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ABSTRACT

Mixed effect models allow for a great deal of flexibility in defining random outcomes, but they limit
within-group errors to independent disbursed random variables with a zero mean and constant
variance. In addition to its random outcomes for the implied structure, this model is expanded in
this paper by including within-group correlated errors. We demonstrate how to accurately predict
the model's parameters using a marginal maximum probability (ML) method. The model's accuracy
is demonstrated by a real-world example. Additionally, we provide several instructions for
correlation systems to represent serial and spatial correlation. Finally, we define how to combine
variance features and correlation systems to flexibly model the within-group variance-covariance
shape. We also discuss how the Ime function can be used to maintain the prolonged linear mixed
effects model. And, when compared to other models, the exponential spatial correlation version has
the smallest AIC and BIC, making it appear to be the best within-group correlation model.
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1. INTRODUCTION

For a variety of grouped information types that
were discovered during the exercise, these basic
linear mixed effects model provides a good
model. Although many applications involving
grouped records have inside group errors that
are heteroscedastic (i.e., have unequal
variances), correlated, or both, this is not always
the case [1-5]. In order to accommodate
heteroscedastic within-group errors, we volume
the primary linear combined results version in
this paper. Many authors have suggested such
extensions to the mixed-outcomes version, with
Hedeker et al.'s combined-outcomes area scale
model being the most well-known (but see also
Lee and Nelder [6], Gasimova et al. [7], Hamaker
et al. [8], Schuurman et al. [9], Wang et al. [10],
and Nordgren et al. [11].

2. MATERIALS AND METHODS

This article's main goal is to describe an
extension of this model that also includes
correlated within-group errors and is conceptually
similar to the random effects for the mean shape.
Furthermore, we demonstrate how a marginal
ML method can be used to successfully predict
the parameters of the model. The MEM is first
introduced in the following, along with the
aforementioned extensions. We have used an
actual animal technology statistics set to validate
the extended model. For the current study, the
records produced from the test on chicks
conducted with assistance from the division of
LPT SKUAST-Kashmir, Shuhama, were used.
Statistics on the body weight of chicks that were
measured over a period of 64 days were
compiled. On day 1 and then every 7 days after
that, the body weight changed, and on day 44, a
new dimension was added. As a result, each
chicken provided an average of eleven readings.
There were 3 groups of chicks on unique diets,
with 5 chicks in every group. For analysis and
modeling in the R/SAS program, the data set
was given the name Chick Weight. Four columns
and 165 rows make up its structure.

The column headings for the body weight of
chicks, the time interval, the number of chicks,
and the diet are weight, time, chick, and diet,
respectively.

2.1 Preferred Extended Linear Mixed

Effects Model Formulation

We assume heterocedastic and correlated
within-group errors in the extended single-level
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linear mixed effect model, and these errors can
be expressed as follows:

Yi=XiB + zib; + €
bi~ N (0, W), ei~N (0, 6°A;)

2.1)

where the /A is positive particular matrices
parameterized via a fixed typically small, set of
parameters A .

and

2.2 Strategies  for

Estimation

Computation

For linear mixed effects models, a variety of
parameter estimation techniques have been
employed; the same will be done for extended
linear mixed effects models. The two generic
techniques among them are ML and REML. The
specific description of the two can be found in
[12], section 2.2). Because A; is a positive
definite, it admits an invertible square root A
[13] with an inverse A such that A = (AT
A?and A= AN

Letting y* = (A™)y, e* = (A" e x* = (A%
zZF=(N)'z 2.2)
and noting that e ~ N [(A™)'0, o (N AN

=N (©,c°l).
Thus the model 2.1 can be revived as

yi* = Xi*B + Zi*bi + ei* (2.3)

b~ N©O, W), e ~N(@©, o’l)
The extended linear mixed effects model's

likelihood function, L, is represented by the
following equation.

L(B.0.0%, 2ly)=]]p(y;|8.6.0%,2) (24

We must combine the conditional density of the
data given the random effect in order to obtain
the marginal density for the data because the
non-observable random vector bi i = 1,..M is a
component of the model. To express this, we will
use the independence of bi and ei as follows:

»2(2.5)

[1p05 18.0,0% A =L(,0,0% 21y )] A

The conditional density of yi and the marginal
density of bi are both multivariate normal, where
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P (.) denotes a probability density function. Due
to the fact that the likelihood L (B, , , Aly®)
corresponds to a fundamental linear mixed
effects model, all of the LMEM's effects (see Pin
Herio and Bates2000 section 2.2) properly apply
to this.

As a result, the likelihood can be evaluated using
an orthogonal triangular decomposition just as in
the case of a simple linear mixed effects model,
leading to a numerically efficient algorithm for
maximum likelihood estimation.

Although in theory the random effects biaren't
statistical model parameters, they behave in
some ways like parameters and we frequently
need to estimate their values. The best linear
unbiased predictors, also known as BLUP's, of
the bi, i = 1, 2, ---M are the conditional models of
the random effects evaluated at the conditional
estimate of B. The matrices produced by the
orthogonal triangular decomposition can be used
to evaluate them. In actual use, the maximum
likelihood estimate of the unknown vector is used
to produce estimated BLUPs.

2.3 Decomposing the within-group
Variance Covariance Structure

Usually, the A; matrices can be broken down into
a constructed form of simpler matrices:

N = VGV, ltis simple to verify that:
o’[V]; . and cor(e;.e;) =[c]y

var (e;)

In order for C; to describe the correlation of the
within group errors e; and V; to describe that
variance, it is practical from a theoretical and
computational standpoint to divide A; into
variance structure elements and a correlation
structure component. It enables us to individually
model, create codes for, and integrate the two
structures into a family of adaptable models for
the within-group variance covariance.

2.4 Correlation Structure for
Dependence

Modelling

Modeling the interdependence of observations is
done using correlation structures. They are used
to model the dependencies between the errors
within groups in mixed effects models [14-20].
Historically, the two main classes of data for
which correlation structures had been developed
were time series data and spatial data. We
anticipate that the within-group errors eij are

35

linked to the position vector pij in order to
establish a general framework for correlation
structures. This study makes the assumption that
the correlation structures are isotropic [13]. It is
possible to write the general within group
correlation structure for single level grouping for i
=1, ---Mand = 1,...,ni as follows.

Cor (e, €;) =h [d (pj, pi), p1]

where h(.) is a correlation function with values
between -1 and 1, and is a vector of correlation
parameters.

2.5 Spatial Correlation Structures

“These were initially put forth to model
dependence in data, such as geostatistical data,
lattice information, and point styles, indexed by
continuous two-dimensional position vectors.
Here, we only take into account isotropic spatial
correlation  structures, which are easily
generalized to any finite number of position
dimensions and can be expressed as continuous
functions of the same distance between position
vectors. In the mixed effects models, Diggle et al.
(1994) serve as a straightforward reference for
the spatial correlation shape” (Cressie, 1993).

Spatial correlation structures can typically be
represented by their semivariogram, n
preference to their correlation feature (Cressie,
1993). The semivariogram of an isotropic spatial
correlation structure with a distance function (d).
can be defined as :

The classical estimator of the semivariogram
(Matheron, 1962) may be expressed as

In which N(s) denotes the quantity of residual
pairs at a distance of each other.

2.6 Correlation Structures in NIme

The nime library of R-software program presents
a hard and fast set of instructions for correlation
systems, the corstruct classes, which can be
used to specify within-group correlation models
in the extended linear mixed effects. Value and
form are the two main arguments used by the
majority of constructors [21-24]. Correlation
structures can be specified as corstruct objects,
created using the standard constructor. In this
section, we'll examine some examples of
grouped data with correlated within-group errors
in order to explain how correlation models are
used in Ime(). Miles is frequently helpful to recall
and diagnose plots of the normalised residuals
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while evaluating the suitability of a correlation
model. The normalised residuals should roughly
follow an independent N (0, 1) random vector
distribution if the within-group variance
covariance model is accurate. The Body Weight
fact set, as mentioned in the introduction, is used
to demonstrate the usage of corStruct classes in
Ime in combination with variance functions [25-
27]. To fit continuous time within-group
correlation models, which clearly account for the
data imbalance, we employ the spatial
correlation cor Struct() classes. Cor Exp,
corGaus, corLin, corRatio, and corSpher are the
corStruct classes that represent spatial
correlation structures. The range of the argument
value is utilised to determine An optional
grouping variable and a position vector are
specified in the argument form, which is a one-
sided formula. The position vector's coordinates
can be anything, but they must be numerical
variables. A character string called metric is used
as the parameter to specify the metric to be
applied for determining the separations between
pairs of distances.

The Variogram approach for the Ime() class
estimates the sample semivariogram from the
residuals of the Ime() object. The arguments
resType and robust control, respectively, are
used to decide what type of residuals should be
used ("pearson” or "response") and whether the
robust algorithm () or the classical algorithm ()
should be used to estimate the semivariogram.

The defaults are resType = "pearson" and robust
= FALSE,in order that classical estimates of the
semivariogram are  obtained from the
standardized residuals. The argument form is a
one-sided system specifying the position vector
for use for the semivariogram calculations. The
effects obtained by using the varCorr model are
summarised in Table 1.

The semivariogram, the space, and the number
of residual pairs used in the estimation are each
represented by a column inside the Tabl-1
returned by the variogram. Since the number of
residual pairs used at each distance varies
significantly due to the imbalance in the time
measurements, some estimates of the
semivariogram are more trustworthy than others
[28-30]. The wide range of residual pairs that are
utilized in the semivariogram estimation generally
decreases with distance, rendering the values at
great distances unreliable. The argument max
Dist() will be used to control the maximum
distance for which semivariogram estimates
should be computed. The sample semivariogram
is depicted graphically in Fig. 1 using the plot
method for class semivariogram.

A loess smoother will improve the visualization of
semi-variogram patterns, as seen in Fig. 1. Up to
20 days later, the semivariogram seems to bloom
with increasing distance before stabilizing at 1.
Because of this, we'll use an exponential spatial
correlation model to account for within-group
errors. Table 2 summarizes the results.

Table 1. Variograms of the data obtained at different distances for different pairs of
observations

Variogram Distance No. of pairs
0.34 1 16
0.99 6 16
0.76 7 144
0.68 8 16
0.68 13 16
0.95 14 128
0.89 15 16
1.69 20 16
1.12 21 112
1.08 22 16
0.89 28 96
0.93 29 16
0.85 35 80
0.75 36 16
1.08 42 64
1.56 43 16
0.64 49 48
0.67 56 32
0.58 63 16
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Fig. 1. Pattern semi-variogram estimates for the fitted varPower model's standardized
residuals. A loess smoother is added to enhance the visualization of semi-variogram patterns

Table 2. A summary of the fixed effects results from the exponential spatial correlation model

Value Standard Error t value p value
(Intercept) 251.65 13.06 19.25 0.0000
Time 0.36 0.088 4.08 0.0001
Diet2 200.78 22.65 8.86 0.0000
Diet3 252.58 22.66 11.12 0.0000
Time:Diet2 0.620 0.16 3.87 0.0002
Time:Diet3 0.3 0.15 1.89 0.0601
Table 3. 95% confidence intervals for fixed effects
Estimate Lower Upper
Intercept 251.48 225.63 277.33
Time 0.36 0.19 0.54
Diet2 200.78 151.72 249.84
Diet3 252.57 203.51 301.66
Time:Diet2 0.06 0.032 0.09
Time:Diet3 0.31 0.003 0.61
Table 4. 95% confidence intervals for random effects
Estimate Lower Upper
Sd(intercept) 36.91 25.03 54.45
sd(Time) 0.23 0.15 0.37
Cor((Inter.),Time) -0.15 -0.62 0.41
Variance function Power 0.59 0.25 0.94
Correlation Structure range 4.88 2.46 9.69
Within Group Standard error 0.14 0.02 1.05

The values of various fixed effects and their
interaction values, along with their standard
error, t-cal and p-value, are provided in Table 2.
Take note that the exponential spatial correlation
model has a variance function as well as a
correlation shape. Using the intervals approach,
we estimate the range of the spatial correlation
parameter.

Tables 3 and 4 show the approximate 95%
confidence intervals for the fixed and random
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effects of the Exponential
model.

Spatial Correlation

The fact that the confidence intervals in each
table are bounded away from zero suggests that
the spatial correlation model produced a
noticeably better fit.

We can put this to the test using the anova
method. Table 5 displays the outcomes from the
anova technique.
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Table 5. Empirical comparison of the fitted models such as the exponential spatial correlation
model and the varPower (heteroscedastic) mixed effects model

Models AIC BIC Log Lik Likelihood Ratio Test p value
Var Power Model 1163.92  1198.41 -570.96
Exponential Spatial 114514  1182.77 -560.57 20.78 <.0001

correlation Model

1.2

1.0

0.8

Semivariogram

0.6

0.4

0.2

10

T
20

30 40

Distance

Fig. 2. Sample semivariogram estimates corresponding to the standardized residuals of the
fitted varPower model Plot is updated with the fitted semivariogram for the exponential spatial
correlation model

Table 5 shows that the exponential spatial
correlation version has the lowest AIC/BIC value.
The exponential spatial correlation model
therefore performs better than the varPower
model because the model is more accurately
fitted when the AIC/BIC value is lower. The
likelihood ratio test additionally indicates that the
corExp model fits the data notably higher than
the independent errors model corresponding to
varPower model.

We can also assess the suitability of the
correlation version with the plotting technique
when an LME object also contains a spatial
corStruct object. Instead of a Loess smoother in
this case, the fitted semivariogram for the
corStruct object is shown in the plot along with
the sample variogram estimates.

The fitted semivariogram, which corresponds to
the exponential spatial correlation version, is
added to the plot, and it agrees reasonably well
with the sample variogram estimates. Examining
the sample semivariogram for the normalized
residuals allows us to judge the efficacy of the
exponential spatial correlation model.
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To make it easier to see patterns in the
semivariogram, a loess smoother is added to the
plot. The effect of an outlying value at distance 1
on the loess smoother is minimized using the
robust semivariogram estimator. The sample
semivariogram estimates in Fig. 3 seem to
fluctuate haphazardly around the y = 1 line,
indicating that the normalized residuals are
roughly uncorrelated and that the corExp model
is suitable.

The update method and the anova method can
be used to contrast the exponential spatial
correlation model with other spatial correlation
models. Since the models are not nested, we can
evaluate them using the AIC and BIC information
criterion. The results from the anova method are
summarized in Table 6 below.

Table 6 shows that the Exponential spatial
correlation version has the smallest AIC and BIC
when compared to other models, making it the
most suitable within-group correlation model for
the Bodyweight data. The same is depicted from
the log likelihood values.
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Fig. 3. Pattern semi-variogram estimates corresponding to the normalized residuals of the
fitted exponential spatial correlation model

Table 6. Empirical comparison of the various Spatial correlation models

Models AIC BIC logLik

Exponential spatial cor 1145.14 1182.77 -560.57
Ratio spatial correlation 1148.76 1186.39 -562.57
Sphere spatial correlation 1150.78 1188.41 -563.39
Linear spatial correlation 1150.78 1188.41 -563.39
Gaussian spatial correlation 1150.78 1188.41 -563.39

3. CONCLUSION

Therefore, it may be concluded that the
Exponential spatial correlation model, among the
various models used to extend the basic linear
mixed effect model to include the inside the
within group correlated errors, has the smallest
AIC and BIC compared to other models and thus
seems to be the most maximum acceptable
within-group correlation model.
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