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ABSTRACT 
 

Shrimp aquaculture in Tamil Nadu plays a critical role in supporting livelihoods and contributing to 
exports but is increasingly vulnerable to climatic variability. This study investigates how seasonal 
precipitation, extreme temperatures, and lagged production impact shrimp yields in four key 
districts—Tiruvallur, Cuddalore, Thanjavur, and Nagapattinam—over the period 2015–2023. Using 
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statistical models, we identify major trends and district-specific sensitivities. For instance, excessive 
summer and winter precipitation coupled with high maximum temperatures reduced yields in 
Tiruvallur, whereas warmer summer nights boosted production. In Cuddalore, yields were 
hampered by seasonal precipitation, elevated minimum temperatures, and the lingering effects of 
previous yields. Thanjavur’s production suffered from extreme temperatures and winter rainfall but 
benefited from milder winter nights. Nagapattinam showed unique dynamics, where winter 
precipitation and summer maximum temperatures enhanced yields, while summer rainfall and 
lagged production had adverse effects. These findings highlight the need for tailored, district-
specific strategies to manage climate risks and sustain shrimp farming. For example, adaptive 
measures such as optimizing water management or selecting climate-resilient shrimp varieties 
could mitigate negative impacts. Future research could integrate factors like water quality and 
disease outbreaks to strengthen the sector’s resilience further. 
 

 

Keywords: Climate change; Shrimp farming; transfer function model; temperature; precipitation. 
 

1. INTRODUCTION 
 

Aquaculture is a cornerstone of global food 
security and economic growth, with shrimp 
farming recognized as one of the fastest-growing 
and most lucrative sectors (FAO, 2020; FAO, 
2016). In India, shrimp aquaculture significantly 
contributes to seafood exports and sustains the 
livelihoods of millions, particularly in coastal 
states like Tamil Nadu (Globefish, 2022; Singh et 
al., 2021). Tamil Nadu's favorable geographic 
and climatic conditions make it a major hub for 
shrimp production; however, the sector faces 
mounting challenges due to climate variability, 
which disrupts production systems and impacts 
yields (Do & Ho, 2022, FAO, 2014; Shameem et 
al., 2015). 
 

Key climatic factors such as precipitation and 
temperature are critical to shrimp farming 
success (Kais & Islam, 2019; Krishnan & Babu, 
2022). Excessive rainfall can disrupt pond salinity 
and nutrient balance, while temperature 
extremes stress shrimp, reducing growth rates 
and increasing vulnerability to disease (Ahmed & 
Diana, 2015; Islam et al., 2019). Additionally, 
lagged effects from previous production cycles 
complicate yield predictions (Devlin et al., 2017; 
Montoya et al., 1999). Despite the recognized 
importance of these dynamics, limited research 
has quantitatively explored the specific impacts 
of climate on shrimp yields at a district level, 
particularly in Tamil Nadu, where localized 
climatic and production variations demand 
tailored analyses. 
 

This study addresses these gaps by examining 
the effects of key climatic variables—seasonal 
precipitation and temperature extremes—on 
shrimp yields across four districts in Tamil Nadu: 
Thiruvallur, Cuddalore, Thanjavur, and 
Nagapattinam. Using ARIMA-based regression 
models, which are well-suited for capturing the 

temporal and dynamic relationships between 
climatic factors and production outcomes, we 
provide a detailed analysis of how these factors 
influence shrimp production. These models 
incorporate both lagged and immediate effects, 
offering robust predictions of climate-yield 
relationships. The findings of this study aim to 
equip policymakers and aquaculture practitioners 
with actionable insights to develop district-
specific strategies for mitigating climate risks. By 
enhancing the resilience of shrimp farming 
systems to climatic variability, this research 
contributes to the broader goal of sustaining 
Tamil Nadu’s aquaculture industry in the face of 
ongoing and future climate challenges. 
 

2. MATERIAL AND METHODS 
 

2.1 Data Collection 
 

Shrimp production data for Whiteleg shrimp 
across four districts of Tamil Nadu (Thiruvallur, 
Cuddalore, Thanjavur, and Nagapattinam) were 
obtained from the Marine Products Export 
Development Authority (2015–2023). Climatic 
data on temperature and precipitation for the 
same period were sourced from the India 
Meteorological Department. To ensure temporal 
alignment, all data were structured as time 
series, with each observation representing an 
annual time point. This alignment facilitated the 
analysis of lagged effects and temporal 
dependencies between climate variables and 
shrimp production. Missing data, where present, 
were addressed using interpolation methods to 
ensure consistency across the dataset. 
 

2.2 Transfer Function Model (ARIMA) 
Framework 

 

2.2.1 Framework  
 

The Transfer Function Model (TFM) extends the 
ARIMA model to incorporate exogenous 
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(external) variables, thereby linking time series 
dynamics with external predictors—climatic 
factors. The structure of the ARIMA model 
includes three main components: Autoregressive 
(AR) component models the influence of past 
values of the dependent variable on its current 
production. It captures the temporal dependence 
within the shrimp production series. The 
Integrated (I) component accounts for the 
differencing necessary to achieve stationarity in 
the data, ensuring that the series is free of trends 
and remains stable over time. Moving Average 
(MA) component models the relationship 
between past forecast errors and the current 
value of the dependent variable, accounting for 
noise in the data. 
 
In the TFM, the exogenous climate variables 
(precipitation and temperature) are integrated 
into the model, influencing shrimp production 
alongside the endogenous time series 
components. The ARIMA and transfer function 
modeling frameworks are grounded in 
established methodologies (Box et al., 2008; 
Peter & Silvia, 2012), providing a robust basis for 
analyzing the interplay between climatic 
variability and shrimp production. The general 
form of the Transfer Function Model is expressed 
as: 
 

𝑌𝑖 = 𝛼 +  ∑ 𝛽𝑖𝑋𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝜖𝑡−𝑖

𝑞

𝑗=1

+ 𝜀𝑖  

 
𝑌𝑖  represents the dependent variable (log-
transformed shrimp production) at time t 
 𝑋𝑡−𝑖  denotes the exogenous climate variables 
(lagged by  
𝛽𝑖  are the coefficients for the climate variables, 

𝜀𝑖  is the residual error term at time  

𝛼 is the constant term, 
p and q represent the orders of the AR and MA 
components, respectively 
 
Optimal lag lengths for exogenous variables 
were determined using criteria like Akaike 
Information Criterion (AIC) and Bayesian 
Information Criterion (BIC). The choice of ARIMA 
and TFM over other models was driven by their 
suitability for time series with temporal 
dependencies and the ability to model delayed 
effects. 
 

2.2.2 Data processing and model estimation 
 

Before modeling, the production data were log-
transformed to stabilize variance and improve 

normality. Stationarity was tested using the 
Augmented Dickey-Fuller test, with differencing 
applied as needed to achieve stationarity. 

 
The TFM was estimated using Maximum 
Likelihood Estimation (MLE), which optimizes 
model parameters for the best fit. The iterative 
process accounted for both endogenous 
dynamics (via ARIMA components) and the 
effects of exogenous climate variables. 
Diagnostic tests, such as the Ljung-Box test, 
were applied to residuals to ensure no remaining 
autocorrelation, confirming model adequacy. 

 
2.2.3 Model evaluation 

 
Model performance was assessed using AIC and 
BIC to balance fit and complexity. Significant 
climatic predictors were identified through t-tests 
(p < 0.05). Predictive accuracy was evaluated 
using metrics like Mean Absolute Error (MAE), 
Mean Squared Error (MSE), and R-squared. 
High alignment between predicted and actual 
values validated the model's reliability for 
forecasting shrimp production. 

 
3. RESULTS AND DISCUSSION 
 
3.1 Thiruvallur District  
 
The ARIMA regression model for Tiruvallur 
district provides insightful results about the 
relationship between the independent variables 
and the dependent variable Among the 
predictors, summer precipitation shows a 
significant negative effect (p<0.01), with a 1-unit 
increase leading to a 0.694 decrease in shrimp 
production. Similarly, winter precipitation has a 
significant negative impact (p<0.01), with one 
unit increase reducing he shrimp production by 
2.439. Climate change significantly impacts 
shrimp farming activities in East Java, 
exemplified by the high rate of production failures 
during the rainy season, primarily driven by 
pronounced fluctuations in water parameters 
(Yuniartik et al., 2022). Summer maximum 
temperature showed a highly significant and 
substantial negative relationship (p<0.01), while 
summer minimum temperature has a significant 
(p<0.01) positive effect increasing the shrimp 
production by 75.921 for every unit of increase. 
Increase in temperature and changes in 
precipitation pattern remarkedly affect the water 
salinity, pH and dissolved oxygen resulting in 
disease incidence, curtail food intake leads to 
affect the slow growth (Muralidhar et al., 2012). 
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On the other hand, winter maximum and 
minimum temperature did not influence 
statistically.  
 
The lagged term (L) in the model highlights the 
importance of persistence in the time series data, 
with a coefficient of -0.929 (p<0.01). This 
indicates a strong negative relationship between 
current and previous production values. The 
constant terms in the autoregressive and moving 
average components further define the model's 
baseline behavior, with the AR constant showing 
a value of 106.246. The MA constant is 
marginally significant at p<0.1. The model's fit 
and performance are robust, as indicated by the 
chi-square value of 175,461,933 p<0.01), which 
suggests the model is statistically significant 
overall. The Akaike Information Criterion (AIC) 
value of 4.155 reflects good performance given 
the dataset. The dependent variable's mean 
(8.149) and standard deviation (0.666) further 
contextualize the results, indicating the 
consistency of production across the 
observations. In terms of predictive accuracy, the 
model performs well. For 2023, the predicted log-
transformed production (is 8.110, closely 
matching the actual value of 8.095. When back-
transformed, the predicted production is 
3,329.205 compared to the actual production of 
3,279.001. The minor deviation of 50.204 units 
demonstrates the model's reliability in forecasting 
production.  
 
Fig. 1 illustrates the autocorrelations of log-
transformed shrimp production at different lags, 
with 95% confidence intervals derived using 
Bartlett's formula for an MA(q) model. The points 
represent the autocorrelation coefficients for 
each lag, and the shaded region indicates the 
range within which autocorrelations are not 
statistically significant at the 95% confidence 
level. For lag 1, the autocorrelation coefficient 
lies near the confidence boundary, suggesting it 
may be significant or borderline significant. In 
contrast, for lag 2, the autocorrelation falls well 
within the confidence band, indicating no 
significant autocorrelation. This pattern implies 
that the residuals of the transfer function model 
exhibit minimal serial correlation, which supports 
the adequacy of the fitted model. 

 
3.2 Cuddalore District 
 
The ARIMA regression model for Cuddalore 
provides valuable insights into the factors 
influencing shrimp production in the district. The 
results highlight several significant predictors that 

affect shrimp production outcomes. Summer and 
winter precipitation have significant negative 
effects on shrimp production, with coefficients of 
−0.898 and −0.857, respectively. These results 
indicate that excess precipitation during both the 
summer and winter periods reduces shrimp 
yields. The significance of these predictors is 
confirmed by their p-values (0.000), which are 
well below the 1% threshold. The analysis also 
reveals that the summer minimum temperature 
significantly impacts production, with a coefficient 
of −39.265 and p-value of 0.000. This suggests 
that higher minimum temperatures during the 
summer have a substantial adverse effect on 
shrimp output. Increase in temperature augment 
the pH and salinity and low water availability may 
decline the dissolved oxygen level which 
ultimately affect the total shrimp production 
(Benavides et al., 2024; Dey et al., 2016; 
Muralidhar et al., 2012; Rajath et al., 2023; 
Rosegrant et al., 2016). Conversely, other 
temperature-related variables, such as winter 
minimum temperature and summer and winter 
maximum temperature are not statistically 
significant predictors of production, as their p-
values exceed the typical significance thresholds. 
 

Lagged production is another significant factor in 
the model, with a coefficient of −0.971 and a p-
value of 0.000. This indicates that past 
production levels strongly influence current 
production, emphasizing the persistence of 
production trends over time. The model also 
includes a constant term, which captures 
baseline production levels, but its exact 
interpretation is limited due to the absence of 
variability in some components. The model 
diagnostics suggest a good fit, with a mean 
shrimp production of 7.797 and a standard 
deviation of 0.291, indicating relatively low 
variability in the data. The Akaike Information 
Criterion (AIC) value of −22.141 further supports 
the model's efficiency in balancing goodness of 
fit and complexity. However, the limited number 
of observations (n=9) may affect the robustness 
of the findings, and additional data would 
strengthen the analysis. The model's predictive 
performance is strong, as evidenced by the close 
alignment between the actual and predicted 
production values for 2023. The actual logged 
production value is 8.157, while the predicted 
value is 8.162. In production units, the actual 
value is 3488.501, and the predicted value is 
3505.022, demonstrating a high degree of 
accuracy. 
 

Fig. 2 displays the autocorrelations of log-
transformed production values across different 
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lags, with confidence intervals determined by 
Bartlett's formula for MA(q) for Cuddalore district. 
The shaded gray area represents the 95% 
confidence bands, indicating the range within 
which the autocorrelations are statistically 
insignificant. The blue points signify the 
calculated autocorrelations for specific lags. 
From the plot, it is evident that all observed 
autocorrelations fall within the confidence bands, 
suggesting no significant autocorrelation at the 
examined lags. This implies that the residuals of 
the log-transformed production series exhibit 
randomness and do not display strong temporal 
dependence, meeting the assumptions of 
stationarity in a transfer function model. 
 

3.3 Thanjavur District 
 
The ARIMA regression model for provides 
valuable insights into the factors influencing 
shrimp production in the Thanjavur. Winter 
precipitation has a strong negative effect on 
shrimp production, with a coefficient of −4.327 
and a highly significant p-value (0.000). This 
suggests that increased winter precipitation is 
associated with a substantial decline in shrimp 
yields. Summer and winter maximum 
temperature also negatively impact production, 
with coefficients of −61.559 and −144.995, 
respectively, both significant at the 1% level. 
These findings indicate that higher summer and 
winter temperatures adversely affect crop 
productivity, possibly due to heat stress or 
adverse growing conditions. Conversely winter 
minimum temperature show positive effects, with 
being statistically significant (p=0.000) and a 
coefficient of 45.954. This suggests that higher 
extreme temperatures during winter may have 
benefits in Thanjavur district, potentially 
indicating the resilience. Lagged production is 
another important factor, with a coefficient of 
−0.934 and a p-value of 0.004, indicating that 
past production levels influence current 
production negatively. This could reflect delayed 
effects of adverse conditions or challenges in 
maintaining productivity year-over-year. The 
model's constant term (510.445) captures the 
baseline production levels under average 
conditions. Prolonged exposure to elevated 
temperatures can precipitate a decline in 
dissolved oxygen concentrations, engendering 
hypoxic conditions, while concurrently fostering 
the proliferation of deleterious algal blooms that 
compromise aquatic integrity (Akinnawo, 2023). 
Torrential precipitation attenuates salinity levels 
and induces pronounced fluctuations in pH, 
thereby exacerbating physiological stress and 

diminishing immunological resilience in shrimp 
(Millard et al., 2021). 
 
The model diagnostics indicate a good fit, with a 
mean dependent variable (8.951 and a low 
standard deviation of 0.261. The Akaike 
Information Criterion (AIC) value of −6.452 
suggests the model is well-specified for the given 
data. However, the limited number of 
observations (n=9) may limit the robustness of 
the conclusions, and additional data would 
enhance the model’s reliability. The model's 
predictive performance is also strong. For the 
year 2023, the actual logged production 8.562, 
while the predicted value was 8.560, indicating a 
close match. In terms of actual production units, 
the observed value was 5229.998, and the 
predicted value was 5217.479, demonstrating 
high predictive accuracy. 
 
Fig. 3 portrays that gray shaded region 
represents the confidence bands within which the 
autocorrelation values are not statistically 
significant for Thanjavur. The autocorrelation 
values for both lag 1 and lag 2 fall inside the 
confidence bands. This indicates that there is no 
significant autocorrelation present at these lags, 
suggesting the residuals of the model are 
approximately uncorrelated over time. 
 

3.4 Nagapattinam District 
 
Summer precipitation shows a small but 
statistically significant negative effect on 
production in Nagapattinam district (β=−0.061, 
p=0.043), suggesting that higher summer 
precipitation may negatively impact productivity. 
Conversely, winter precipitation has a strong 
positive influence (β=0.391, p=0.010), indicating 
that increased precipitation during the winter 
season benefits shrimp production. Summer 
maximum temperature has a significant positive 
effect on production (β=21.185, p=0.000), 
suggesting that moderate warmth during the 
growing season is favourable while winter 
maximum temperature has a marginally 
significant positive effect (β=7.966, p=0.052), 
implying that warmer winter conditions are 
beneficial. In contrast, summer and winter 
minimum temperature negatively affecting the 
shrimp production in Nagapattinam but winter is 
not significantly influenced. Shrimp thrive within 
specific temperature ranges when its deviations 
can stress the organisms, slowing growth rates 
and increasing susceptibility to diseases (Millard 
et al., 2021). Prolonged heat can lead to reduced 
dissolved oxygen levels in water, causing 



 
 
 
 

Radhakrishnan et al.; Asian J. Agric. Ext. Econ. Soc., vol. 43, no. 1, pp. 143-153, 2025; Article no.AJAEES.130342 
 
 

 
148 

 

Table 1. Climate variables and lagged production coefficients for Tamil Nadu Districts 
  

Tiruvallur Cuddalore Nagapattinam Thanjavur 

 Coef. St.Err. p-value  Coef. St.Err. p-value  Coef. St.Err. p-value Coef. St.Err. p-value 

Summer precipitation -0.69 0.15 0.000 -0.90 0.07 0.000 -0.06 0.03 0.043 -0.02 0.26 0.940 
Winter precipitation -2.44 0.94 0.009 -0.86 0.11 0.000 0.39 0.15 0.010 -4.33 0.35 0.000 
Summer maximum temperature -117.15 26.13 0.000 4.76 7.72 0.537 21.19 3.61 0.000 -61.56 12.21 0.000 
Winter maximum temperature 13.40 10.36 0.196 3.55 3.36 0.290 7.97 4.10 0.052 -145.00 16.63 0.000 
Summer minimum tempera rue 75.92 26.65 0.004 -39.27 9.64 0.000 -13.62 3.19 0.000 31.86 . . 
Winter minimum tempera rue 17.29 19.18 0.367 0.97 . . -2.27 4.09 0.579 45.95 10.06 0.000 
Constant 106.25 . . 112.60 . . -44.98 . . 510.45 . . 
Lagged production -0.93 0.18 0.000 -0.97 0.13 0.000 -0.99 0.03 0.000 -0.93 0.32 0.004 
Constant 0.09 0.06 0.059 0.02 0.03 0.207 0.01 0.01 0.151 0.06 0.02 0.006 
Mean dependent var 8.149 

  
7.797 

  
9.5 

  
8.951 

  

SD dependent var   0.666 
  

0.291 
  

0.216 
  

0.261 
  

Chi-square   1.75E+08 
  

4.56E+09 
  

7.22E+09 
  

2.76E+10 
  

Akaike crit. (AIC) 4.155 
  

-22.141 
  

-35.016 
  

-6.452 
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Table 2. Comparison of predicted and actual shrimp production (log-transformed and actual 
values) for Tamil Nadu Districts 

  
Predicted log-
transformed production  

Actual log-transformed 
production   

Actual 
production 

Predicted  
production  

Tiruvallur 8.095 8.11 3279.001 3329.205 
Cuddalore 8.157 8.162 3488.501 3505.022 
Thanjavur 9.608 9.608 14877.5 14879.72 
Nagapattinam 8.562 8.56 5229.998 5217.479 

 

 
 

Fig. 1. Autocorrelations of log-transformed production with 95% confidence intervals using 
Bartlett’s Formula for Tiruvallur 

 
hypoxia, while also promoting harmful algal 
blooms that can degrade water quality 
(Akinnawo, 2023). Cooler conditions slow   
shrimp metabolism and feeding activity, leading 
to stunted growth and delayed harvest cycles 
(Ren et al., 2021). Heavy rains dilute water 
salinity and cause fluctuations in pH, which can 
stress shrimp and compromise their immune 
systems (Millard et al., 2021). Reduced 
freshwater availability can increase salinity to 
levels unsuitable for shrimp, disrupting 
osmoregulation and hindering survival and 
growth (Molina et al., 2019). 
 
Lagged production has a highly significant 
negative effect (β=−0.992, p=0.000), reflecting a 
strong inverse relationship between the previous 

year's production and the current year’s 
production. This may be due to factors such as 
soil nutrient depletion, resource competition, or 
external shocks like weather variability. The 
constant term (−44.979) reflects underlying 
baseline productivity, adjusted for the effects of 
other variables. The model performs well overall, 
with a highly significant Chi-square statistic 
(7217400542.776, p=0.000) and an Akaike 
Information Criterion (AIC) value of −35.016, 
indicating a well-specified model. The predicted 
logged production (production =9.608) for 2023 
aligns perfectly with the actual logged production. 
In real terms, the actual production (14877.495) 
closely matches the predicted production 
(14879.724), demonstrating the model’s 
excellent predictive capability. 
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Fig. 2. Autocorrelations of log-transformed production with 95% confidence intervals using 
Bartlett’s Formula for Cuddalore 

 

 
 

Fig. 3. Autocorrelations of log-transformed production with 95% confidence intervals using 
Bartlett's Formula for Thanjavur 
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Fig. 4. Autocorrelations of log-transformed production with 95% confidence intervals using 
Bartlett's Formula for Nagapattinam 

 
Fig. 4 shows the autocorrelations of the log-
transformed production values at different lags, 
with 95% confidence intervals calculated using 
Bartlett's formula for MA(q) processes for 
Nagapattinam district. The gray shaded region 
represents the confidence bands within which the 
autocorrelation values are not statistically 
significant. From the graph, the autocorrelation 
values for both lag 1 and lag 2 fall inside the 
confidence bands. This indicates that there is no 
significant autocorrelation present at these lags, 
suggesting the residuals of the model are 
approximately uncorrelated over time. This result 
supports the assumption that the residuals are 
white noise, meeting a key requirement for the 
validity of the transfer function model. 
 

3.5 Comparative Analysis  
 
Across districts, the ARIMA regression models 
consistently demonstrate the significant influence 
of climate variables, particularly precipitation and 
temperature, on shrimp production. Excess 
precipitation and extreme temperatures generally 
have negative effects, while moderate warmth 
and optimal rainfall conditions can be beneficial. 
Lagged production terms highlight the temporal 

dependencies and the importance of maintaining 
stable environmental conditions over time. These 
findings underscore the need for climate-resilient 
aquaculture practices, such as improved pond 
design, water quality monitoring, and adaptive 
feeding strategies, to mitigate the impacts of 
climate variability. Policy measures should 
prioritize capacity-building initiatives for farmers 
and investments in infrastructure to enhance 
resilience. Additionally, integrating long-term 
climate projections into aquaculture planning can 
support sustainable growth in shrimp farming. 
 
4. CONCLUSION AND IMPLICATION 
 
Across all districts, precipitation and temperature 
are critical determinants of shrimp production, 
with district-specific variations reflecting local 
climatic and environmental contexts. Lagged 
production consistently underscores the temporal 
dependencies inherent in aquaculture systems. 
The predictive accuracy of the models across 
districts highlights their robustness and potential 
utility for forecasting shrimp yields.  
 
These findings emphasize the complex interplay 
between climatic variables and shrimp 
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production, which varies across districts. 
Precipitation, temperature, and production history 
play pivotal roles, reflecting both environmental 
constraints and adaptive opportunities. The 
robust predictive performance of these models 
highlights their utility in forecasting shrimp yields 
under varying climatic scenarios, providing a 
valuable tool for policymakers, researchers, and 
practitioners. These models can guide adaptive 
strategies, such as optimizing farming practices 
or implementing climate-resilient measures, to 
sustain and enhance shrimp production in the 
face of changing environmental conditions. 
These findings provide valuable insights for 
policymakers, aquaculture managers, and 
researchers, emphasizing the need for district-
specific adaptive strategies to mitigate the 
adverse effects of climatic variability. Integrating 
additional factors such as water quality, nutrient 
management, and disease dynamics into future 
models could further enhance predictive 
capabilities and inform sustainable aquaculture 
practices. 
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