%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Asian Journal of Agricultural
Extension, Economics & Sociology

Asian Journal of Agricultural Extension, Economics &

Sociology
e Volume 43, Issue 1, Page 143-153, 2025; Article no.AJAEES.130342
e ISSN: 2320-7027

e

Climatic Determinants of Shrimp Yields
In Tamil Nadu, India: A Transfer
Function Analysis

Kalidoss Radhakrishnan 2, S. Prakash &, P.S. Ananthan 2,
Arpita Sharma 2, Anu Susan Sam P, Sandip Shil ¢
and Shyam Datta Waghmare @

a]CAR- Central Institute of Fisheries Education, Mumbai, 400 061, India.
bKerala Agricultural University, Regional Agricultural Research Station Kumarakom, Kottayam,

Kerala, India.
¢Research Centre of ICAR-ICAR-Central Plantation Crops Research Institute, Mohithagar

West Bengal, India.
Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final
manuscript.

Article Information
DOI: https:/doi.org/10.9734/ajaees/2025/v43i12680

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,
peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/130342

Received: 22/11/2024

- : Accepted: 22/01/2025
Original Research Article Published: 24/01/2025

ABSTRACT

Shrimp aquaculture in Tamil Nadu plays a critical role in supporting livelihoods and contributing to
exports but is increasingly vulnerable to climatic variability. This study investigates how seasonal
precipitation, extreme temperatures, and lagged production impact shrimp yields in four key
districts—Tiruvallur, Cuddalore, Thanjavur, and Nagapattinam—over the period 2015-2023. Using
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statistical models, we identify major trends and district-specific sensitivities. For instance, excessive
summer and winter precipitation coupled with high maximum temperatures reduced yields in
Tiruvallur, whereas warmer summer nights boosted production. In Cuddalore, yields were
hampered by seasonal precipitation, elevated minimum temperatures, and the lingering effects of
previous yields. Thanjavur’'s production suffered from extreme temperatures and winter rainfall but
benefited from milder winter nights. Nagapattinam showed unique dynamics, where winter
precipitation and summer maximum temperatures enhanced yields, while summer rainfall and
lagged production had adverse effects. These findings highlight the need for tailored, district-
specific strategies to manage climate risks and sustain shrimp farming. For example, adaptive
measures such as optimizing water management or selecting climate-resilient shrimp varieties
could mitigate negative impacts. Future research could integrate factors like water quality and
disease outbreaks to strengthen the sector’s resilience further.

Keywords: Climate change; Shrimp farming; transfer function model; temperature; precipitation.

1. INTRODUCTION

Aquaculture is a cornerstone of global food
security and economic growth, with shrimp
farming recognized as one of the fastest-growing
and most lucrative sectors (FAO, 2020; FAO,
2016). In India, shrimp aquaculture significantly
contributes to seafood exports and sustains the
livelihoods of millions, particularly in coastal
states like Tamil Nadu (Globefish, 2022; Singh et
al., 2021). Tamil Nadu's favorable geographic
and climatic conditions make it a major hub for
shrimp production; however, the sector faces
mounting challenges due to climate variability,
which disrupts production systems and impacts
yields (Do & Ho, 2022, FAO, 2014; Shameem et
al., 2015).

Key climatic factors such as precipitation and
temperature are critical to shrimp farming
success (Kais & Islam, 2019; Krishnan & Babu,
2022). Excessive rainfall can disrupt pond salinity
and nutrient balance, while temperature
extremes stress shrimp, reducing growth rates
and increasing vulnerability to disease (Ahmed &
Diana, 2015; Islam et al., 2019). Additionally,
lagged effects from previous production cycles
complicate yield predictions (Devlin et al., 2017;
Montoya et al., 1999). Despite the recognized
importance of these dynamics, limited research
has quantitatively explored the specific impacts
of climate on shrimp yields at a district level,
particularly in Tamil Nadu, where localized
climatic and production variations demand
tailored analyses.

This study addresses these gaps by examining
the effects of key climatic variables—seasonal
precipitation and temperature extremes—on
shrimp yields across four districts in Tamil Nadu:
Thiruvallur, Cuddalore, Thanjavur, and
Nagapattinam. Using ARIMA-based regression
models, which are well-suited for capturing the

temporal and dynamic relationships between
climatic factors and production outcomes, we
provide a detailed analysis of how these factors
influence shrimp production. These models
incorporate both lagged and immediate effects,
offering robust predictions of climate-yield
relationships. The findings of this study aim to
equip policymakers and aquaculture practitioners
with actionable insights to develop district-
specific strategies for mitigating climate risks. By
enhancing the resilience of shrimp farming
systems to climatic variability, this research
contributes to the broader goal of sustaining
Tamil Nadu’s aquaculture industry in the face of
ongoing and future climate challenges.

2. MATERIAL AND METHODS
2.1 Data Collection

Shrimp production data for Whiteleg shrimp
across four districts of Tamil Nadu (Thiruvallur,
Cuddalore, Thanjavur, and Nagapattinam) were
obtained from the Marine Products Export
Development Authority (2015-2023). Climatic
data on temperature and precipitation for the
same period were sourced from the India
Meteorological Department. To ensure temporal
alignment, all data were structured as time
series, with each observation representing an
annual time point. This alignment facilitated the
analysis of lagged effects and temporal
dependencies between climate variables and
shrimp production. Missing data, where present,
were addressed using interpolation methods to
ensure consistency across the dataset.

2.2 Transfer Function Model

Framework

(ARIMA)

2.2.1 Framework

The Transfer Function Model (TFM) extends the
ARIMA  model to incorporate exogenous
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(external) variables, thereby linking time series
dynamics with external predictors—climatic
factors. The structure of the ARIMA model
includes three main components: Autoregressive
(AR) component models the influence of past
values of the dependent variable on its current
production. It captures the temporal dependence
within the shrimp production series. The
Integrated () component accounts for the
differencing necessary to achieve stationarity in
the data, ensuring that the series is free of trends
and remains stable over time. Moving Average
(MA) component models the relationship
between past forecast errors and the current
value of the dependent variable, accounting for
noise in the data.

In the TFM, the exogenous climate variables
(precipitation and temperature) are integrated
into the model, influencing shrimp production
alongside the endogenous time  series
components. The ARIMA and transfer function
modeling frameworks are grounded in
established methodologies (Box et al.,, 2008;
Peter & Silvia, 2012), providing a robust basis for
analyzing the interplay between climatic
variability and shrimp production. The general
form of the Transfer Function Model is expressed
as:

P q
Vi=a+ Z.Bixt—i + Z i€ + &
i=1 =1

Y, represents the dependent variable (log-
transformed shrimp production) at time t

X,_; denotes the exogenous climate variables
(lagged by

B; are the coefficients for the climate variables,
g; is the residual error term at time

«a is the constant term,

p and q represent the orders of the AR and MA
components, respectively

Optimal lag lengths for exogenous variables
were determined using criteria like Akaike
Information Criterion (AIC) and Bayesian
Information Criterion (BIC). The choice of ARIMA
and TFM over other models was driven by their
suitability for time series with temporal
dependencies and the ability to model delayed
effects.

2.2.2 Data processing and model estimation

Before modeling, the production data were log-
transformed to stabilize variance and improve

normality. Stationarity was tested using the
Augmented Dickey-Fuller test, with differencing
applied as needed to achieve stationarity.

The TFM was estimated using Maximum
Likelihood Estimation (MLE), which optimizes
model parameters for the best fit. The iterative
process accounted for both endogenous
dynamics (via ARIMA components) and the
effects of exogenous climate variables.
Diagnostic tests, such as the Ljung-Box test,
were applied to residuals to ensure no remaining
autocorrelation, confirming model adequacy.

2.2.3 Model evaluation

Model performance was assessed using AIC and
BIC to balance fit and complexity. Significant
climatic predictors were identified through t-tests
(p < 0.05). Predictive accuracy was evaluated
using metrics like Mean Absolute Error (MAE),
Mean Squared Error (MSE), and R-squared.
High alignment between predicted and actual
values validated the model's reliability for
forecasting shrimp production.

3. RESULTS AND DISCUSSION
3.1 Thiruvallur District

The ARIMA regression model for Tiruvallur
district provides insightful results about the
relationship between the independent variables
and the dependent variable Among the
predictors, summer precipitation shows a
significant negative effect (p<0.01), with a 1-unit
increase leading to a 0.694 decrease in shrimp
production. Similarly, winter precipitation has a
significant negative impact (p<0.01), with one
unit increase reducing he shrimp production by
2.439. Climate change significantly impacts
shrimp farming activites in East Java,
exemplified by the high rate of production failures
during the rainy season, primarily driven by
pronounced fluctuations in water parameters
(Yuniartik et al.,, 2022). Summer maximum
temperature showed a highly significant and
substantial negative relationship (p<0.01), while
summer minimum temperature has a significant
(p<0.01) positive effect increasing the shrimp
production by 75.921 for every unit of increase.
Increase in temperature and changes in
precipitation pattern remarkedly affect the water
salinity, pH and dissolved oxygen resulting in
disease incidence, curtail food intake leads to
affect the slow growth (Muralidhar et al., 2012).
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On the other hand, winter maximum and
minimum  temperature did not influence
statistically.

The lagged term (L) in the model highlights the
importance of persistence in the time series data,
with a coefficient of -0.929 (p<0.01). This
indicates a strong negative relationship between
current and previous production values. The
constant terms in the autoregressive and moving
average components further define the model's
baseline behavior, with the AR constant showing
a value of 106.246. The MA constant is
marginally significant at p<0.1. The model's fit
and performance are robust, as indicated by the
chi-square value of 175,461,933 p<0.01), which
suggests the model is statistically significant
overall. The Akaike Information Criterion (AIC)
value of 4.155 reflects good performance given
the dataset. The dependent variable's mean
(8.149) and standard deviation (0.666) further
contextualize the results, indicating the
consistency of  production across the
observations. In terms of predictive accuracy, the
model performs well. For 2023, the predicted log-
transformed production (is 8.110, closely
matching the actual value of 8.095. When back-
transformed, the predicted production is
3,329.205 compared to the actual production of
3,279.001. The minor deviation of 50.204 units
demonstrates the model's reliability in forecasting
production.

Fig. 1 illustrates the autocorrelations of log-
transformed shrimp production at different lags,
with 95% confidence intervals derived using
Bartlett's formula for an MA(q) model. The points
represent the autocorrelation coefficients for
each lag, and the shaded region indicates the
range within which autocorrelations are not
statistically significant at the 95% confidence
level. For lag 1, the autocorrelation coefficient
lies near the confidence boundary, suggesting it
may be significant or borderline significant. In
contrast, for lag 2, the autocorrelation falls well
within the confidence band, indicating no
significant autocorrelation. This pattern implies
that the residuals of the transfer function model
exhibit minimal serial correlation, which supports
the adequacy of the fitted model.

3.2 Cuddalore District

The ARIMA regression model for Cuddalore
provides valuable insights into the factors
influencing shrimp production in the district. The
results highlight several significant predictors that

affect shrimp production outcomes. Summer and
winter precipitation have significant negative
effects on shrimp production, with coefficients of
—-0.898 and -0.857, respectively. These results
indicate that excess precipitation during both the
summer and winter periods reduces shrimp
yields. The significance of these predictors is
confirmed by their p-values (0.000), which are
well below the 1% threshold. The analysis also
reveals that the summer minimum temperature
significantly impacts production, with a coefficient
of —39.265 and p-value of 0.000. This suggests
that higher minimum temperatures during the
summer have a substantial adverse effect on
shrimp output. Increase in temperature augment
the pH and salinity and low water availability may
decline the dissolved oxygen level which
ultimately affect the total shrimp production
(Benavides et al.,, 2024; Dey et al, 2016;
Muralidhar et al., 2012; Rajath et al., 2023;
Rosegrant et al., 2016). Conversely, other
temperature-related variables, such as winter
minimum temperature and summer and winter
maximum temperature are not statistically
significant predictors of production, as their p-
values exceed the typical significance thresholds.

Lagged production is another significant factor in
the model, with a coefficient of -0.971 and a p-

value of 0.000. This indicates that past
production levels strongly influence current
production, emphasizing the persistence of

production trends over time. The model also
includes a constant term, which captures
baseline production levels, but its exact
interpretation is limited due to the absence of
variability in some components. The model
diagnostics suggest a good fit, with a mean
shrimp production of 7.797 and a standard
deviation of 0.291, indicating relatively low
variability in the data. The Akaike Information
Criterion (AIC) value of —22.141 further supports
the model's efficiency in balancing goodness of
fit and complexity. However, the limited number
of observations (n=9) may affect the robustness
of the findings, and additional data would
strengthen the analysis. The model's predictive
performance is strong, as evidenced by the close
alignment between the actual and predicted
production values for 2023. The actual logged
production value is 8.157, while the predicted
value is 8.162. In production units, the actual
value is 3488.501, and the predicted value is
3505.022, demonstrating a high degree of
accuracy.

Fig. 2 displays the autocorrelations of log-
transformed production values across different
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lags, with confidence intervals determined by
Bartlett's formula for MA(q) for Cuddalore district.
The shaded gray area represents the 95%
confidence bands, indicating the range within

which the autocorrelations are statistically
insignificant. The blue points signify the
calculated autocorrelations for specific lags.

From the plot, it is evident that all observed
autocorrelations fall within the confidence bands,
suggesting no significant autocorrelation at the
examined lags. This implies that the residuals of
the log-transformed production series exhibit
randomness and do not display strong temporal
dependence, meeting the assumptions of
stationarity in a transfer function model.

3.3 Thanjavur District

The ARIMA regression model for provides
valuable insights into the factors influencing
shrimp production in the Thanjavur. Winter
precipitation has a strong negative effect on
shrimp production, with a coefficient of —4.327
and a highly significant p-value (0.000). This
suggests that increased winter precipitation is
associated with a substantial decline in shrimp
yields. Summer and winter maximum
temperature also negatively impact production,
with coefficients of -61.559 and -144.995,
respectively, both significant at the 1% level.
These findings indicate that higher summer and
winter temperatures adversely affect crop
productivity, possibly due to heat stress or
adverse growing conditions. Conversely winter
minimum temperature show positive effects, with
being statistically significant (p=0.000) and a
coefficient of 45.954. This suggests that higher
extreme temperatures during winter may have
benefits in  Thanjavur district, potentially
indicating the resilience. Lagged production is
another important factor, with a coefficient of
-0.934 and a p-value of 0.004, indicating that
past production levels influence current
production negatively. This could reflect delayed
effects of adverse conditions or challenges in
maintaining productivity year-over-year. The
model's constant term (510.445) captures the
baseline production levels under average
conditions. Prolonged exposure to elevated
temperatures can precipitate a decline in
dissolved oxygen concentrations, engendering
hypoxic conditions, while concurrently fostering
the proliferation of deleterious algal blooms that
compromise aquatic integrity (Akinnawo, 2023).
Torrential precipitation attenuates salinity levels
and induces pronounced fluctuations in pH,
thereby exacerbating physiological stress and

diminishing immunological resilience in shrimp
(Millard et al., 2021).

The model diagnostics indicate a good fit, with a
mean dependent variable (8.951 and a low
standard deviation of 0.261. The Akaike
Information Criterion (AIC) value of -6.452
suggests the model is well-specified for the given
data. However, the limited number of
observations (n=9) may limit the robustness of
the conclusions, and additional data would
enhance the model's reliability. The model's
predictive performance is also strong. For the
year 2023, the actual logged production 8.562,
while the predicted value was 8.560, indicating a
close match. In terms of actual production units,
the observed value was 5229.998, and the
predicted value was 5217.479, demonstrating
high predictive accuracy.

Fig. 3 portrays that gray shaded region
represents the confidence bands within which the
autocorrelation values are not statistically
significant for Thanjavur. The autocorrelation
values for both lag 1 and lag 2 fall inside the
confidence bands. This indicates that there is no
significant autocorrelation present at these lags,
suggesting the residuals of the model are
approximately uncorrelated over time.

3.4 Nagapattinam District

Summer precipitation shows a small but
statistically ~ significant negative effect on
production in Nagapattinam district (3=—0.061,
p=0.043), suggesting that higher summer
precipitation may negatively impact productivity.
Conversely, winter precipitation has a strong
positive influence ($=0.391, p=0.010), indicating
that increased precipitation during the winter
season benefits shrimp production. Summer
maximum temperature has a significant positive
effect on production (p=21.185, p=0.000),
suggesting that moderate warmth during the
growing season is favourable while winter
maximum temperature has a marginally
significant positive effect (3=7.966, p=0.052),
implying that warmer winter conditions are
beneficial. In contrast, summer and winter
minimum temperature negatively affecting the
shrimp production in Nagapattinam but winter is
not significantly influenced. Shrimp thrive within
specific temperature ranges when its deviations
can stress the organisms, slowing growth rates
and increasing susceptibility to diseases (Millard
et al., 2021). Prolonged heat can lead to reduced
dissolved oxygen levels in water, causing
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Table 1. Climate variables and lagged production coefficients for Tamil Nadu Districts

Tiruvallur Cuddalore Nagapattinam Thanjavur

Coef. St.Err. p-value Coef. St.Err. p-value Coef. St.Err. p-value Coef. St.Err. p-value
Summer precipitation -0.69 0.15 0.000 -0.90 0.07 0.000 -0.06 0.03 0.043 -0.02 0.26 0.940
Winter precipitation -2.44 0.94 0.009 -0.86 0.11 0.000 0.39 0.15 0.010 -4.33 0.35 0.000
Summer maximum temperature -117.15  26.13  0.000 4.76 7.72 0.537 21.19 3.61 0.000 -61.56 12.21  0.000
Winter maximum temperature  13.40 10.36  0.196 3.55 3.36 0.290 7.97 4.10 0.052 -145.00 16.63 0.000
Summer minimum tempera rue 75.92 26.65 0.004 -39.27 9.64 0.000 -13.62 3.19 0.000 31.86 .
Winter minimum tempera rue 17.29 19.18 0.367 0.97 . . -2.27 4.09 0.579 45.95 10.06  0.000
Constant 106.25 . . 112.60 . . -44.98 . . 510.45 . .
Lagged production -0.93 0.18 0.000 -0.97 0.13 0.000 -0.99 0.03 0.000 -0.93 0.32 0.004
Constant 0.09 0.06 0.059 0.02 0.03 0.207 0.01 0.01 0.151 0.06 0.02 0.006
Mean dependent var 8.149 7.797 9.5 8.951
SD dependent var 0.666 0.291 0.216 0.261
Chi-square 1.75E+08 4.56E+09 7.22E+09 2.76E+10
Akaike crit. (AIC) 4.155 -22.141 -35.016 -6.452
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Table 2. Comparison of predicted and actual shrimp production (log-transformed and actual
values) for Tamil Nadu Districts

Predicted log- Actual log-transformed Actual Predicted
transformed production production production production
Tiruvallur 8.095 8.11 3279.001 3329.205
Cuddalore 8.157 8.162 3488.501 3505.022
Thanjavur 9.608 9.608 14877.5 14879.72
Nagapattinam 8.562 8.56 5229.998 5217.479
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Fig. 1. Autocorrelations of log-transformed production with 95% confidence intervals using
Bartlett’s Formula for Tiruvallur

hypoxia, while also promoting harmful algal
blooms that can degrade water quality
(Akinnawo, 2023). Cooler conditions slow
shrimp metabolism and feeding activity, leading
to stunted growth and delayed harvest cycles
(Ren et al.,, 2021). Heavy rains dilute water
salinity and cause fluctuations in pH, which can
stress shrimp and compromise their immune
systems (Millard et al., 2021). Reduced
freshwater availability can increase salinity to
levels unsuitable for shrimp, disrupting
osmoregulation and hindering survival and
growth (Molina et al., 2019).

Lagged production has a highly significant
negative effect (B=-0.992, p=0.000), reflecting a
strong inverse relationship between the previous

year's production and the current vyear's
production. This may be due to factors such as
soil nutrient depletion, resource competition, or
external shocks like weather variability. The
constant term (-44.979) reflects underlying
baseline productivity, adjusted for the effects of
other variables. The model performs well overall,
with a highly significant Chi-square statistic
(7217400542.776, p=0.000) and an Akaike
Information Criterion (AIC) value of -35.016,
indicating a well-specified model. The predicted
logged production (production =9.608) for 2023
aligns perfectly with the actual logged production.
In real terms, the actual production (14877.495)
closely matches the predicted production
(14879.724), demonstrating the  model’s
excellent predictive capability.

149



Radhakrishnan et al.; Asian J. Agric. Ext. Econ. Soc., vol. 43, no. 1, pp. 143-153, 2025; Article no.AJAEES.130342

1.00
|

0.50
|

Autocorrelations of | Prod
0.0

-0.50

-1.00

T
1 1.2 1.4 1.6 1.8
Lag

Bartlett's formula for MA(g) 95% confidence bands

N H

Fig. 2. Autocorrelations of log-transformed production with 95% confidence intervals using
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Fig. 3. Autocorrelations of log-transformed production with 95% confidence intervals using
Bartlett's Formula for Thanjavur
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Fig. 4. Autocorrelations of log-transformed production with 95% confidence intervals using
Bartlett's Formula for Nagapattinam

Fig. 4 shows the autocorrelations of the log-
transformed production values at different lags,
with 95% confidence intervals calculated using
Bartlett's formula for MA(q) processes for
Nagapattinam district. The gray shaded region
represents the confidence bands within which the
autocorrelation values are not statistically
significant. From the graph, the autocorrelation
values for both lag 1 and lag 2 fall inside the
confidence bands. This indicates that there is no
significant autocorrelation present at these lags,
suggesting the residuals of the model are
approximately uncorrelated over time. This result
supports the assumption that the residuals are
white noise, meeting a key requirement for the
validity of the transfer function model.

3.5 Comparative Analysis

Across districts, the ARIMA regression models
consistently demonstrate the significant influence
of climate variables, particularly precipitation and
temperature, on shrimp production. Excess
precipitation and extreme temperatures generally
have negative effects, while moderate warmth
and optimal rainfall conditions can be beneficial.
Lagged production terms highlight the temporal

dependencies and the importance of maintaining
stable environmental conditions over time. These
findings underscore the need for climate-resilient
aquaculture practices, such as improved pond
design, water quality monitoring, and adaptive
feeding strategies, to mitigate the impacts of
climate variability. Policy measures should
prioritize capacity-building initiatives for farmers
and investments in infrastructure to enhance
resilience. Additionally, integrating long-term
climate projections into aquaculture planning can
support sustainable growth in shrimp farming.

4. CONCLUSION AND IMPLICATION

Across all districts, precipitation and temperature
are critical determinants of shrimp production,
with district-specific variations reflecting local
climatic and environmental contexts. Lagged
production consistently underscores the temporal
dependencies inherent in aquaculture systems.
The predictive accuracy of the models across
districts highlights their robustness and potential
utility for forecasting shrimp yields.

These findings emphasize the complex interplay
between climatic variables and shrimp
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production, which varies across districts.
Precipitation, temperature, and production history
play pivotal roles, reflecting both environmental
constraints and adaptive opportunities. The
robust predictive performance of these models
highlights their utility in forecasting shrimp yields
under varying climatic scenarios, providing a
valuable tool for policymakers, researchers, and
practitioners. These models can guide adaptive
strategies, such as optimizing farming practices
or implementing climate-resilient measures, to
sustain and enhance shrimp production in the
face of changing environmental conditions.
These findings provide valuable insights for
policymakers, aquaculture managers, and
researchers, emphasizing the need for district-
specific adaptive strategies to mitigate the
adverse effects of climatic variability. Integrating
additional factors such as water quality, nutrient
management, and disease dynamics into future
models could further enhance predictive
capabilities and inform sustainable aquaculture
practices.
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