, 3 and 4 in Bucheli 
et al. (2022) we now describe each of the model components. 

2.1 Expected Utility Model 

The starting point is the definition of farmers’ revenues: 

𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑝𝑝 ⋅ y𝑖𝑖𝑖𝑖(𝐼𝐼𝑖𝑖𝑖𝑖) + 𝜋𝜋𝑖𝑖𝑖𝑖(I𝑖𝑖𝑖𝑖) − Θ𝑖𝑖 (1) 

In Equation 1, 𝑊𝑊𝑖𝑖𝑖𝑖 is a random variable that represents the revenue generated by farm 𝑖𝑖 during 
year 𝑡𝑡 from the production of a single crop. The variable 𝑝𝑝 stands for the price associated with 
the insured crop, and it assumed to remain constant (not random) due to the existence of 
forward contracts. The variable 𝐼𝐼𝑖𝑖𝑖𝑖 denotes random weather shocks, and the variable y𝑖𝑖𝑖𝑖(𝐼𝐼𝑖𝑖𝑖𝑖) 
represents the random yield of a specific crop, which depends on these unpredictable weather 
shocks. 𝜋𝜋𝑖𝑖𝑖𝑖 signifies the insurance payout that is determined by the random variable 𝐼𝐼𝑖𝑖𝑖𝑖, and 
Θ𝑖𝑖 represents the insurance premium that the farmer pays. It is important to note that Bucheli 
et al. (2022) assume an actuarial fair premium, i.e., Θ𝑖𝑖 = 𝐸𝐸(𝜋𝜋𝑖𝑖𝑖𝑖). 

Crop yield is not solely determined by random weather shocks but also by non-weather-related 
influences: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑔𝑔(𝐼𝐼𝑖𝑖𝑖𝑖) + ε𝑖𝑖𝑖𝑖 (2) 

In Equation 2, 𝑔𝑔(𝐼𝐼𝑖𝑖𝑖𝑖) is a function that approximates the impact of random weather shocks on 
yield 𝑦𝑦𝑖𝑖𝑖𝑖 and the error term ε𝑖𝑖𝑖𝑖 summarizes other factors that are uncorrelated to the weather 
such as pests and diseases, geohazards, management decisions, time trends, farm fixed-ef-
fects such as soil properties, etc. 

To assess the overall gains of the farmer from taking insurance Bucheli et al. (2022) use the 
expected utility model: 
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𝐸𝐸𝑈𝑈𝑖𝑖(𝑊𝑊𝑖𝑖𝑖𝑖) = 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖)] = 𝑈𝑈[𝐸𝐸(𝑊𝑊𝑖𝑖𝑖𝑖) − 𝑅𝑅𝑖𝑖] (3) 

In Equation 3, 𝑈𝑈(. ) is a utility function, 𝑊𝑊𝑖𝑖𝑖𝑖 is the revenue realized by farmer 𝑖𝑖 in year 𝑡𝑡, 𝐸𝐸[. ] is 
the expectation operator, and 𝑅𝑅 is the risk premium of farmer 𝑖𝑖. To derive a farmer's risk pre-
mium, the authors solve Equation 3 for 𝑅𝑅𝑖𝑖: 

𝑅𝑅𝑖𝑖 = 𝐸𝐸(𝑊𝑊𝑖𝑖𝑖𝑖) − 𝑈𝑈−1[𝐸𝐸𝑈𝑈𝑖𝑖(𝑊𝑊𝑖𝑖𝑖𝑖)] (4) 

The authors employ power utility 𝑈𝑈(. ) function (Equation 5) to depict how risk-averse farmers 
have diminishing marginal returns to increasing revenue. α is a coefficient of constant relative 
risk-aversion, which is a fitting description of farmers' risk preferences (e.g. Falco, Chavas, 
2009; Femenia et al., 2010). 

𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖) = (1 − α)−1 ⋅ (𝑊𝑊𝑖𝑖𝑖𝑖)(1−α) (5) 

2.2 Cubic Spline Method 

Bucheli et al. (2022) use a crop-specific payout function for insurance payouts which depends 
on hourly air temperature exposure. 

𝜋𝜋𝑖𝑖𝑖𝑖 = 𝑝𝑝 ⋅ �  
𝐻𝐻𝑖𝑖𝑖𝑖

ℎ𝑖𝑖𝑖𝑖=1

�max(−𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖ℎ), 0)  if 𝑇𝑇𝑖𝑖𝑖𝑖ℎ ≥ 𝑇𝑇𝑠𝑠
0  if 𝑇𝑇𝑖𝑖𝑖𝑖ℎ < 𝑇𝑇𝑠𝑠

 (6) 

π𝑖𝑖𝑖𝑖 is the final payout for farmer 𝑖𝑖 in year 𝑡𝑡 which is equal to the sum of all hourly payouts from 
starting hour ℎ𝑖𝑖𝑖𝑖 = 1 and ending hour 𝐻𝐻𝑖𝑖𝑖𝑖. An hourly payout triggers if the temperature 𝑇𝑇𝑖𝑖𝑖𝑖ℎ is 
equal to or exceeds the strike temperature level 𝑇𝑇𝑠𝑠 and if the function 𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖ℎ) estimates a yield 
loss with the temperature exposure 𝑇𝑇𝑖𝑖𝑖𝑖ℎ. The hourly payout is equal to price 𝑝𝑝 multiplied by the 
estimated yield loss with the function 𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖ℎ). 

The authors argue that the restricted cubic spline method would be an ideal functional form for 
𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖ℎ) when estimating the non-linear hourly temperature effect on crop yield. Cubic splines 
are piece-wise cubic polynomials, joined smoothly at so-called ‘knots’. They flexibly approxi-
mate non-linear relationships - in our case between hourly temperature and yield - while re-
maining linear beyond the outer knots. To apply the cubic spline method, we first divide the 
temperature range into intervals with the knot locations 𝑘𝑘1,𝑘𝑘2, … ,𝑘𝑘𝑛𝑛 to capture non-linear yield 
responses between intervals and linear yield response beyond the outer knots. Secondly, as 
shown in Equation 7, the original time series 𝑇𝑇𝑖𝑖𝑖𝑖ℎ is transformed into (𝑘𝑘 − 2) new time series, 
since a cubic spline with 𝑘𝑘 knots uses (𝑘𝑘 − 2) basis functions to capture the non-linearity be-
tween inner knots. 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 is the new hourly (𝑘𝑘 − 2) time series based on hourly temperature 𝑇𝑇𝑖𝑖𝑖𝑖ℎ, 
𝑗𝑗 is the number of new time series with 𝑗𝑗 = 1, … , 𝑘𝑘 − 2. 

𝑆𝑆𝑖𝑖𝑖𝑖ℎ𝑗𝑗 = �max�
𝑇𝑇𝑖𝑖𝑖𝑖ℎ − 𝑘𝑘𝑛𝑛𝑗𝑗

(𝑘𝑘𝑛𝑛𝑘𝑘 − 𝑘𝑘𝑛𝑛1)2/3 , 0��
3

− �max �
𝑇𝑇𝑖𝑖𝑖𝑖ℎ − 𝑘𝑘𝑛𝑛𝑘𝑘−1

(𝑘𝑘𝑛𝑛𝑘𝑘 − 𝑘𝑘𝑛𝑛1)2/3 , 0��
3

 ⋅
𝑘𝑘𝑛𝑛𝑘𝑘 − 𝑘𝑘𝑛𝑛𝑗𝑗
𝑘𝑘𝑛𝑛𝑘𝑘 − 𝑘𝑘𝑛𝑛𝑘𝑘−1

+ �max�
𝑇𝑇𝑖𝑖𝑖𝑖ℎ − 𝑘𝑘𝑛𝑛𝑘𝑘

(𝑘𝑘𝑛𝑛𝑘𝑘 − 𝑘𝑘𝑛𝑛1)2/3 , 0��
3

⋅
𝑘𝑘𝑛𝑛𝑘𝑘−1 − 𝑘𝑘𝑛𝑛𝑗𝑗
𝑘𝑘𝑛𝑛𝑘𝑘 − 𝑘𝑘𝑛𝑛𝑘𝑘−1

 (7) 

In the third step, 𝑋𝑋𝑖𝑖𝑖𝑖 is derived as the aggregated hourly values during the critical growth period 
starting in ℎ𝑖𝑖𝑖𝑖 = 1 and ending 𝐻𝐻𝑖𝑖𝑖𝑖 at farm 𝑖𝑖 in time 𝑡𝑡 for both the original 𝑇𝑇𝑖𝑖𝑖𝑖 and transformed 
time series 𝑆𝑆𝑖𝑖𝑖𝑖 (Equation 8) 
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𝑋𝑋𝑖𝑖𝑖𝑖1 = � 𝑇𝑇𝑖𝑖𝑖𝑖ℎ and 𝑋𝑋𝑖𝑖𝑖𝑖(𝑗𝑗+1)

𝐻𝐻𝑖𝑖𝑖𝑖

ℎ𝑖𝑖𝑖𝑖=1

= � 𝑆𝑆𝑖𝑖𝑖𝑖ℎ𝑗𝑗 for 𝑗𝑗
𝐻𝐻𝑖𝑖𝑖𝑖

ℎ𝑖𝑖𝑖𝑖=1

= {1, … ,𝑘𝑘 − 2} (8) 

Fourthly, the authors build a farm fixed-effect model to estimate the effect of aggregated hourly 
values on yield. 

𝑦𝑦𝑖𝑖𝑖𝑖 = β1𝑋𝑋𝑖𝑖𝑖𝑖1 + β2𝑋𝑋𝑖𝑖𝑖𝑖2 + ⋯+ β𝑘𝑘−1𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖−1 + β𝑘𝑘𝑡𝑡 + β𝑘𝑘+1𝑡𝑡2 + α𝑖𝑖 + ε𝑖𝑖𝑖𝑖 (9) 

In Equation 9, 𝑦𝑦𝑖𝑖𝑖𝑖 is the crop yield of farm 𝑖𝑖 in year t, the restricted cubic spline specification is 
denoted as (β1𝑋𝑋𝑖𝑖𝑖𝑖1 + β2𝑋𝑋𝑖𝑖𝑖𝑖2 +⋯+ β𝑘𝑘−1𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖−1) and the deterministic quadratic time trend 
(β𝑘𝑘𝑡𝑡 + β𝑘𝑘+1𝑡𝑡2) controls for technological progress in crop yields. α𝑖𝑖 is used to control for un-
observed and time-invariant factors that influence crop yields at the farm level. The error term 
ε𝑖𝑖𝑖𝑖 summarizes random factors that influence yields but are uncorrelated with temperature and 
control variables. Finally, Equation 10 is used to calculate marginal yield response 𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖ℎ) to 
hourly temperature exposure 𝑇𝑇𝑖𝑖𝑖𝑖ℎ.  

𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖ℎ) = β1� + β2�𝑆𝑆𝑖𝑖𝑖𝑖1 + β3�𝑆𝑆𝑖𝑖𝑖𝑖2 + ⋯+ β𝑘𝑘−1�𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖−2 (10) 

The (𝑘𝑘 − 1) coefficients β1, … ,β𝑘𝑘−1 are estimated regression coefficients from Equation 9, 𝑇𝑇𝑖𝑖𝑖𝑖ℎ 
is the temperature in hour ℎ𝑖𝑖𝑖𝑖ℎ of the period of critical crop growth phases at farm 𝑖𝑖 and in year 
𝑡𝑡, and the (𝑘𝑘 − 2) variables are values of temperature transformation 𝑗𝑗 that we derive with 
Equation 7. 

2.3 Model Specification 

The authors acknowledge that the impact of temperature on crop yields can vary significantly 
during different growth stages, and these stages may differ between locations and from year 
to year. To account for this variability and to mitigate temporal basis risk, the original study 
makes use of interpolated phenological data. Specifically, the study concentrates on the critical 
growth stages for winter wheat, which range from stem elongation to the initial milk ripeness 
phase, and for winter rapeseed, from bud formation to the early full ripeness stage. Given the 
unavailability of high-resolution hourly temperature data, the authors follow Snyder (1985), 
Tack et al. (2018), D'Agostino, Schlenker (2016) and Gammans et al. (2017) to approximate 
hourly temperature changes. They fit double sine curves to daily temperature patterns, extend-
ing from the minimum temperature of one day to the maximum temperature of the same day 
and then to the minimum temperature of the following day. 

In terms of the cubic spline method, the authors explore four different models for placing knots 
in the temperature data. The first model follows a rigorous four-step procedure, as outlined in 
Harri et al. (2011) and Ker, Tolhurst (2019). This procedure includes the selection of three-knot 
locations, the establishment of boundaries for the lowest and highest knot positions (based on 
the 5% and 95% quantiles of observed temperatures, as suggested in Harri et al. (2011) the 
imposition of a minimum 5°C interval between knots. Subsequently, all potential combinations 
of knot positions derived from the first model are considered. In the third step, the authors 
employ a farm fixed-effect model for each conceivable knot combination and calculate the 
residual sum of squares (RSS) to evaluate model fit. Finally, the model with the lowest RSS is 
chosen as the best fit. Model 2 introduces three evenly spaced knots into the observed tem-
perature records, taking cues from Ortiz-Bobea et al. (2018). In Model 3, three knots are placed 
at specific percentiles (10%, 50%, and 90%) of observed temperatures. Model 4, inspired by 
Blanc, Schlenker (2017), adopts an approach with five equally spaced knots, with the first knot 
positioned at 5°C (near the 10% quantile of observed temperatures) and the fifth knot at 25°C 
(close to the 90% quantile of observed temperatures). 
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2.4 Risk Analysis 

To assess the risk-reducing capabilities of the payout function, the authors apply the economic 
framework outlined in Section 2. They prepare the required yield observations for revenue 
calculations (as described in Equation 1) by detrending them using a quadratic time trend de-
rived from the panel data.1 As in the original study, crop prices are standardized to 1 (meaning 
that revenues, payouts, and premiums are expressed in yield units, specifically deci-tons per 
hectare, equivalent to 100 kg per hectare), given that German farmers can employ bilateral 
forward contracts to manage price risks (Anastassiadis et al., 2014). 

Subsequently, the authors analyze relative changes in risk premiums across various payout 
functions and strike-level temperatures, comparing them to the scenario of uninsured crop 
production. They then assess the statistical significance of these differences using non-para-
metric paired Wilcoxon signed rank tests. The results presented in the original study refer to 
moderately risk-averse farmers characterized by a coefficient of constant relative risk-aversion 
equal to 2. 

The authors use out-of-sample risk assessment to avoid overfitting of models. For this purpose, 
they exclude farm 𝑖𝑖's data during the initial calibration phase. Instead, they develop general 
payout functions. Subsequently, the farm 𝑖𝑖's potential for risk reduction is assessed by incor-
porating farm-specific temperature data during periods of heightened risk into the previously 
calibrated payout function. This leave-one-out procedure aims to provide an unbiased, out-of-
sample estimate of each farm’s potential for risk reduction, and tries to ensure that the effec-
tiveness of the insurance design is robust and not merely a result of overfitting to in-sample 
data. 

3 Data 
The general availability of data is of pivotal importance for conducting robust and reliable rep-
lication studies. A framework developed to assess “data availability” more systematically is the 
FAIR data principles approach (Wilkinson et al., 2016). FAIR is an acronym for “findable, ac-
cessible, interoperable, and reusable”, which are core principles that support replicability and 
transparency in empirical research. For direct replication, it is essential that the dataset is both 
findable and accessible. In this study, the original dataset used by Bucheli et al. (2022) was 
not publicly available or findable. Although we contacted the original data provider, we could 
only obtain a similar dataset, which we then used for the direct replication. 

For the extended replication, we relied on additional yield data from alternative sources. While 
these data are generally findable - as they are collected by the Ministry of Agriculture of Saxony 
- they are not publicly accessible due to privacy regulations. These constraints have implica-
tions for external validity: because our analysis was confined by available data, we could not 
fully control for representativeness or alignment with the original study design. Differences in 
farm structure, geography, or unobserved factors may have influenced our results. Moreover, 
due to anonymization and incomplete metadata, assumptions during data cleaning were nec-

                                                
1  A specific challenge in estimating crop yield models in the context of yield insurance arises from non-stationarity 

of the data generating process (e.g. Shen et al., 2018). Agricultural crop yields usually show an upward trend 
over time and deviations from the trend (residuals) frequently exhibit heteroscedasticity. Major causes of non-
stationarity are climate change and technological change. This, in turn, has a considerable effect on average 
crop yields, yield variability and hence on the cost of insurance. Given the non-stationarity of crop yields, the 
standard approach to pricing yield insurance is a two-stage estimation procedure. In the first step, the trend 
component is removed from the data. In the second step, a parametric or non-parametric distribution is fitted to 
the detrended data (Woodard, Sherrick, 2011; Annan et al., 2014). The dynamics of average yields are captured 
by either a deterministic or a stochastic trend. Deterministic time trend models are dominant in the literature and 
consist of a simple linear trend, polynomial trend (Just, Weninger, 1999) and spline functions (Harri et al., 2011). 
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essary, introducing uncertainty and limiting comparability. These issues underscore the ten-
sion between data protection and scientific replicability and highlight why adherence to FAIR 
data principles is crucial not only for replication but also for credible external validation. 

Regarding phenological and temperature data, no differences are observed between the study 
types; however, adjustments have been made to the yield data in the two replication types. 
The original study, as well as the direct replication, encompass data on winter wheat and winter 
rapeseed, while the extended replication utilizes yield data for winter barley, instead of winter 
wheat, but also rapeseed. The time span covered by the original study is from 1995 to 2018, 
by the direct replication from 2000 to 2018, and by the extended replication from 2000 to 2015. 
The number of farms included in the three studies varies (see Table 1). 

Table 1. Comparison of data sets 

Study type 
Characteristics 

Original study Direct replication Extended replication 

Products Winter wheat, Winter rapeseed Winter barley, Winter rapeseed 

Yield 
data 

Sources Gvf Versicherungs-Makler AG FADN 

Periods 1995-2018 2000-2018 2000-2015 

Farms 84 (Winter wheat) 
81 (Winter rapeseed) 

88 (Winter wheat) 
86 (Winter rapeseed) 

217 (Winter barley) 
223 (Winter rapeseed) 

Records 2,578 4,033 6,617 

Farm 
locations 

Berlin, Brandenburg, Mecklenburg,  
Saxony, Saxony-Anhalt, Thuringia 

Saxony 

Phenology data PHASE model 

Temperature data Publicly available gridded datasets E-OBS version 20e 

Source: own representation 

The original study includes 84 farms for winter wheat and 81 for winter rapeseed, while the 
extended replication includes 440 farms (217 farms producing winter barley and 223 winter 
rapeseed producers). The original study as well as the direct replication approach include yield 
data from Berlin, Brandenburg, Mecklenburg, Saxony, Saxony-Anhalt, and Thuringia, while the 
extended replication procedure focuses on yield data from Saxony. The following section pro-
vides further details on the data that was utilized in this study. 

3.1 Yield Data (the Original Study, Direct and Extended Replication) 

Yield Data in the Original Study 

In the paper by Bucheli et al. (2022), the unbalanced panel data for yield was obtained from 
the German insurance broker “gvf VersicherungsMakler AG”. As outlined in Table 2 (on the 
right-hand side), the total yield for winter wheat is 1,316, with a minimum yield of 29.24, a mean 
of 82.66, a maximum yield of 124.04, and a standard deviation of 14.26. Similarly, the total 
yield record for winter rapeseed is 1,262, with a minimum yield of 8.31, a mean of 37.63, the 
maximum yield recorded is 57.01, and the standard deviation is 9.01. A total of 88 farms were 
evaluated, with 77 producing both crops and 11 producing only one crop. 
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Table 2. Summary statistics of yields, risk periods, and hourly temperatures in direct replica-
tion data 2000-2018 (on the left) and original data 1995-2018 (on the right) 

  Direct replication data Original data 

Crop Variable Min Mean Max SD Min Mean Max SD 

Winter 
wheat 

Detrended yield [dt/ha] 20.62 68.22 114.80 14.72 29.24 82.66 124.04 14.26 

Duration risk period [d] 43.00 61.24 85.00 6.12 48.00 65.32 87.00 6.41 

Hourly temperatures [°C] -5.16 14.44 36.88 6.04 -4.75 14.53 36.38 5.74 

Winter 
rapeseed 

Detrended yield [dt/ha] 6.30 35.32 57.00 8.06 8.31 37.63 57.01 9.01 

Duration risk period [d] 66.00 90.76 115.00 7.45 65.00 90.55 117.00 7.85 

Hourly temperatures [°C] -6.61 14.48 38.60 6.36 -14.15 14.23 38.48 6.10 

Note: direct replication data: 88 winter wheat and 86 winter rapeseed producers with yield records between 2000 
and 2018. Original data: 84 winter wheat and 81 winter rapeseed producers with yield records between 1995 and 
2018. Risk period is the duration of temperature measurements. dt is deci-ton, ha hectare, d day and °C degree 

Celsius. Hourly temperatures are measured within risk periods. 
Source: own calculations and original study by Bucheli et al. (2022) 

Yield Data Used in the Direct Replication Approach 

For the direct replication, data was obtained from the same source as in the original study. Due 
to data protection considerations, it was not possible to gain access to the exact same data 
set as used in the original study. However, the data set for the direct replication study contains 
data that were also used in the original study. The data set comprised unbalanced data, with 
over 22,000 observations across the five regions of Germany. The variables collected for in-
clusion were reference numbers, crop names, coordinates (longitude and latitude), years, and 
yield records. Yield records are expressed in deci-tons per hectare (dt/ha), while coordinates 
(longitude, latitude) are based on the WGS 84 coordinate reference system. Figure 1 provides 
a geographical representation of the farm locations. 

The variable representing the farms was absent, and it was unclear, how many farms existed 
and to which ones the crops or observations belonged to. Furthermore, the anonymization 
process resulted in duplicated entries with varying coordinates, which impeded the identifica-
tion of farm observations. To address this issue, a comprehensive analysis of analogous yield 
records was conducted, and the duplicates were eliminated. To ensure a more balanced panel 
dataset that aligns with the available phenology data, observations from the years 1991-1999 
and 2019-2020 were excluded. Two distinct crops were subsequently combined into single 
farms based on nearby coordinates and the same duration. Observations were recorded as 
single crop farms. The details of the data cleaning procedures are documented in the code 
provided in the replication package (https://doi.org/10.15456/gjae.2025209.2025161178). 

  

https://doi.org/10.15456/gjae.2025209.2025161178)
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Figure 1. Geographical representation of farms used in the direct replication 

Source: own presentation 

The descriptive statistics for the direct replication are presented in Table 2 and compared with 
the original data. A total of 2,705 records were obtained for winter wheat, while 1,328 records 
were obtained for winter rapeseed. The data set spans the period from 2000 to 2018. Notwith-
standing the fact that the data originates from the same source, it is evident that there are 
considerable discrepancies when it comes to the detrended yield. In general, the data obtained 
for the direct replication study exhibits a greater degree of variability compared to the original 
data, as evidenced by the lower minimum values and higher maximum values observed for 
the detrended yield. The standard deviation for both data sets is approximately equivalent. 
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Table 3. Summary statistics of yields, risk periods, and hourly temperatures in extended repli-
cation data 2000-2015 (on the left) and original data 1995-2018 (on the right). 

  Extended replication data Original data 
Crop Variable Min Mean Max SD Min Mean Max SD 

Winter Barley  Detrended yield [dt/ha] 1.33 61.79 122.88 17.01     

Duration risk period [d] 47.00 64.87 83.00 6.72     

Hourly temperatures [°C] -5.73 13.99 36.41 5.92     

Winter rape-
seed 

Detrended yield [dt/ha] 3.01 37.86 89.16 9.98 8.31 37.63 57.01 9.01 

Duration risk period [d] 67.00 90.22 112.00 8.03 65.00 90.55 117.00 7.85 

Hourly temperatures [°C] -8.17 14.17 37.83 6.29 -14.15 14.23 38.48 6.10 

Note: Extended replication data: 217 winter barley and 223 winter rapeseed producers with yield records between 
2000 and 2015. Original data: 81 winter rapeseed producers with yield records between 1995 and 2018. Risk pe-
riod is the duration of temperature measurements. dt is deci-ton, ha hectare, d day and °C degree Celsius. Hourly 

temperatures are measured within risk periods. 
Source: own calculations and original study by Bucheli et al. (2022) 

Extended Replication Approach 

For our extended study, we used a balanced panel dataset from Saxony covering the years 
2000 to 2015. We chose this timeframe because it offers the most consecutive data per year 
per farm. The dataset, provided by the Farm Accountancy Data Network (FADN) in Saxony, 
contains 6,617 yield records in total. It consists of various variables, such as reference num-
bers for municipalities and farms, yield records, years, and crop names. However, the data did 
not include the coordinates of the farms or municipalities. We supplemented these with the 
central coordinates of the municipalities, which were provided by the Federal Agency for Car-
tography and Geodesy. 

The description of the extended replication data is also presented in Table 3. In the data we 
have two crops, winter barley and winter rapeseed grown on 440 farms. In our extended rep-
lication we focus mainly on winter barley, which has 3,262 yield records from 217 farms and 
158 municipalities. The maximum recorded yield for winter barley was 122.88, with a mean of 
61.76 and a standard deviation of 17.03. For winter rapeseed a total of 3,355 yield records 
from 223 farms and 157 municipalities were analyzed. The maximum recorded yield for winter 
rapeseed was 89.16, with a mean of 37.86 and a standard deviation of 9.98. The yield data 
are distributed across Saxony as shown by Figure 2. 
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Figure 2. Geographical representation of yield data based on community level  

in extended replication 

Source: own presentation 

3.2 Phenology Data 

To replicate the original study, we will use phenology data from the original paper, which is 
derived from the PHASE model (Phenological model for Application in Spatial and Environ-
mental Sciences) (Möller, 2020). The PHASE model uses a growing degree-days approach. 
Data are generated by combining daily mean temperatures and phenological observations, 
and then produce1 km × 1 km raster files. These raster files provide detailed information on 
the timing of growth stages for different crops, farms and years. The phenological data used 
in the original study were collected by the German Meteorological Service (DWD), which pub-
lishes phenological observations collected by a network of volunteer reporters, making them 
accurate and comprehensive. For the two replication approaches, phenological data were 
used from the dataset of Möller (2020), which contains interpolated crop-specific and Ger-
many-wide phenological phases for the period between 1993 and 2018. For the extended rep-
lication, the critical growth period of winter barley is considered from stem elongation to yellow 
ripening (Möller et al., 2020). 

3.3 Temperature Data 

For the replication study, we obtain the daily minimum and maximum temperatures for each 
farm as used in the original research. These temperatures are derived from publicly available 
gridded datasets called E-OBS version 27e (latest version) from the EU-FP6 project UERRA 
and the Copernicus Climate Change Service, and the data providers in the ECA&D project. 
The datasets have a spatial resolution of 0.1° × 0.1° and are updated monthly. The interpola-
tion process involves the use of a 100-member ensemble incorporating station-derived obser-
vations from the European Climate Assessment and Dataset (ECA&D). The station network 
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consists of about 19,100 weather stations across Europe, with a higher concentration in Cen-
tral Europe, including Eastern Germany. 

4 Results 

4.1 Direct Replication 

Tables 4 and 5 present the outcomes of the four specifications of restricted cubic spline re-
gression model (M1 to M4) for winter wheat and rapeseed, respectively. The results for both 
winter wheat and winter rapeseed closely align with the original study findings. The coefficients 
associated with the spline and the deterministic quadratic time trend variables exhibit statistical 
significance in most models. In the case of winter wheat, the coefficients associated with the 
spline and the deterministic quadratic time trend variables in Models 1 to 3 exhibit statistical 
significance, while in Model 4, third and fourth spline variables are not statistically significant. 
In contrast to winter wheat, we detect statistical significance across all variables in the 4 models 
for winter rapeseed, except for the second spline variable in Model 4. Therefore, results of 
almost all variables in the direct replication study confirm the original study finding and provide 
valuable insights into the weather-yield relationships. The standard deviation of coefficients for 
both crops in Models 1 to 4 closely follows the pattern established in the original study results. 
The adjusted R-squared values are slightly higher in the direct replication study due to the 
larger dataset. 

Table 4. Spline regression model results for winter wheat for direct replication and  
original study 

  Direct replication results Original results 
Models  M1 M2 M3 M4 M1 M2 M3 M4 

Spline  
variable 1 

𝛽𝛽1 0.0026*** 
(0.0002) 

0.0024*** 
(0.0002) 

0.0024*** 
(0.0002) 

0.0031*** 
(0.0003) 

0.0018 
(0.0002) 

0.0020 
(0.0001) 

0.0020 
(0.0002) 

0.0025 
(0.0004) 

Spline  
variable 2 

𝛽𝛽2 -0.0064*** 
(0.0003) 

-0.0068*** 
(0.0003) 

-0.0064*** 
(0.0003) 

-0.0220** 
(0.0080) 

-0.0050 
(0.0003) 

-0.0070 
(0.0004) 

-0.0067 
(0.0004) 

-0.0169 
(0.0078) 

Spline  
variable 3 

𝛽𝛽3 - - - 0.0648 
(0.0337) 

- - - 0.0471 
(0.0322) 

Spline  
variable 4 

𝛽𝛽4 - - - -0.0974 
(0.0587) 

- - - -0.7722 
(0.0563) 

Year 𝛽𝛽5 -91.94* 
(36.69) 

-85.59* 
(36.93) 

-89.84* 
(36.80) 

-87.06* 
(36.08) 

-252.25 
(43.54) 

-259.31 
(43.65) 

-262.1 
(43.64) 

-265.27 
(44.32) 

Year2 𝛽𝛽6 0.0231* 
(0.0091) 

0.0215* 
(0.0092) 

0.0225* 
(0.0092) 

0.0218* 
(0.0090) 

0.0629 
(0.0108) 

0.0650 
(0.0109) 

0.0654 
(0.0109) 

0.0662 
(0.0110) 

Farm Fixed 
Effect 

𝛼𝛼i yes yes yes yes yes yes yes yes 

Obs  1’309 1’309 1’309 1’309 1’296 1’296 1’296 1’296 

Adj R2  67.24% 67.21% 67.20% 67.29% 58.71% 58.71% 58.65% 58.71% 

Note: Model 1 sets three knots to maximize the goodness of fit, Model 2 three knots to divide the temperature 
range equally, Model 3 sets three knots at certain quantiles and Model 4 has 5 knots with 5°C between knots (see 
section 2.3 “Model Specification”). The number of spline variables depends on the number of knots (i.e. is equal 
to number of knots -1). Numbers in parentheses show standard errors. Asterisks display statistical significance: * 

at the 5% significance level, ** at the 1% level and *** at the 0.1% level. 
Source: own calculations and original study by Bucheli et al. (2022) 
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Table 5. Spline regression model results for winter rapeseed for direct replication and  
original study 

  Direct replication results Original results 
Models  M1 M2 M3 M4 M1 M2 M3 M4 
Spline 
variable 1 

𝛽𝛽1 0.0010*** 
(0.0001) 

0.0002** 
(0.0001) 

0.0003** 
(0.0001) 

0.0007*** 
(0.0002) 

0.0013 
(0.0001) 

0.0013 
(0.0001) 

0.0008 
(0.0001) 

0.0017 
(0.0003) 

Spline 
variable 2 

𝛽𝛽2 -0.0027*** 
(0.0001) 

-0.0034*** 
(0.0001) 

-0.0032*** 
(0.0001) 

-0.0024 
(0.0032) 

-0.0029 
(0.0001) 

-0.0035 
(0.0002) 

-0.0032 
(0.0002) 

-0.0145 
(0.0045) 

Spline 
variable 3 

𝛽𝛽3 - - - -0.0287* 
(0.0133) 

- - - 0.0264 
(0.0182) 

Spline 
variable 4 

𝛽𝛽4 - - - 0.0878*** 
(0.0222) 

- - - 0.0009 
(0.0307) 

Year 𝛽𝛽5 191.83*** 
(25.05) 

240.06*** 
(24.71) 

231.52*** 
(24.75) 

173.93*** 
(25.80) 

118.84 
(28.86) 

123.38 
(29.25) 

128.25 
(29.52) 

109.72 
(29.04) 

Year2 𝛽𝛽6 -0.0477*** 
(0.0062) 

-0.0597*** 
(0.0062) 

-0.0608*** 
(0.0062) 

-0.0432*** 
(0.0064) 

-0.0296 
(0.0072) 

-0.0307 
(0.0073) 

-0.0319 
(0.0074) 

-0.0273 
(0.0072) 

Farm 
Fixed Ef-
fect 

𝛼𝛼i yes yes yes yes yes yes yes yes 

Obs  1’358 1’358 1’358 1’358 1’255 1’255 1’255 1’255 

Adj R2  61.12% 58.07% 58.91% 62.18% 48.53% 47.17% 46.10% 49.23% 

Note: Model 1 sets three knots to maximize the goodness of fit, Model 2 three knots to divide the temperature 
range equally, Model 3 sets three knots at certain quantiles and Model 4 has 5 knots with 5°C between knots (see 
section 2.3 “Model Specification”). The number of spline variables depends on the number of knots (i.e. is equal 
to number of knots -1). Numbers in parentheses show standard errors. Asterisks display statistical significance: * 

at the 5% level, ** at the 1% level and *** at the 0.1% level. 
Source: own calculations and original study by Bucheli et al. (2022) 

As illustrated in Figures 3 (winter wheat) and 4 (winter rapeseed), non-linear temperature im-
pacts on both crop yields are observed in Models 1 to 4, particularly during critical growth 
phases determined by phenological stages. 

Beyond a certain temperature threshold, there is a discernible curvature in yield responses 
and associated payouts, which subsequently evolves into a linear relationship after surpassing 
the final threshold. While the yield responses and associated payouts for winter rapeseed in 
Models 1 to 4 are virtually indistinguishable from the original study's findings, those for winter 
wheat exhibit a slightly less steep trajectory (cf. Figures A1 (winter wheat) and A2 (winter rape-
seed) in the appendix). 
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Figure 3. Marginal impact of hourly temperature effects and hourly payouts for winter wheat 

and different models (direct replication) 

Note: different scales and units on axes. Dotted vertical lines in left column show knot locations. 95% confidence 
bands are derived by 1′000 block bootstraps with observations blocked by year. The different models result from 

the different knot specifications. Model 1 sets knots to maximize the goodness of fit, Model 2 to divide the temper-
ature range equally, Model 3 sets knots at certain quantiles and Model 4 has 5°C between knots. dt/ha is deci-

tons per hectare. 
Source: own calculations with the original code 
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Figure 4. Marginal impact hourly temperature effects and hourly payouts for winter rapeseed 

and different models (Direct Replication) 

Note: different scales and units on axes. Dotted vertical lines in left column show knot locations. 95% confidence 
bands are derived by 1′000 block bootstraps with observations blocked by year. The different models result from 

the different knot specifications. Model 1 sets knots to maximize the goodness of fit, Model 2 to divide the temper-
ature range equally, Model 3 sets knots at certain quantiles and Model 4 has 5°C between knots. dt/ha is deci-

tons per hectare. 
Source: own calculations with the original code 
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Furthermore, when we compare the four models for a specific crop, it becomes apparent that 
different strategies for knot placement result in divergent payouts concerning temperature ef-
fects and their associated outcomes. In accordance with the observations made in Bucheli et 
al. (2022)'s study, we also discern disparities in the effects between winter wheat and winter 
rapeseed. A noteworthy discovery regarding the temperature effect on winter wheat yield in 
Model 1 is that the knot placements differ from those in Model 1 of the original study. While the 
original study's knot placements for winter wheat were set at temperatures of approximately 
6°C, 19°C, and 24°C, the direct replication study's Model 1 positions knots at temperatures of 
approximately 5°C, 13°C, and 24°C. Similar differences are also observed with winter rape-
seed in Model 2. Unlike the original findings, where knots are placed at -1°C, 12°C and 25°C 
in Model 2, direct replication study Model 2 places knots at 5°C, 16°C and 27°C for winter 
rapeseed. Despite these differences, the estimates closely resemble the original findings, 
pointing to adverse effects of temperatures exceeding approximately 20°C for winter wheat 
and 14°C for winter rapeseed, resulting in yield reduction. This finding, however, cannot be 
generalized as yields depend on other factors, such as precipitation, which are neglected in 
this study. Moreover, Zou et al. (2024) show that the impact of temperature on yield vary across 
plant growth stages. 

As shown in Figure 5, the median out-of-sample risk reduction capabilities of the temperature-
based insurance, expressed as a change in the risk premium with and without insurance, are 
slightly higher in the direct replication study for both crops compared to the original findings. 
This finding means that we were not able to replicate exactly the results of the original study. 
The practical implications for attractiveness of the proposed heat insurance, however, are mi-
nor, because the risk reducing capacities remains low and does rarely exceed 20 percent. The 
risk reduction capabilities for both crops are statistically significant at 0.1% (p-values from one-
sided Wilcoxon signed rank tests are Bonferroni-adjusted). In this direct replication study con-
cerning winter wheat at a strike temperature level of 20°C, we witness differences ranging from 
21.55% (Model1) to 22.97% (Model 2), while in the original study, the differences spanned 
from 18.46% (Model 3) to 19.62% (Model 4). Upon raising the strike temperature level to 25°C, 
the median out-of-sample risk reduction capabilities fluctuated from 15.25% (Model 1) to 
17.02% (Model 4) in the direct replication study. In contrast, in the original study, the differ-
ences ranged from 13.12% (Model 3) to 14.83% (Model 4). For winter rapeseed at a strike 
temperature level of 15°C, the median out-of-sample risk reduction capabilities vary between 
19.40% (Model 2) and 27.89% (Model 4) in this direct replication study, while in the original 
study, the differences ranged from 14.21% (Model 3) to 20.66% (Model 4). With a strike tem-
perature level of 20°C, the median out-of-sample risk reduction capabilities span from 16.60% 
(Model 2) to 26.64% (Model 4) in this direct replication study, whereas in the original study, the 
differences ranged from 11.15% (Model 3) to 15.93% (Model 4). Overall, in our direct replica-
tion the median out-of-sample risk reduction capabilities for both winter wheat and winter rape-
seed are slightly higher than the original study findings. Like original findings, the risk reducing 
capacities for both crops tend to decrease if we increase the strike level, because higher tem-
peratures are tolerated without triggering insurance payoffs. Moreover, when we compare dif-
ferent model results, we see generally similar risk reduction distribution for the same crop and 
strike level. 
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Figure 5. Out-of-sample risk reducing capacities for winter wheat (top row) and winter rapeseed 
(bottom row), different models and strike level temperatures, assuming moderately risk-averse 

farmers, and in comparison, to the uninsured status (direct replication) 

Note: different scales on y-axes. The different models result from the different knot specifications. Model 1 sets 
knots to maximize the goodness of fit, Model 2 to divide the temperature range equally, Model 3 sets knots at cer-
tain quantiles and Model 4 has 5 °C between knots (see section 2.3 “Model Specification”). Positive values indi-
cate a reduction in the risk premium, which is a financial risk reduction. Boxes show the interquartile range from 
the 25th percentile to the 75th percentile. Bold lines within boxes mark medians. Points show values beyond the 

interquartile range. p-values from one-sided Wilcoxon signed rank tests are Bonferroni-adjusted. Asterisks display 
statistical significance: * at the 5% significance level, ** at the 1% level and *** at the 0.1% level. 

Source: own calculations with the original code 
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4.2 Extended Replication 

The extended replication results for winter barley and winter rapeseed relatively deviate from 
the outcomes of the original study. Tables 6 and 7 present the outcomes of regression models, 
including Models 1 to 4, for both the extended replication and the original study. 

Table 6. Spline regression model results for winter barley for extended replication study 

  Extended replication results 
Models  M1 M2 M3 M4 

Spline variable 1 𝛽𝛽1 0.0021*** 
(0.0002) 

0.0007*** 
(0.0002) 

0.0007*** 
(0.0002) 

0.0079*** 
(0.0004) 

Spline variable 2 𝛽𝛽2 -0.0050*** 
(0.0002) 

-0.0059*** 
(0.0002) 

-0.0058*** 
(0.0002) 

-0.1226*** 
(0.0068) 

Spline variable 3 𝛽𝛽3 - - - 0.4518*** 
(0.0285) 

Spline variable 4 𝛽𝛽4 - - - -0.6976*** 
(0.0505) 

Year 𝛽𝛽5 -723.94*** 
(37.91) 

-695.40*** 
(37.87) 

-695.73*** 
(37.86) 

-841.97*** 
(38.74) 

Year2 𝛽𝛽6 0.1804*** 
(0.0094) 

0.1733*** 
(0.0094) 

0.1734*** 
(0.0094) 

-0.2097*** 
(0.0097) 

Farm Fixed Effect 𝛼𝛼i yes yes yes yes 

Obs  3’440 3’440 3’440 3’440 

Adj R2  55.10% 53.72% 53.80% 57.72% 

Note: Model 1 sets three knots to maximize the goodness of fit, Model 2 three knots to divide the temperature 
range equally, Model 3 sets three knots at certain quantiles and Model 4 has 5 knots with 5°C between knots (see 
Section 2.3 “Model Specification”). The number of spline variables depends on the number of knots (i.e. is equal 
to number of knots -1). Numbers in parentheses show standard errors. Asterisks display statistical significance: * 

at the 5% significance level, ** at the 1% level and *** at the 0.1% level. 
Source: own calculations 

In the extended replication, all coefficients associated with the spline variables and the deter-
ministic quadratic time trends in Models 1 to 4 are statistically significant (𝑝𝑝 < 0.01 Wilcoxon 
test) for both, winter barley and winter rapeseed, and their standard deviations closely align 
with the original study's findings. However, the adjusted R-squared values for these models 
are lower than those in the original analysis. This difference may be partly attributed to the fact 
that the extended dataset is confined to Saxony, whereas the direct replication covered the 
entire eastern Germany region. Another contributing factor is the use of a different data source 
in the extended replication. For example, the descriptive statistics for rapeseed reveal that the 
minimum yield values in the extended dataset are lower than those reported in the original 
study (see Table 3). 
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Table 7. Spline regression model results for winter rapeseed for extended replication and  
original study 

  Extended replication results Original results 

Models  M1 M2 M3 M4 M1 M2 M3 M4 

Spline  
variable 1 

𝛽𝛽1 0.0021*** 
(0.0002) 

0.0007*** 
(0.0002) 

0.0007*** 
(0.0002) 

0.0079*** 
(0.0004) 

0.0013 
(0.0001) 

0.0013 
(0.0001) 

0.0008 
(0.0001) 

0.0017 
(0.0003) 

Spline  
variable 2 

𝛽𝛽2 -0.0050*** 
(0.0002) 

-0.0059*** 
(0.0002) 

-0.0058*** 
(0.0002) 

-0.1226*** 
(0.0068) 

-0.0029 
(0.0001) 

-0.0035 
(0.0002) 

-0.0032 
(0.0002) 

-0.0145 
(0.0045) 

Spline  
variable 3 

𝛽𝛽3 - - - 0.4518*** 
(0.0285) 

- - - 0.0264 
(0.0182) 

Spline  
variable 4 

𝛽𝛽4 - - - -0.6976*** 
(0.0505) 

- - - 0.0009 
(0.0307) 

Year 𝛽𝛽5 -723.94*** 
(37.91) 

-695.40*** 
(37.87) 

-695.73*** 
(37.86) 

-841.97*** 
(38.74) 

118.84 
(28.86) 

123.38 
(29.25) 

128.25 
(29.52) 

109.72 
(29.04) 

Year2 𝛽𝛽6 0.1804*** 
(0.0094) 

0.1733*** 
(0.0094) 

0.1734*** 
(0.0094) 

-0.2097*** 
(0.0097) 

-0.0296 
(0.0072) 

-0.0307 
(0.0073) 

-0.0319 
(0.0074) 

-0.0273 
(0.0072) 

Farm Fixed 
Effect 

𝛼𝛼i yes yes yes yes yes yes yes yes 

Obs  3’520 3’520 3’520 3’520 1’255 1’255 1’255 1’255 

Adj R2  37.89% 36.36% 36.39% 39.13% 48.53% 47.17% 46.10% 49.23% 

Note: Model 1 sets three knots to maximize the goodness of fit, Model 2 three knots to divide the temperature 
range equally, Model 3 sets three knots at certain quantiles and Model 4 has 5 knots with 5°C between knots (see 
section 2.3 “Model Specification”). The number of spline variables depends on the number of knots (i.e. is equal 
to number of knots -1). Numbers in parentheses show standard errors. Asterisks display statistical significance: * 

at the 5% significance level, ** at the 1% level and *** at the 0.1% level. 
Source: own calculations and original study by Bucheli et al. (2022) 

Non-linear temperature effects on crop yields are robustly captured across Models 1 to 4, par-
ticularly during the critical growth stages defined by phenological phases (see Figures 6 and 
7). In the extended replication – where winter barley substitutes for winter wheat as in Bucheli 
et al. (2022) – the yield responses and payout functions for winter rapeseed closely mirror the 
original findings. By contrast, winter barley displays distinct behavior: in Model 1, its yield–
temperature and payout curves are noticeably steeper, indicating a sharper response to tem-
perature changes, while Models 2 through 4 reveal a somewhat flatter trajectory compared to 
the winter wheat results of the original study (refer to Figures A1 for winter wheat and A2 for 
winter rapeseed in the appendix). 

A meticulous comparison across models demonstrates that the strategy for knot placement 
considerably influences the estimated marginal yield effects and the corresponding payout 
functions. For example, in Model 1, Bucheli et al. (2022) positioned knots for winter wheat at 
approximately 6°C, 19°C, and 24°C, whereas the extended replication for winter barley sets 
the knots at about 5°C, 10°C, and 15°C. In Model 2, the original study placed knots for winter 
wheat at -1°C, 12°C, and 25°C, but for winter rapeseed in the extended replication, the knots 
are located at approximately 4°C, 15°C, and 27°C. Histograms of temperature exposure further 
reveal that both winter barley and winter rapeseed experience relatively higher frequencies of 
exposure at specific temperature ranges compared to the original dataset. 

Despite these differences, a critical threshold emerges for both winter barley and winter rape-
seed, adverse yield effects become statistically significant when temperatures exceed roughly 
15°C. This finding underscores that the optimal knot placements must be finely tuned to the 
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specific physiological responses of each crop. Overall, while spline-based models reliably cap-
ture the non-linear dynamics between temperature and yield, the extended replication shows 
that replacing winter wheat with winter barley and adding winter rapeseed reveals important 
differences in how sensitive each crop is to temperature extremes. These nuances highlight 
that the effectiveness of weather index insurance is not uniform across crops and that modeling 
efforts should incorporate crop-specific response functions. Accordingly, knot placements 
should be adjusted based on empirical temperature distributions to better reflect the heteroge-
neity in yield sensitivity and risk exposure among crops. 

 
Figure 6. Marginal impact hourly temperature effects and hourly payouts for winter barley and 

different models (extended replication) 

Note: different scales and units on axes. Dotted vertical lines in left column show knot locations. 95% confidence 
bands are derived by 1′000 block bootstraps with observations blocked by year. The different models result from 

the different knot specifications. Model 1 sets knots to maximize the goodness of fit, Model 2 to divide the temper-
ature range equally, Model 3 sets knots at certain quantiles and Model 4 has 5°C between knots. dt/ha is deci-

tons per hectare. 
Source: own calculations with the original code 
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Figure 7. Marginal impact hourly temperature effects and hourly payouts for winter rapeseed 

and different models (extended replication) 

Note: different scales and units on axes. Dotted vertical lines in left column show knot locations. 95% confidence 
bands are derived by 1′000 block bootstraps with observations blocked by year. The different models result from 

the different knot specifications. Model 1 sets knots to maximize the goodness of fit, Model 2 to divide the temper-
ature range equally, Model 3 sets knots at certain quantiles and Model 4 has 5°C between knots. dt/ha is deci-

tons per hectare. 
Source: own calculations with the original code 

Figure 8 displays the risk reduction effect of the temperature-based insurance. Compared to 
the direct replication, the extended replication results for both winter barley and winter rape-
seed exhibit lower median out-of-sample risk reduction capabilities (see Figure A3 in the ap-
pendix). For winter barley at a strike temperature level of 20°C, we observe reductions in risk 
premia ranging from 10.46% (Model 4) to 17.37% (Model 3), while in the original study, the 
differences spanned from 18.46% (Model 3) to 19.62% (Model 4). When raising the strike 
temperature level to 25°C, the median out-of-sample risk reduction capabilities fluctuated from 
9.10% (Model 1) to 10.29% (Model 4). In the original study, the differences ranged from 
13.12% (Model 3) to 14.83% (Model 4). For winter rapeseed at a strike temperature level of 
15°C, the medians out-of-sample risk reduction vary between 6.32% (Model 4) and 10.33% 
(Model 1) in the extended replication study, while in the original study, the differences ranged 
from 14.21% (Model 3) to 20.66% (Model 4). As before, the risk mitigation declines for both 
crops if the strike level is raised, as higher temperatures are tolerated without triggering insur-
ance payoffs. For example, with a temperature strike level of 20°C, the median out-of-sample 
risk reduction capabilities varies merely between 5.80% (Model 4) to 8.90% (Model 1). 

When comparing outcomes across the various models, the distribution of risk reduction re-
mains largely consistent for a given crop and strike level. Notably, the extended replication’s 
potential for reducing risk is on par with – or even slightly lower than – findings reported in 
previous studies. For example, Sun (2022) applied an optimization-based weather yield model 
to mid-season rice in Anhui province, China, achieving reductions in “false positive” and “false 
negative” basis risk by 14.59% and 17.61%, respectively, relative to traditional models. Simi-
larly, Zou et al. (2023) reported a 41.90% decrease in mean root square loss using a penalized 
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B-spline approach, while Leppert et al. (2021) demonstrated that spline-based methods low-
ered relative risk premiums by approximately 27–29% for corn producers in Illinois and Iowa. 
In addition, Chen et al. (2023) introduced a neural network-based index insurance model that 
improved farmers’ utility by 14.35% through its ability to capture non-linear relationships akin 
to those identified by spline-based techniques. These comparisons indicate that while the ex-
tended replication confirms the usefulness of advanced modeling techniques – such as cubic 
splines, B-splines, and neural networks – in capturing the non-linear relationship between 
weather and yield, the absolute improvements in risk reduction are modest. This modest per-
formance suggests that even when employing sophisticated statistical tools and disaggregated 
weather data, substantial basis risk remains. In practice, the benefits of incorporating these 
advanced models must be weighed against the inherent limitations of using a single weather 
variable, such as temperature, to capture the complexity of crop yield determinants. Moreover, 
the consistency in risk reduction across models for the same crop and strike level implies that 
the choice of knot placement or the specific modeling approach may be less critical than the 
overall framework used to quantify risk reduction. This observation underscores the im-
portance of tailoring crop insurance products not only based on the modeling technique but 
also by incorporating additional weather variables or site-specific factors that may enhance the 
predictive power of the model. 

 
Figure 8. Out-of-sample risk reducing capacities for winter barley (top row) and winter rape-

seed (bottom row), different models and strike level temperatures, assuming moderately risk-
averse farmers, and in comparison, to the uninsured status (extended replication) 

Note: different scales on y-axes. The different models result from the different knot specifications. Model 1 sets 
knots to maximize the goodness of fit, Model 2 to divide the temperature range equally, Model 3 sets knots at cer-

tain quantiles and Model 4 has 5°C between knots (see section 2.3 “Model Specification”). Positive values indi-
cate a reduction in the risk premium, which is a financial risk reduction. Boxes show the interquartile range from 
the 25th percentile to the 75th percentile. Bold lines within boxes mark medians. Points show values beyond the 
interquartile range. p-values from one-sided Wilcoxon signed rank tests are Bonferroni-adjusted. Asterisks show 

significance level: * at the 5% significance level, ** at the 1% level and *** at the 0.1% level. 
Source: own calculations with the original code 
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5 Conclusions 
The purpose of this study was to replicate the results of Bucheli et al. (2022) on the impact of 
temperature on crop yields and the risk reducing capacity of temperature-based index insur-
ance as well as to investigate the generalizability of their findings to other farms, regions and 
crops. The direct replication at farm level successfully reproduced the key findings of the orig-
inal study, achieving statistical significance for similar temperature-yield effect sizes. The re-
sults of both the direct and extended replication confirm the non-linear relationship between 
temperature and crop yields during critical growth stages - for winter wheat and winter rape-
seed in the direct replication, and for winter barley and winter rapeseed in the extended repli-
cation. Differences between cubic spline models and crops are also observed. Only small dif-
ferences are noticed in the slope of the weather yield relationship which can be associated 
with limitations in the access to the original yield data and going through data cleaning proce-
dure. The extended replication did not achieve the same level of risk-reducing capabilities as 
the original findings. Most important, the extended replication exhibits lower median out-of-
sample risk-reduction capabilities. Consistent with the original study, we also observe that the 
risk mitigation effects of the insurance model tend to decline when the strike level is raised, as 
this reduces the likelihood of payout by excluding moderately severe temperature exposures. 
Our finding shows that the risk reducing capacities of the heat insurance is limited if the model 
is applied to other crops and other regions may appear self-evident or even trivial. However, 
one should recall that while the general model and the payout function remain the same, the 
model parameters are adjusted to the specific region, time frame and crops. Thus, heteroge-
neity of climate conditions and crop specific vulnerability against heat stress is taken into ac-
count.  

The findings of our study have implications a) for researchers in choosing an appropriate 
method for analyzing weather-index based insurance b) for insurers and policymakers when 
designing insurance contracts and assessing the willingness to pay of farmers for these prod-
ucts and c) for the scientific community with regard to the availability and provision of FAIR 
data. In line with previous work our study confirms that spline techniques, including cubic 
splines, B-spline or penalized B-spline (P-spline) smoothers, can be successfully employed for 
modeling the non-linear relationship between weather and yield with good quality (cf. Bucheli 
et al., 2022; Tan, Zhang, 2023; Zou et al., 2023). These methods constitute flexible alternatives 
to commonly used regression models or neural networks that recently became popular for 
modeling weather–yield relations. It has also been demonstrated that this statistical approach 
can accommodate weather data on a highly disaggregated level, here hourly temperatures. 
The question, however, whether such fine-gridded weather information is useful for the design 
of index insurance, remains unanswered. The gain in model fit, compared with daily tempera-
ture data seems to be modest. The reason might be the aggregation of hourly temperatures 
into a temperature sum, that eventually enters the farm fixed-effect model and smoothes the 
variability of hourly data. 

The variations in risk reduction capabilities between different crops suggest that policymakers 
and insurance providers should consider tailoring crop insurance policies to account for crop-
specific risk profiles. Nevertheless, it is questionable if a temperature-based insurance will be 
considered as an attractive risk management tool by farmers, given that the (adjusted) R2 of 
the weather-yield regressions rarely exceeds 60 % and in some cases is even below 40%. In 
other words, even when using sophisticated statistical tools and disaggregated weather data, 
considerable basis risk remains with farmers. The modest fit of the yield model translates into 
rather low risk reduction capacities of the index insurance, which is in most cases below 20% 
when applying the model to other farms and crop types than the original study. This finding is 
perhaps not too surprising, since temperature is the only weather variable that is included in 
the yield model and the insurance contract, while other researchers identified rainfall or soil 
moisture as further important yield determinants (e.g. Mußhoff et al., 2011). The attractiveness 
of the proposed insurance contract will be further reduced for farmers by considerable premium 
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loadings that insurance providers charge on top of the fair premium in practice (Odening et al., 
2022). 

The inability to replicate the exact same results as Bucheli et al. (2022) can be traced back to 
two reasons. First, the lack of clear and detailed data cleaning and handling process required 
assumptions during data preparation that introduced uncertainty into the results. Second, due 
to data confidentiality, we were not able to obtain farm identifiers necessary to select the same 
data as in the original study. Unfortunately, data protection is often in conflict with FAIR princi-
ples and hampers replication studies in agricultural economics, particularly when individual-
level farm or consumer data is involved. These challenges highlight several limitations of our 
study: the reliance on non-identical datasets for replication, the need to make assumptions 
during data cleaning due to insufficient documentation, the use of temperature as the sole 
weather variable in the insurance model, and - in the extended replication - the coarser spatial 
resolution of the FADN data, which is only available at the municipality level, unlike the original 
or directly replicated farm-level data. These factors may have influenced the observed results 
and should be considered when interpreting our findings. Importantly, the limited generaliza-
bility observed in the extended replication should not be viewed as a weakness, but as a val-
uable insight for both science and practice. It shows that even when sophisticated models are 
applied carefully, their effectiveness may diminish in new contexts. For practitioners, this find-
ing highlights the importance of tailoring index insurance contracts to local agro-climatic con-
ditions. For researchers, it reinforces the value of replication as a tool not only to verify findings 
but to identify the boundaries of model applicability and foster transparent, reproducible re-
search. In view of the above findings, we recommend that authors share detailed data cleaning 
steps, document assumptions explicitly, and - where possible - use anonymized but traceable 
identifiers to support reproducibility without compromising privacy. 

Our paper is a first step in scrutinizing the external validity of weather yield models and several 
directions for future research are conceivable. First, in view of the limited risk reduction capac-
ity of heat insurance and the fact that drought has been identified as major cause of yield 
losses, we suggest to compare the heat insurance index with a rainfall index insurance. The 
second idea is to conduct meta-analyses about weather-yield models following the approach 
in Challinor (2014) who conduct meta-analyses on crop yields under climate change. Given 
the extant literature on this topic and the heterogeneity of data and models, this would be a 
challenging but promising task. 

Data Availability Statement 
The study used the R programming language as its primary software platform, building on the 
publicly available codebase of the original study written in R. The original codebase, with its 
thoughtful comments, remained unchanged, and only the data preparation part was adapted 
for each of the replication approaches. In addition, the R programming language was used in 
the study for data cleaning, processing and plotting. It should be noted that access to the data 
is restricted in certain aspects, particularly regarding yield data. 

a) Data Sources 

• Yield Data 
o Direct replication: Source: Confidential data collected by the insurance company “gvf 

VersicherungsMakler AG”. Availability: The yield data used in this study is not publicly 
available. Access to the data may be restricted, and interested parties should contact 
“gvf VersicherungsMakler AG” for further information. 

o Extended replication: Source: confidential data from the Financial Accountancy Data 
Network (FADN) of the Free State of Saxony. Availability: the data is not publicly 
available. If required, we can provide access to the data for replication purposes in a 
protected and confidential environment. 
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• Phenology Data 
Möller, M. (2020): Data for: PhenoWin - A R Shiny application for visualization and ex-
traction of phenological windows in Germany. Mendeley Data, V1. 
https://doi.org/10.17632/37jxk3n9fy.1 

• Temperature Data 
Cornes, R., van der Schrier, G., van den Besselaar, E.J.M., Jones, P.D. (2018): An En-
semble Version of the E-OBS Temperature and Precipitation Datasets. Journal of Geo-
physical Research: Atmospheres, 123: 9391-9409.  
https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php 

b) Software and Code 

The study used the R programming language as its primary software platform, building on the 
publicly available codebase of the original study written in R. The original codebase, with its 
thoughtful comments, remained unchanged, and only the data preparation part was adapted 
for the two replication approaches. In addition, the R programming language was used in the 
study for data cleaning, processing and plotting. 

• Original Study Code 
https://github.com/AECP-ETHZ/Temperature-effects-on-crop-yields-in-heat-index-insur-
ance  

• Replication (Direct and Extended) Study Codes 
https://doi.org/10.15456/gjae.2025209.2025161178  
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Appendix. Original Study Results 

 
Figure A1. Hourly temperature effects and hourly payouts for winter wheat and different models 

Note: different scales and units on axes. Dotted vertical lines in left column show knot locations. 95% confidence 
bands are derived by 1′000 block bootstraps with observations blocked by year. The different models result from 

the different knot specifications. Model 1 sets knots to maximize the goodness of fit, Model 2 to divide the temper-
ature range equally, Model 3 sets knots at certain quantiles and Model 4 has 5°C between knots. dt/ha is deci-

tons per hectare. 
Source: Bucheli et al. (2022) 
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Figure A2. Hourly temperature effects and hourly payouts for winter rapeseed and different 

models 

Note: different scales and units on axes. Dotted vertical lines in left column show knot locations. 95% confidence 
bands are derived by 1′000 block bootstraps with observations blocked by year.  The different models result from 
the different knot specifications. Model 1 sets knots to maximize the goodness of fit, Model 2 to divide the temper-

ature range equally, Model 3 sets knots at certain quantiles and Model 4 has 5°C between knots. dt/ha is deci-
tons per hectare. 

Source: Bucheli et al. (2022) 
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Figure A3. Out-of-sample risk reducing capacities for winter wheat (top row) and winter rape-
seed (bottom row), different models and strike level temperatures, assuming moderately risk-

averse farmers, and in comparison to the uninsured status 

Note: different scales on y-axes. The different models result from the different knot specifications. Model 1 sets 
knots to maximize the goodness of fit, Model 2 to divide the temperature range equally, Model 3 sets knots at cer-
tain quantiles and Model 4 has 5°C between knots (see Section 4 “Implementation of insurance design and risk 

analysis”): Positive values indicate a reduction in the risk premium, which is a financial risk reduction. Boxes show 
the interquartile range from the 25th percentile to the 75th percentile. Bold lines within boxes mark medians. 

Points show values beyond the interquartile range. p-values from one-sided Wilcoxon signed rank tests are Bon-
ferroni-adjusted. Asterisks show significance level: * at the 5% significance level, ** at the 1% level and *** at the 

0.1% level. 
Source: Bucheli et al. (2022) 
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