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Abstract 
 
 An extension of the differential demand system model is developed that allows the 

demand system’s income and price responses to vary with income level.  The model’s income 

flexibility and marginal propensities to consume (MPCs) out of income are made functions of 

real income measured by the Divisia volume index.  The income flexibility is a factor of 

proportionality underlying all price effects and a change in this term impacts the sensitivity of all 

demands to prices.  Price effects are also made a function of the MPCs using a uniform substitute 

specification.  The model was used to analyze the conditional demands for a group of beverages.  

The findings indicate that changes in conditional total beverage expenditures result in various 

income and price elasticity changes across individual beverage products. 
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Impact of Income on Price and Income Responses 
in the Differential Demand System 

 
Introduction 

 
 The differential demand system is based on the fundamental matrix equation of consumer 

demand derived through differentiation of the first-order conditions of the utility maximization 

problem (Theil 1975; Barten, 1966). The basic differential demand system is known as the 

Rotterdam model and there are two parameterizations of this model— the absolute price version 

and relative price version.1  The relative price version of the Rotterdam model has been useful to 

impose various separability and preference-structure restrictions. To allow for increased 

flexibility in the income and price responses, as well as for specification of non-price, non-

income explanatory variables, various extensions of the differential model have been suggested 

including those that combine the features of the Rotterdam model and Almost Ideal Demand 

System (Barten, 1993) and those based on the Basmann, Tintner and Ichimura condition for the 

impacts of non-price, non-income variables (e.g., Theil, 1980b; Duffy; and Brown and Lee, 

1997, 2002). 

 In this study a further extension of the relative price version of the Rotterdam model is 

proposed to analyze the impact of income level on the price and income responses in the 

differential demand system.  In an empirical analysis, the demands for a group of beverage 

products are considered and the model specified is a conditional demand system.  The focus is  

on how total expenditures on the product group (conditional income) impacts the price and 

income coefficients  of the conditional demand equations for the group.   

 The relationship between income and the effects of prices on demands was earlier 

examined by Timmer in context to food policy.  Timmer argued that as real income increases, 
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the own-price elasticity of food tends to decline.  Timmer, as well as Theil, Chung and Seale, 

noted that own-price elasticities based on the linear expenditure system or quadratic expenditure 

system (Pollak and Wales) actually supported the opposite conclusion that price elasticities 

increase with income level.  This conclusion is apparently related to the restrictive nature of 

these demand models and exemplifies the importance of a flexible demand specification.  Theil, 

Chung and Seale developed and estimated a more flexible cross-country demand model and 

found that the own-price elasticity for food did tend to decrease as real income increased.  More 

recent analysis by Bouis supports this finding.  Given the conditional income variable for the 

beverage group considered in the present study differs from the broader definition of income 

used by Timmer and the other studies mentioned, there is no reason, however, to believe the 

previous findings that increases in income reduce the price responses should apply to the present 

study.  

Model 

 Consider the utility maximization problem confronting consumers—how to allocate 

income over available goods.  The solution is the affordable bundle of goods that yields the 

greatest utility.  Formally, this problem can be written as maximization of u = u(q) subject to p’q 

= x, where u is utility; p’= (p1 , . . . , pn) and q’ = (q1 , . . . , q n) are price and quantity vectors with 

pi  and qi being the price and quantity of good i, respectively; and x is total expenditures or 

income.  The first order conditions for this problem are Mu/Mq = λp and p’q = x, where λ is the 

Lagrange multiplier which is equal to Mu/Mx.  The solution to the first order conditions is the set 

of demand equations q = q(p, x), and the Lagrange multiplier equation λ = λ(p, x).  The 

Rotterdam demand model is an approximation of this set of demand equations and the model 

developed in this paper is an extension of this approximation.  Analyses by Barnett, Byron and 
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Mountain show that the Rotterdam approximation is comparable to other flexible functional 

forms such as the Almost Ideal Demand System. 

Rotterdam Model 

 Following Theil (1975, 1976, 1980a,b), the Rotterdam model can be written as 

(1) wi d(log qi ) = θi d(log Q) + 3 jπij d(log pj)    i=1 , . . , n, 

where wi = piqi/x is the budget share for good i ; θi = pi (Mqi/Mx) is the MPC for good i; d(log Q) = 

3wi d(log qi) is the Divisia volume index;2 and πij = (pi pj / x) sij is the Slutsky coefficient, with sij 

= (Mqi /Mpj + qj Mqi/Mx) being the i,jth element of the substitution matrix S.  The Rotterdam model 

can be obtained from the total differential of the first order conditions, as shown in Appendix A.  

 From equation (A7) in the Appendix, the Slutsky coefficient can be written as 

(2) πij = φ (θij - θi  θj),  

where θij = ( (pi pj λ )/(x φ ) ) uij, with uij being the i,jth element of the inverse of the Hessian 

matrix, [uij] = [M2u/Mqi Mqj]-1.  The parameter φ is a factor of proportionality, referred to as the 

income flexibility, and is equal to the reciprocal of the elasticity of the marginal utility of income 

with respect to income; φ is negative based on the assumption that U is negative definite for 

utility maximization (this result follows from the definition of Mλ /Mx in equation (A5), given  λ > 

0 and x>0). The term φ θij captures the specific substitution effect while the term -φ θi θj captures 

the general substitution effect (Theil, 1975).   

 The general restrictions on demand (1) are (e.g., Theil 1975, 1976, 1980a,b) 

(3a) adding up: 3 i θi  = 1;  3 i πij = 0;  

(3b) homogeneity: 3 jπij = 0;  

(3c) symmetry: πij = πji . 

 Based on restrictions (3), the restrictions on Slutsky coefficient specification (2) are 
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(4a) adding up: 3 i θij = θj; 3 j3 i θij = 1; 

(4b) homogeneity: 3j θij = θi; 

(4c) symmetry: θij = θji . 

 The θijs are referred to as normalized price coefficients since by restriction (4a) they add 

up to one. 

Extension 

 Consider making the income flexibility a function of income as suggested by Theil, and 

Theil, Chung and Seale.  Since the income flexibility is a factor of proportionality for all price 

effects, a change in this term results in a general change across all goods with respect to the 

sensitivity of demands to prices.  Adding subscript t for time, the income flexibility is specified 

as  

(5a) φt = φt-1 + α d(log Qt), 

where α is a coefficient to be estimated. 

 For the first observation (t=1), the parameter φt is 

(5b) φ1 = φ0 + α d(log Q1). 

 For the second observation, φ2 = φ1 + α d(log Q2), or substituting the right-hand side of  

result (5b) for φ1  

(5c) φ2 = φ0 + α (d(log Q1) +  d(log Q2)). 

 Successively substituting in this manner, the income flexibility at time t can be written as 

(5d) φt = φ0 + α dzt 

where dzt = 3h=1 to t d(log Qh). 

 The Divisia volume index indicates the period-to-period percentage change in real 

income (the weighted average percentage change in quantity demanded).  Thus the term dzt can 
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be viewed as a measure of the percentage difference between real income in period t and period 

0. 

 Substituting equation (5d) into equation (2) and then equation (2) into equation (1) yields 

the first extended demand specification considered here, i.e., 

(6a) wi d(log qi ) = θi d(log Q) + (φ0 + α dzt) 3 j (θij - θi  θj) d(log pj)   

or 

(6b) wi d(log qi ) = θi d(log Q) + (φ0 + α dzt)3 j θij [d(log pj) - 3 j θj d(log pj)],     

where the restriction 3j θij = θi has been used to eliminate θi in the price term.  The term 3 θj
 

d(log pj) is known as the Frisch price index (Theil, 1980a).  

 The other parameters of the model, the MPCs (θi) and normalized price coefficients (θij), 

might similarly be made functions of income.  An extended specification of the MPC is 

 (7a) θi t = θi t-1 + βi d(log Qt), 

where βi is a slope coefficient specific to good i and the subscript t here is for time (not to be 

confused with the second subscript used in the normalized price coefficients). 

 Following the income-flexibility progression from (5a) through (5d), the MPC can be 

written as 

 (7b) θit = θi0 + βi dzt, 

where 3i θi0  = 1 and  3i βi   = 0, based on restriction (3a). 

 A specification where the normalized price coefficients are functions of the varying 

MPCs (7b) is considered subsequently.  Thus, changes in the MPCs will result in both changes in 

the income and price effects along with the above effect of the income flexibility on the general 

sensitivity of demand to prices.  
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Relationships with the Almost Ideal Demand System  

 The basic relationship between the Rotterdam model and the Almost Ideal Demand 

System (AIDS) was noted by Deaton and Muellbauer (1980a) in their original paper on the 

AIDS.  Except for the dependent variable, the first difference form of the AIDS is approximately 

the same as the Rotterdam model—the two models have the same explanatory variables but the 

dependent variable for the differential AIDS is the change in the budget share (dwi) while that 

for the Rotterdam model is wid(logqi ).  This similarity has given rise to several extensions of the 

Rotterdam model.  These extensions combine the features of the basic Rotterdam and AIDS 

models making the MPC and Slutsky coefficients functions of the budget shares (Barten, 1993).  

 The AIDS can be considered a price extension of an Engel curve model proposed by 

Working and Leser.  This latter model can be written as   

(8) wi = αi  + βi log(x). 
 
The AIDS adds to equation (8) the price term 3j γij log pj and replaces the income term with 

log(x/p) where p is a price index, i.e., wi = αi +3j γij log pj+ βi log(x/p).  

 The income elasticities for the Working-Leser model and AIDS are3   

(9) ei = 1 + βi /x. 

 Given the MPC is equal to the budget share times the income elasticity—

(piqi/x)(Mqi/Mx)/(x/qi) = piMqi/Mx—the MPCs corresponding to the Working-Leser or AIDS 

models are found by multiplying equation (9) by wi, i.e., 

(10) θi = wi + βi. 

 Substitution of equation (10) into equation (1) results in the CBS model (Keller and van 

Driel; Barten, 1993).  This model has the income responses of the Working-Leser and AIDS 

models and the price responses of the Rotterdam model. 
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 Consider the differential of equation (10) with respect to the log of income, i.e., 

(11a) dθi = (Mwi/Mlog x) dlog(x) 

or, based on equation(8), 

(11b)  dθi = βi dlog(x). 

 When the AIDS specification of wi as a function of income and prices is used in the 

above derivations, we obtain 

(11c)  dθi = βi dlog(x/p), 

or 

(11d)  dθi = βi dlog(Q), 

where dlog(x/p) is approximated by the Rotterdam income variable dlog(Q) as suggested by 

Deaton and Muellbauer (1980a).  

 When the CBS-based equation (11d) is expressed in discrete differences with the lagged 

value of the MPC moved to the left-hand side of the equation, it is the same as the present 

paper’s MPC extension, equation (7a).  Thus, equation (7a) can be considered a reduced form 

specification of the MPC of the CBS model with respect to the income variable (the present 

MPC extension, however, is not a complete reduced form specification of the MPC of the CBS 

model, since the budget shares in the CBS specification of the MPC depend not only on income 

but prices and other variables).  This reduced form specification avoids an endogeneity problem 

inherent in differential demand models that use budget shares as explanatory variables.  When 

the CBS specification (10) is directly substituted into (1), the endogenous variable wi appears on 

the right-hand side of the resulting equation.  In the CBS model, this problem is handled by 

moving the term wi dlog(Q) to the left-hand side of the model.  However, for some similar 

extensions, this problem can not be handled so simply.  For example, below we consider a model 
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(uniform substitute model) which makes the normalized price coefficients a function of the 

MPCs.  If the CBS specifications of the MPCs are used in this model, the endogeneity problem 

can not be removed by rearranging the equations.  Brown and Lee (2000) handled this particular 

problem by using the lagged budget share in the MPC specification.  Equation (7a) is an 

alternative, direct specification that does not involve endogeneity per se.     

Restrictions on the Relative Price Version of the Rotterdam Model     

 The relative price verison of the Rotterdam model including the present extension (6b) 

can not be estimated unless some restriction is place on the θijs (Theil, 1971).  In the absolute 

price version, the MPC (θi) can be identified from the income variable or Divisia volume index, 

and the Slutsky coefficients (πij)can be identified from the price variables, provided the data used 

to estimate the model are rich enough.  Defining the matrices θ = [θi], π = [πij], and Θ = [ θij], 

equation (2) can be written as π = φ(Θ- θ θ’).   The problem is “can φ and Θ be determined given 

π and θ are known?”  The answer, in general, is no.  The solution for Θ, given π, θ and  φ is Θ = 

π/ φ +  θ θ’; when π and θ are known but  φ is unknown different values of φ can be used to 

generate different values of  Θ , but each set of estimates of φ and  Θ  would be consistent with 

the known π and θ.  However, when one constraint is put on Θ, in addition to those for 

homogeneity and symmetry, the parameter φ can be estimated (Theil, 1971).  In this study, the 

restrictions underlying the uniform substitute model are placed on Θ.  To examine alternative 

restrictions such as those resulting from separability, a reformation of the Rotterdam model is 

provided in Appendix B.  

Uniform Substitute Model 

 Consider the Rotterdam model specific substitution term θij specified in equation (2).  

This term equals the factor of proportionality, λ /(x φ), times pi pj u ij .  Given u ij is the i,j th 
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element of the inverse of the Hessian matrix, the term pi pj u ij is the i,jth element of the matrix [M2 

u /M(piqi )M(pjqj)]-1.   Thus, the inverse of pi pj uij is M2 u/M(piqi)M(pjqj), which indicates how the 

marginal utility of a dollar spent on good i changes in response to another dollar spent on good j.  

 Let G denote a group of goods—the different types of beverage products in this study. If 

the goods in this group were identical, the above marginal-utility changes for these goods would 

be the same, say k0; i.e., M2u/M(piqi)M(pjqj) = k0 , for i,j 0 G.  Instead of being exactly identical 

goods, assume the goods are nearly identical with respect to key attributes but unique with 

respect to some.  The nearly identical nature of goods i and j is assumed to result in generic type 

changes in the marginal utilities, as indicated by k0 (the more one beverage is consumed and 

thirst is satiated, the lower the marginal utility of all beverages), while the unique nature of the 

goods are assumed to result in product specific changes (ki) in the marginal utilities. These two 

concepts can be expressed by M2u/M(piqi )M(pjqj) = k 0 + Δ ij ki , where Δij is the Kronecker delta 

(Δij = 1 if i=j, otherwise Δij=0), and both k0 and ki are negative.  This specification of changes in 

marginal utilities underlies the uniform substitute model.     

 As shown in Appendix C, under the assumption that group G is block independent of 

other goods, the Slutsky coefficients for the uniform substitutes can be written as   
 
(12) θij  = (1/(1- kθG ) )θi (Δij - kθj ) ,        i, j 0 G, 

where k is a positive parameter reflecting the commonality of the uniform substitutes in effecting 

utility; and θG is the MPC for group G.  For further discussion of this derivation, see Theil 

(1980a); and Brown and Lee (1993).  

 Substituting (12) into (2), the Slutsky coefficients for uniform substitutes can be written 

as 

(13) πij = φ1 θi (Δij -φ2θj ),                  i, j 0 G, 
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where φ1 = φ/(1-k θG ) and φ2 = φ (1+ k /(1-k θG )/φ1. 

Conditional Rotterdam Model 

 Restrictions on consumer demand models, useful for empirical analysis, can be motivated 

through two- or multi-stage budgeting processes.  In a two-stage budgeting process, a consumer 

first decides the amounts of income to allocate to broad groups of commodities (first stage), and 

then the amount allocated to each group is further allocated to individual goods in the group.  

The second-stage demand equations for individual goods in a group are called conditional 

demands, being functions of the amount of income allocated to the group and the prices of the 

goods in the group.  In the Rotterdam model, two stage budgeting is consistent with the 

imposition of separability restrictions on Slutsky coefficients (Theil, 1976).  The conditional 

Rotterdam demand equations have the same general structure as the unconditional demands 

specified above, equations (1) and (6), except the real income variable or the Divisia volume 

index is based on income allocated to the group, the prices are those for the goods in the group, 

and the coefficients are conditional, being functions of the unconditional coefficients (e.g., Theil 

,1976; Brown and Lee, 2000).   

Conditional Uniform Substitute Model 

 To obtain a conditional demand system for goods in group G (beverage products), an 

expression for the aggregate demand for group G is first obtained by summing the unconditional 

demand equations (1) over the goods in G, i.e., 
 
(14) d(log QG ) =  θG d(log Q) + 3 jπG j d(log pj),  

where d(log QG ) = 3 i 0 G wi d(log qi ); θG = 3 i 0 G θi ; and πG j  = 3 i 0 G πij . 

  Rearranging (14), we find d(log Q) = [d(log QG ) - 3 jπG j d(log pj) ] / θG; and substituting 

this result into (1) we find 
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(15) wi d(log qi ) = θi
* d(log QG)  +  3 j πij

* d(log pj) , 

where θi
* = θi / θG ; and πij

* = πij - θi
* πG j .  

 At this point, the j subscript in equation (15) runs across all goods (j=1,…,n).  However, 

under appropriate conditions, this equation becomes a conditional demand system for group G, 

i.e., the j subscript only runs across goods in group G.  For block independence, the assumption 

underlying the uniform substitute specification, the Hessian matrix is group or block independent 

and M2 u /Mqi Mqj = 0 for i and j belonging to different groups.  Thus, for i and j in different groups, 

the inverse element u ij  = 0 and hence θij = 0.  This result means that πi, j  = -φ θi θj ,  i0 G, jó G.  

As a result πij
* = 0,  i0 G, jó G; i.e., πij

* =  - φ θi
 θj - (θi / θG) [- φ  3 i 0 G θi

 θj ] =  - φ θi
 θj + (θi / θG 

) φθG
 θj = 0.  Hence, under block independence, equation (15) is the conditional demand for a 

good in group G. 

 For uniform substitute specification (13), the conditional Slutsky coefficient  is  

(16) πij
* = φ1 θi (Δij -φ2θj ) - θi

*3 i 0 G φ1 θi (Δij -φ2θj ) 

       = φ*θi
* (Δij -θj

*), 

 where φ*  = (φ θG)/(1-k θG ).  The parameter φ* is negative given φ is negative and 0 < θG < 1. 

 Hence, for uniform substitutes, conditional demand equation (15) can be written as 

(17) wid(log qi) = θi
*d(log QG) + 3 j 0 G φ*θi

*(Δij -θj
*)(d(log pj), 

          = θi
*d(log QG) + φ*θi

*(d(log pi) - 3 j 0 G θj
*d(log pj)). 

The term 3 i 0 Gθj
*d(log pj) is known as the Frisch price index for group G (Theil, 1975, 1980a).  

  By dividing (17) by wG = 3i0G wi, we obtain an alternative conditional demand 

specification,  

(18) wi
*d(log qi) = θi

*d(log QG
*) + φ**θi

*(d(log pi) - 3 j 0 G θj
*d(log pj)), 
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where wi
* = wi/wG ; d(log QG

*) = 3 i 0 G wi
*d(log qi), a conditional Divisia volume index; and φ** 

= φ*/wG  = (φ θG)/(1-k θG )/wG. 

 In equation (18), we make the factor of proportionality φ** and the conditional MPCs 

functions of the conditional income variable, d(log QG
*); i.e., following equations (5d) and (7b),   

φt
**  = φ0

**  + α** dzt
*, where dzt

* = 3h=1 to t d(log Qh
*); and  θi t

* = θi 0
*

 + βi
* dzt

*.  Note that the 

term k embedded in φt
** provides an additional motivation for the varying income-flexibility 

specification. Namely, dφ**  = (φ** 2wG/φ)dk, so that letting dk = αd(log QG
*

t)φ/(φ** 2wG), dφ** = 

αd(log QG
*

 t) or φ**
t = φ**

t-1 + α d(log Q*
t).  That is, the underlying substitution between uniform 

products indicated by k may depend on the level of income spent on the group.   

Application 

 Conditional demands for beverages were studied using ACNielsen data based on retail 

scanner sales for grocery stores, drug stores, mass merchandisers along with an estimate of Wal-

Mart sales based on a consumer panel.5   Twelve beverages were included in the model: 1) 100% 

orange juice (OJ), 2) 100% grapefruit juice (GJ), 3) 100% apple juice (AJ), 4) 100% grape juice 

(GRJ), 5) remaining 100% juice (RJ), 6) vegetable juice (VJ), 7) less-than -100% juice drinks 

(JD), 8) carbonated water (CW), 9) water (W),10) diet soda (DS), 11) regular soda (RS), and 12) 

tea (T).  Data for dairy and non-liquid beverage products were not provided. 

 The data are weekly running from week ending July 27, 2002 through week ending 

August 13, 2005 (160 weekly observations).  The raw data were comprised of gallon and dollar 

sales.  In our application, quantity demanded was measured by per capita gallon sales which was 

obtained by dividing raw gallon sales by the U.S. population; prices were obtained by dividing 

dollar sales by gallon sales.  Sample mean per capita gallon sales, prices and budget shares are 

shown in Table 1.  The infinitely small changes in quantities and prices in the differential models 
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were measured by discrete first differences (Theil, 1975, 1976).  To account for seasonality, first 

differences of sine and cosine variables were included—sine(2πt/52) and cosine(2πt/52) where π 

= 3.14..., observation t = 1, ..., 160 and 52 is the number of weeks in a year .  Average budget 

share values underlying the differencing were used in constructing the model variables---w*
i,t 

was replaced by (w*
i,t + w*

i,t-1)/2. 

 The demand specifications studied are conditional on expenditure or income allocated to 

the 12 beverage categories.  Income allocated to the beverage group is measured by the 

conditional Divisia volume index which was treated as independent of the error term added to 

each beverage demand equation for estimation, based on the theory of rational random behavior 

(Theil, 1980a; Brown, Behr and Lee).  As the data add up by construction---the left-hand-side 

variables in model (18) sum over i to the conditional Divisia volume index---the error covariance 

matrix was singular and an arbitrary equation was excluded  (the model estimates are invariant to 

the equation deleted as shown by Barten, 1969).  The parameters of the excluded equation can be 

obtained from the adding-up conditions or by re-estimating the model omitting a different 

equation.  The equation error terms were assumed to be contemporaneously correlated and the 

full information maximum likelihood procedure (TSP) was used to estimate the system of 

equations.  

 The estimates of uniform substitute model (18) with varying income flexibility and MPCs 

are shown in Table 2.  The individual equation r-squares ranged from .47 (grapefruit juice and 

water) to .96 (regular soda).  These measures, however, are not generally good indicators of 

goodness of fit, given the equation-system estimation method used (Bewley).  An alternative 

measure is the system r-square (Buse; Bewley) which was .994.  Both the constant and slope 

coefficient estimates for the income flexibility and 18 out of the 24 (constant and slope) 
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coefficients estimates for the MPCs  were statistically significant at the α = .10 or smaller level.  

Of the 24 seasonality coefficients, 13 were statistically significant.     

 The constant and slope coefficients for the income flexibility are both negative, implying 

that the conditional beverage demands are more sensitive to price as income increases.  The 

MPC constants are all positive while the MPC slopes are negative, expect for juice drinks, water 

and tea, indicating that, except for these latter three beverages, the conditional MPCs decrease as 

income increases; for juice drinks, water and tea, the opposite occurs, as income increases, their 

MPCs increase.  Based on the MPC constant and slope estimates, the estimated value of the 

MPC for each beverage across the sample was in the zero-one interval.  The income flexibility is 

also negative over the sample observations which, along with the MPC estimates, indicate that 

the estimated demand system satisfies the negativity condition of demand. 

 Conditional income (ei) and price elasticity estimates (eij), calculated at sample mean 

budget share values, are shown in Table 3 ( ei = (θi0
*

 + βi
* dzt

*)/w*
it  and eij  = (φ0

**  + α** dzt
*)(θi0

*
 

+ βi
* dzt

*)(Δij - (θj0
*

 + βj
* dzt

* ))/w*
it - w*

jt ei ).  Corresponding standard error estimates are shown 

in Appendix D. Regular and diet soda have the highest income elasticity at 1.28 and 1.16, 

respectively; the income elasticities for the remaining beverages range from .64 for orange juice 

to .97 for apple juice.  The own-price elasticities ranged from -1.37 and -1.47 for orange juice 

and carbonated water, respectively, to -2.25, -2.09 and -2.07 for diet soda, apple juice and regular 

soda, respectively.  All the cross-price elasticity estimates are positive, reflecting substitution, 

although some are relatively small.   

 The impacts of income on the demand elasticities are illustrated in Table 4.  The income 

and own-price elasticities, calculated at the minimum, mean and maximum values of the income 

variable dzt
*, are shown.  The largest changes in the income elasticities are for water, apple juice, 
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vegetable juice and grape juice, while the smallest changes are for diet soda, regular soda, orange 

juice and grapefruit juice.  For water and diet soda, the income elasticities at the maximum 

income level are 154% greater and 10% less than the corresponding values at the minimum 

income level, respectively.  All income elasticities decrease with income except those for juice 

drinks, water and tea which increase, following the directional changes mentioned above with 

respect to the individual beverage MPC changes. 

 The largest changes in the own-prices elasticities are for water, tea and apple juice, while 

the smallest changes are for grapefruit juice, remaining juice and orange juice.  The water and tea 

own-price elasticities at the maximum income level are 169% and 133% greater in absolute 

value, respectively, than the corresponding elasticities at the minimum income level.  The 

grapefruit juice own-price elasticity at the maximum income level is only 1% larger than its 

value at the minimum income level.  The own-price elasticities for orange juice, grapefruit juice, 

juice drinks, water, diet soda, regular soda and tea increase with income, while those for apple 

juice, grape juice, remaining fruit juice, vegetable juice and carbonated water decrease with 

income.  The various impacts of income on the demand elasticities may be of interest to analysts, 

marketers and planners in the beverage industry, monitoring and trying to understand the 

underlying causes for volume changes in the market. 

 Given the conditional income variable for the beverage group differs from the broader 

definition of income used by Timmer and the other studies mentioned earlier, as well as the array 

of beverages considered, it may not be surprising that the present conditional demand findings 

for some of the beverages differ from the previous unconditional findings that increases in 

income reduce the price responses.  Conditional demands only partially describe consumer 

behavior; determination of conditional income is required for a complete description.  Changes 
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in conditional income for the beverage group may be related to a number of variables, including 

beverage prices, prices of goods outside the beverage category and total consumer expenditures 

across all goods, as well as various preference variables such as consumer demographics and 

advertising.  The impact of the conditional income variable on the price and income coefficients 

may thus indirectly reflect the impacts of such other factors through their impacts on conditional 

income.  Regardless the underlying cause for changes in conditional income, it may still be 

useful to know how this variable impacts the beverage price and income responses.  Data 

available to analyze and monitor sales may be limited to that for a product group, as in this study, 

and knowledge of whether the impacts of prices and total group expenditures on the product 

demands are weaker or stronger as total group expenditures change may be important to product 

category decision makers. 

Conclusions 

 This paper extends the Rotterdam model to analyze the impact of income level on the 

price and income responses of demand.  Previous extensions proposed by Barten (1993), 

including the synthetic model which combines features of the Rotterdam and AIDS, have made 

the Rotterdam model income and price coefficients functions of the budget shares of the goods.  

The budget shares, however, are endogenous, and their use as explanatory variables, in general 

results in an endogeneity problem, although for certain specifications (CBS) the problem can be 

handled by rearrangement of model terms.  The present extension here is related to those 

suggested by Barten (1993) but avoids the latter endogeneity problems in that the income and 

price coefficients are specified as functions of changes in income level, reflecting the changes in 

the budgets shares due to this factor.  Additional model flexibility is provided by also specifying 

the income flexibility underlying the price coefficients as a function of the change in income.  To 
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estimate the income flexibility, however, requires some restriction(s) on the normalized price 

coefficients of the Rotterdam model.  In the present study, uniform-substitute-model restrictions 

are imposed.     

 The empirical analysis focuses on the conditional demands for beverages.  The results 

indicate that income level does impact the MPCs, income flexibility and Slutsky coefficients.  

The range of conditional income and price elasticities, based on the income level extremes of the 

sample, is relatively large.  Such findings may be of interest for understanding changes over time 

in demands for products.  The increased flexibility of the varying-coefficient specification of the 

uniform substitute model may also be of interest for analyzing other product groups dominated 

by substitution, and when the uniform substitute model is not applicable, the varying MPC and 

income flexibility specifications can still be applied provided appropriate restrictions on the 

normalized price coefficients can be made for identification. 
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Footnotes 

 1 The absolute price verion can also be derived from the difference version of the double 

log model by imposing the basic properties of demand— adding up, homogeneity of zero in 

prices and income, and symmetry (e.g., Deaton and Muellbauer, 1980b).  

 2 The Divisia volume index is a close approximation of d(log x)-3wi d(log qi) in (A6) in 

Appendix A, as shown by Theil, 1971;  d(log Q) is used instead of d(log x)-3wi d(log qi) to 

insure adding-up. 

 3 Given  wi = piqi /x, log (wi) = log(pi) + log(qi) - log(x), and the Mlog(wi)/Mlog (x) =   

Mlog(qi )/Mlog (x) - 1.  Based on equation (8), Mlog(wi)/Mlog (x)=  βi /wi; and hence ei = 

Mlog(qi)/Mlog (x) = 1+ βi / wi. 

 4 Additional stages in allocating income can be added resulting in a multi-stage budgeting 

process. 

 5 Data are for U.S. grocery stores doing $2 million and greater annual sales, Wal-Mart 

stores excluding Sam’s Clubs, mass-merchandisers, and drug stores doing $1 million and greater 

annual sales. 
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Appendix A 

 To obtain the Rotterdam model, totally differentiate the first order conditions of the 

utility maximization problem to find 

(A1) Udq = p dλ + λ dp  

(A2) p’dq = dx -q’dp, 

where U = [ M2u/MqiMqj] , the Hessian matrix.  This differential is known as the fundamental 

matrix equation of consumer demand theory (Barten, 1977; Phlips). 

  Next, multiply (A1) by U-1 to obtain  

(A3) dq = U-1 p dλ  + λ U-1 dp. 

Result (A3) can be viewed as a partial demand system with the second term on the right-hand  

side (λU-1) being a matrix whose elements are known as specific price effects that show the  

effects of prices, given income compensations to hold both real income and the marginal utility 

of income (λ) constant (e.g., Theil, 1975, 1976). The uniform substitute model is based on the 

structure λU-1 . 

 To obtain a total demand relationship, solve for dλ by multiplying (A3) by p’, 

substituting the right-hand side of (A2) for p’ dq, and rearranging terms to find 

(A4) dλ= [(dx -q’dp )  - λ p’ U-1 dp]/p’ U-1 p . 

 Substituting (A4) into (A3), we obtain the total effects of prices and income on demand--

-Mq/Mp’, Mq/Mx.  We express these results below as Hicksian or income-compensated demand 

equations, i.e.,   

(A5) dq = U-1 p [ [(dx -q’dp ) - λ p’ U-1 dp ]/p’ U-1 p  ]+ λ U-1 dp , 

      = Mq/Mx (dx -q’dp) + S dp , 
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where Mq/Mx= U -1 p / p’ U-1 p, Mλ/Mx= 1 / p’ U-1 p,  and S = λU-1  - (Mq/Mx) (Mq/Mx)’ (λ/Mλ/Mx).  

The term S is the price substitution matrix---S = Mq/Mp’ + (Mq/Mx) q’.  The term (dx -q’dp ) is real 

income.  

 Finally, multiply both sides of equation (A5) by  p̂  (symbol ^ over a vector indicates a 

diagonal matrix; off diagonal elements equal zero; diagonal elements equal the vector in 

question) and 1/x,  pre-multiply dq by the identity matrix in the form of q̂ q̂-1, post-multiply  q’ 

and S by p̂  p̂-1 to obtain the Rotterdam model: 

(A6)  p̂ q̂/x q̂-1 dq  =  p̂ Mq/Mx (dx/x  -q’p̂/x  p̂-1 dp ) +( p̂ S p̂/x ) ( p̂ -1 dp). 

 The term p̂ S p̂/x is known as Slutsky matrix, denoted by  π.  Given the definition of S in 

(A5), the Slutsky matrix can be written as   

(A7) π = φ [(λ/φ x) p̂ U-1 p̂ ] - p̂ (Mq/Mx)(Mq/Mx)’p̂, 

where φ= (Mlog λ /M log x)-1 .  

  In equation (1), Model (A6) is expressed more conveniently in terms of log changes, 

using the relationship dz/z  = d log (z) for variable z.  
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Appendix B 

 Consider the price term without the income flexibility in equation (6b), i.e., 3 j θij [d(log 

pj) - 3 j θj d(log pj)].  Breaking out on the own-price component, this term can be written as   
 
(B1) θii [d(log pi) - 3 j θj d(log pj)] + 3 j…i θij [d(log pj) - 3 j θj d(log pj)].      

 Based on restriction (4b),  θii  =  θi - 3j …i θij.  Substituting the right-hand side of this result 

for the first parameter θii of equation (B1) yields 

(B2) [θi - 3j …i θij][d(log pi) - 3 j θj d(log pj)] + 3 j…i (θij [d(log pj) - 3 j θj d(log pj)], 

or, simplifying, 

(B3) θi[d(log pi) - 3 j θj d(log pj)] + 3 j…i θij [d(log pj)  - d(log pi)].         

 Substituting result (B3) for 3 j θij [d(log pj) - 3 j θj d(log pj)] in equation (6b) yields 

(B4) wi d(log qi ) = θi d(log Q) + (φ0 + α dzt) θi[d(log pi) - 3 j θj d(log pj)] 

          + (φ0 + α dzt) 3 j…i θij [d(log pj)  - d(log pi)].     

 Equation (B4) is in a convenient form to impose separability restrictions on the cross-price 

parameters θij.  For example, if good i is strongly separable from the other goods θij = 0 for j…i 

(Theil, 1971, 1976).  Likewise, if goods i and j belong to different weakly separable groups, say 

groups A and B, then θij = φAB θi θj (Theil, 1976), where φAB is another factor of proportionality.  
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Appendix C 

 Consider the partition of goods into groups 1, ..., G , ... , M .   Under block independence, 

the utility function can be written as u = f1
 (Q1) + ... + f J (QG ) + ... fM (QM ), where  fG is a 

subgroup utility function  for group G; and QG is a vector of quantities for goods in group G.  In 

this case, the Hessian matrix U can be written 

(C1) U= diag(U1 , ... , UG , ... ,UM), 

where diag is the  bock diagonal operator---diagonal matrices are UN , N=1, ... , M; off diagonal 

elements are zero.  The matrix UN  =  [u 
ij ] = [M 2 u /Mqi M qj]  =  [M 2 fN /Mqi M qj] , i, j 0 N. 

 From (2) and (A7), the specific substitution matrix of the Rotterdam model is the factor of 

proportionality φ times the matrix [θij ] = (λ/φ x) p̂ U-1 p̂ , which under (C1), can be written as 

(C2) [θij ] =  (λ/φ x) [p̂ [diag(U1 
-1

 , ... , UJ
-1, ... UM

-1 ) ] p̂ ], 

where p = ( P1 , ... PG , ... , PM ), with PN being the price vector for goods in group N.  

 Let the goods in group G be uniform substitutes.  From (C2), note that the specific 

substitution terms are zero for goods from different groups.  For goods from the same group, the 

specific substitution terms are φ times 

(C3) [θij ] = (λ/φ x) [ p̂G UG
-1

 p̂G]. 

 The inverse of (C3) is  

(C4) [θij ] = (φ x/λ) p̂G
-1 UG p̂G

-1 

or, focusing on individual matrix elements 

(C5) θij = (φ x/λ) [M 2 u / M (pi qi ) M (pj qj ) ] ,  i, j 0 G, 

where the superscripts indicate inverse elements.  Result (C5) shows the effect of another dollar 

spent on good j on the marginal utility of a dollar spent on good i, multiplied times a factor of 

proportionality (φ x/λ). 
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 Theil’s uniform substitute model assumes that all cross effects in (C5) are the same given 

similarity of goods, while own effects are unique.  Formally, this assumption can be written as 

(C6) [θij ] = â-1   + k ι ι ‘,       i,j 0 G,  

where a is a vector of positive elements, k is a positive number and, ι is unit vector (column) and ‘ 

is the transpose operator.  Since φ is negative, (C6) indicates that marginal utilities decrease with 

increased consumption. The ith element of the vector a equals ki  (φ x/λ), and  k = k0  (φ x/λ). 

 The inverse of (C6) is 

(C7a) [θij ] = â - (k/(1+k ι ‘â ι )) â ι ι ‘â,  

or     

(C7b)  [θij ] = â - (k/(1+k ι ‘a )) a a‘        i,j 0 G. 

 Given restrictions (4) and the assumption of blockwise independence, 3  j 0G θ ij = θ i for 

i0G; and 3  i0G  θ ij = θ j for j 0G,.  Hence, post multiplying (C7) by ι  (summing columns ) yields 

(C8a) θ = a (1- (k ι ‘ a / (1+k ι ‘a )) , 

or 

(C8b)   a = θ (1+k ι ‘a ), 

where θ = [θi ] , i 0 G.   

 Also, pre multiplying (C8b) by ι’ yields 

(C9a)  ι ‘a = θG (1+k ι ‘a ), 

or, after solving (C9a) for ι ‘a, multiplying the result through by k, and adding one, we find  

(C9b)  1 + k ι ‘a = 1/(1 - k θG ), 

where θG = ι‘θ  is the marginal propensity for group G. 

 Hence, result (C8b) can be written as 

(C10)   a = θ / (1 - k θG ), 
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 Substituting (C10) into (C7) gives 

(C11) [θij ] =  /(1 - k θG ) - k /(1 - k θG) θ θ ‘    i,j 0 G. 
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Table 1.  Descriptive Statistics of Beverage Sample, 07/27/02 Through 08/13/05 

Gallons/Week Price: $/Gallon Budget Share Beverage Mean Std Dev Mean Std Dev Mean Std Dev
Orangea 0.052 0.004 4.35 0.06 10.2% 1.2% 
Grapefruita 0.002 0.000 5.04 0.44 0.5% 0.1% 
Applea 0.017 0.002 3.50 0.10 2.6% 0.5% 
Grapea 0.005 0.001 5.58 0.10 1.3% 0.2% 
Remaining Fruit Juicea 0.014 0.001 5.61 0.22 3.5% 0.3% 
Vegetableb 0.007 0.001 6.27 0.28 1.9% 0.2% 
Juice Drinksb 0.108 0.015 3.55 0.11 16.9% 1.0% 
Carbonated Water 0.016 0.002 2.59 0.05 1.8% 0.1% 
Water 0.157 0.030 1.58 0.04 10.9% 1.6% 
Diet Soda 0.145 0.013 2.51 0.11 16.2% 1.0% 
Regular Soda 0.289 0.032 2.48 0.11 31.8% 1.8% 
Tea 0.016 0.004 3.60 0.11 2.5% 0.4% 
 Mean Std Dev Minimum Maximum   
Sum of Divisia Volume Indexc -0.0242 0.0677 -0.1732 0.2028   
 

a 100% juice. 
b Less than 100% juice. 
c Sum of the weekly values of the Divisia volume index over the sample. 
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Table 2.  Full Information Maximum Likelihood Estimates of the Uniform Substitute Model with Varying Income Flexibility and 
MPCs 

MPC Constant MPC Slope Sine Cosine 
Beverage Estimate Standard 

Error Estimate Standard 
Error Estimate Standard 

Error Estimate Standard 
Error 

Orangea 0.0650 0.0044 -0.0199 0.0527 0.0109 0.0018 -0.0026 0.0018 
Grapefruita 0.0037 0.0002 -0.0016 0.0025 0.0002 0.0001 -0.0003 0.0001 
Applea 0.0230 0.0012 -0.0943 0.0151 0.0053 0.0008 0.0005 0.0008 
Grapea 0.0107 0.0007 -0.0232 0.0098 0.0014 0.0005 -0.0015 0.0005 
Remaining Fruit Juicea 0.0290 0.0013 -0.0145 0.0154 0.0025 0.0008 -0.0015 0.0008 
Vegetableb 0.0156 0.0009 -0.0389 0.0130 0.0015 0.0007 -0.0004 0.0007 
Juice Drinksb 0.1254 0.0062 0.1122 0.0712 -0.0111 0.0042 0.0017 0.0041 
Carbonated Water 0.0119 0.0006 -0.0072 0.0082 -0.0012 0.0003 -0.0004 0.0003 
Water 0.1064 0.0074 0.2548 0.0788 -0.0168 0.0043 0.0041 0.0043 
Diet Soda 0.1868 0.0036 -0.0513 0.0382 0.0044 0.0032 -0.0035 0.0032 
Regular Soda 0.4043 0.0069 -0.1492 0.0722 0.0075 0.0062 0.0021 0.0062 
Tea 0.0182 0.0015 0.0331 0.0161 -0.0047 0.0013 0.0017 0.0013 

Constant Slope  

Estimate Standard 
Error Estimate Standard 

Error 

    

Income Flexibility -2.20764 0.048156 -0.996687 0.547078     
 

a 100% juice. 
b Less than 100% juice. 
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Table 3.  Uniform-Substitute Model Elasticity Estimates at Sample Meansa 

Price 

Beverage Income Orange Grape- 
fruit Apple Grape 

Rem. 
Fruit 
Juice 

Vegetable Juice 
Drinks 

Carb. 
Water Water Diet 

Soda 
Regular 

Soda Tea 

Orangeb 0.641 -1.373 0.002 0.019 0.008 0.018 0.011 0.063 0.005 0.070 0.159 0.052 0.004 
Grapefruitb 0.780 0.032 -1.700 0.023 0.009 0.022 0.014 0.077 0.007 0.085 0.194 0.447 0.010 
Appleb 0.971 0.040 0.003 -2.092 0.012 0.028 0.017 0.096 0.008 0.106 0.242 0.556 0.013 
Grapeb 0.894 0.036 0.003 0.026 -1.940 0.026 0.016 0.089 0.008 0.098 0.222 0.512 0.012 
Rem. Fruit Juiceb 0.828 0.034 0.003 0.024 0.010 -1.784 0.015 0.082 0.007 0.091 0.206 0.474 0.011 
Vegetablec 0.888 0.036 0.003 0.026 0.011 0.025 -1.924 0.088 0.008 0.097 0.221 0.509 0.012 
Juice Drinksc 0.727 0.030 0.002 0.021 0.009 0.021 0.013 -1.515 0.006 0.080 0.181 0.416 0.010 
Carb. Water 0.675 0.028 0.002 0.020 0.008 0.019 0.012 0.067 -1.469 0.074 0.168 0.387 0.009 
Water 0.918 0.037 0.003 0.027 0.011 0.026 0.016 0.091 0.008 -1.903 0.228 0.526 0.012 
Diet Soda 1.161 0.047 0.004 0.034 0.014 0.033 0.020 0.115 0.010 0.127 -2.247 0.666 0.015 
Regular Soda 1.284 0.052 0.004 0.038 0.015 0.037 0.023 0.127 0.011 0.141 0.319 -2.068 0.017 
Tea 0.701 0.029 0.002 0.020 0.008 0.020 0.012 0.069 0.006 0.077 0.174 0.402 -1.521 
 

a Price elasticities are uncompensated and conditional. 
b 100% juice. 
c Less than 100% juice. 
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Table 4.  Conditional Income and Uncompensated Own-Price Elasticity Estimates At Selected 
Divisia Volume Indexes 

Income Elasticity Own-Price Elasticity Beverages Mina Meanb Maxc Mina Meanb Maxc 

Oranged 0.670 0.641 0.597 -1.338 -1.373 -1.411 
Grapefruitd 0.828 0.780 0.707 -1.682 -1.700 -1.701 
Appled 1.510 0.971 0.150 -2.992 -2.092 -0.363 
Graped 1.166 0.894 0.478 -2.353 -1.940 -1.151 
Rem. Fruit Juiced 0.889 0.828 0.735 -1.783 -1.784 -1.751 
Vegetable5 1.199 0.888 0.415 -2.408 -1.924 -1.000 
Juice Drinks5 0.628 0.727 0.878 -1.248 -1.515 -1.950 
Carb. Water 0.735 0.675 0.584 -1.489 -1.469 -1.403 
Water 0.570 0.918 1.447 -1.150 -1.903 -3.094 
Diet Soda 1.209 1.161 1.089 -2.174 -2.247 -2.339 
Regular Soda 1.354 1.284 1.178 -2.001 -2.068 -2.151 
Tea 0.502 0.701 1.004 -1.021 -1.521 -2.384 
 

a Calculated at the minimum value of the Divisia volume index sum variable. 
b Calculated at the mean value of the Divisia volume index sum variable. 
c Calculated at the maximum value of the Divisia volume index sum variable. 
d 100% juice. 
e Less than 100% juice. 
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Table Appendix D.  Uniform-Substitute Model Standard Errors for Elasticity Estimates at Sample Means for Table 3a 

Price 

Beverage Income Orange Grape- 
fruit Apple Grape 

Rem. 
Fruit 
Juice 

Vegetable Juice 
Drinks 

Carb. 
Water Water Diet 

Soda 
Regular 

Soda Tea 

Orangeb 0.0366 0.0769 0.0003 0.0017 0.0010 0.0020 0.0013 0.0100 0.0009 0.0109 0.0100 0.0109 0.0005 
Grapefruitb 0.0387 0.0068 0.0818 0.0020 0.0012 0.0024 0.0016 0.0118 0.0011 0.0138 0.0109 0.0234 0.0028 
Appleb 0.0408 0.0082 0.0004 0.0800 0.0015 0.0026 0.0018 0.0140 0.0013 0.0163 0.0117 0.0268 0.0035 
Grapeb 0.0538 0.0079 0.0004 0.0025 0.1138 0.0028 0.0019 0.0137 0.0013 0.0158 0.0146 0.0325 0.0032 
Rem. Fruit Juiceb 0.0325 0.0072 0.0004 0.0020 0.0013 0.0668 0.0016 0.0120 0.0011 0.0140 0.0101 0.0222 0.0030 
Vegetablec 0.0451 0.0077 0.0004 0.0023 0.0014 0.0025 0.0924 0.0129 0.0012 0.0155 0.0125 0.0277 0.0032 
Juice Drinksc 0.0351 0.0064 0.0003 0.0018 0.0011 0.0020 0.0014 0.0742 0.0010 0.0132 0.0096 0.0232 0.0027 
Carb. Water 0.0338 0.0059 0.0003 0.0018 0.0011 0.0019 0.0013 0.0104 0.0733 0.0121 0.0095 0.0212 0.0025 
Water 0.0649 0.0079 0.0004 0.0027 0.0016 0.0029 0.0020 0.0156 0.0014 0.1358 0.0178 0.0395 0.0034 
Diet Soda 0.0208 0.0098 0.0005 0.0026 0.0017 0.0029 0.0021 0.0162 0.0015 0.0192 0.0430 0.0278 0.0042 
Regular Soda 0.0213 0.0109 0.0005 0.0028 0.0019 0.0032 0.0023 0.0183 0.0017 0.0210 0.0138 0.0345 0.0046 
Tea 0.0649 0.0064 0.0003 0.0024 0.0013 0.0025 0.0016 0.0121 0.0011 0.0137 0.0177 0.0384 0.1411 
 

a Price elasticities are uncompensated and conditional. 
b 100% juice. 
c Less than 100% juice. 

 




