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Weather Derivatives, Spatial
Aggregation, and Systemic Risk:
Implications for Reinsurance Hedging

Joshua D. Woodard and Philip Garcia

Previous studies identify limited potential efficacy of weather derivatives in hedging
agricultural exposures. In contrast to earlier studies which investigate the problem
at low levels of aggregation, we find that better weather hedging opportunities may
exist at higher levels of spatial aggregation. Aggregating production exposures
reduces idiosyncratic risk, leaving a greater proportion of the total risk in the form
of systemic weather risk which can be effectively hedged using relatively simple
weather derivatives. The aggregation effect suggests that the potential for weather
derivatives in agriculture may be greater than previously thought, particularly for
aggregators of risk such as reinsurers.

Key words: crop insurance, hedging, reinsurance, spatial aggregation, systemicrisk,
weather derivatives

Introduction

The failures of crop insurance markets in the form of high loss ratios, low participation
rates, and the aversion of private insurance companies to bearing exposures have been
documented extensively. Early explanations attributed these failures primarily to infor-
mation asymmetries related to moral hazard and adverse selection (Chambers, 1989;
Gardner, 1994; Goodwin and Smith, 1995; Just and Calvin, 1994; Nelson and Loehman,
1987; Quiggen, 1994; Quiggen, Karagiannis, and Stanton, 1994; Skees and Reed, 1986).
More recently, a different view has gained support that relates market failures to the
inherent systemic nature of the risks in insuring agricultural production exposures
(Duncan and Meyers, 2000; Mason, Hayes, and Lence, 2003; Miranda and Glauber,
1997).

Systemic risk in agricultural insurance markets stems from spatially correlated ad-
verse weather events. Research on this explanation concentrates primarily on identifying
the nature and magnitude of systemic risks (Mason, Hayes, and Lence, 2003; Miranda
and Glauber, 1997) and on investigating ways in which the risks can be managed by
utilizing private reinsurance and capital markets (Hayes, Lence, and Mason, 2003;
Miranda and Glauber, 1997; Turvey, Nayak, and Sparling, 1999). Based on our review
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! Other explanations for low producer participation include crowding-out by other risk management tools and government
programs (Schmitz, Just, and Furtan, 1994; Wright and Hewitt, 1994), heterogeneity in the financial conditions of farms
(Leathers, 1994), and the whole-farm portfolio diversification effect (Schoney, Taylor, and Hayward, 1994).



Woodard and Garcia Weather Derivatives and Spatial Aggregation 35

of the literature, no empirical investigation of reinsurance hedging with weather deriva-
tives (WDs) has been conducted to date.

A key characteristic of agriculture is that it is extremely weather sensitive, and the
use of WDs in agriculture has received increased attention recently. Currently the WD
market is the fastest growing derivative market in the world (Brockett, Wang, and Yang,
2005). According to the Chicago Mercantile Exchange (CME), the value of CME weather
products grew ninefold in the first nine months of 2005, increasing from $2.2 billion in
2004 to $22 billion through September 2005, with trading volume surpassing 630,000
contracts. While numerous authors have suggested the potential of weather hedging in a
reinsurance context on conceptual grounds (Glauber, 2004; Skees and Barnett, 1999),
earlier research suggests that the potential effectiveness of WDs at the farm level may be
limited (Vedenov and Barnett, 2004). Evaluation at low levels of aggregation, however,
may not be relevant for reinsurers who are exposed to more aggregated risks, but no clear
explanation has been offered to clarify why one might expect improved WD hedging per-
formance at the reinsurance (i.e., aggregate) versus the primary Gi.e., farm) level.

This study seeks to bridge these gaps in the literature by proposing that WD hedging
may be more effective at higher levels of aggregation. Specifically, aggregating produc-
tion exposures across space may reduce idiosyncratic (i.e., localized or region-specific)
risk in the aggregate portfolio. A greater proportion of the aggregate portfolio’s total risk
may be left in the form of systemic weather risk relative to idiosyncratic risk, which may
be effectively hedged using WDs. A conceptual model that supports this notion is devel-
oped. The hypothesis is investigated at varying levels of aggregation using Illinois corn
over the 1971-2002 period at the Crop Reporting District (CRD) and state levels.

The hedging analysis assumes minimization of semivariance. An expected-shortfall
measure of tail-risk is also evaluated. These measures of downside risk may be more
relevant to reinsurers as they are typically more concerned with loss events. For several
reasons, the hedging analysis focuses on seasonal temperature derivatives in lieu of
more complex monthly precipitation and temperature derivatives used in previous
studies. The interaction of temperature and precipitation during loss events, tempera-
ture autocorrelations, and high computation costs limit the potential benefits of more
complex WDs. Also, transaction costs associated with negotiating over-the-counter
(OTC) precipitation derivatives are likely high, and their potential for liquidity low rela-
tive to temperature derivatives. Further, the markets for the temperature derivatives
traded at the CME are currently the most developed WD markets. The WDs employed
here, which are highly consistent with the CME contracts in structure, appear to
present a promising avenue for current research.

Weather Risk in Crop Insurance Markets

In contrast to earlier studies on failures in crop insurance markets, Miranda and Glauber
(1997) propose that systemic weather risk poses a serious obstacle to the emergence of
independent private crop insurance markets because widespread adverse weather
induces significant correlations among individual farm-level yields. The authors esti-
mate that U.S. crop insurer portfolios are between 20 and 50 times riskier than they
otherwise would be if yields were independent. Thus, the lack of independence among
individual yields causes crop insurers to bear substantially higher risk per unit of
premium than other property liability and business insurers.
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In order to induce insurers to underwrite crop insurance, insurers in the United States
are provided reinsurance protection by the government under the Standard Reinsurance
Agreement (SRA). The SRA imposes large administrative costs on the public. Moreover,
the extent to which the SRA effectively transfers systemic risks from the insurer to the
government is not known. Ineffective transfer of systemic risk under the SRA may
impose additional costs on the government if insurers do not have the incentives to
appropriately monitor and share in the risk of the policies they underwrite. Also, the
current structure of the SRA is restrictive in terms of how insurers may price the
policies they underwrite. All of these factors contribute to excess costs, whether implicit
or explicit, generated by the absence of competitive and independent agricultural insur-
ance markets.

Miranda and Glauber (1997) suggest that area yield reinsurance contracts may
permit crop insurers to cover most of their systemic crop loss risk, reducing their risk
exposure to levels typically experienced by conventional property liability insurers.”
Given the ability to hedge their systemic risk, crop insurers may be less averse to
insuring crop production independently, lessening the need for government intervention
and increasing the efficient functioning of agricultural insurance markets.

Hayes, Lence, and Mason (2003),% as well as Miranda and Glauber, investigate the
effectiveness of area yield derivatives in hedging crop insurance risk. Although area
yield contracts did trade for a short time in an exchange setting, they eventually failed
due to insufficient trading volume. A major problem was that market-makers were
largely uninterested in taking the other side of such specialized contracts because they
were unable to offset the resulting risk. This does not appear to be the case for weather
derivatives. The potential for liquidity in WD markets is greater due to the number of
market agents with naturally opposing hedge preferences (e.g., electrical utilities).

Hayes, Lence, and Mason (2003) also evaluate the hedging effectiveness of price
derivatives. The primary risk factor in crop insurance, however, is not price but rather
widespread adverse weather events such as drought and extreme temperatures during
critical growing periods. In addition, plant disease and infection can be intensified by
adverse weather.

While researchers have suggested that WDs may be useful for hedging systemic risk,
the use of WDs by producers is questionable. For example, Vedenov and Barnett (2004)
analyze the efficiency of WDs as primary hedging instruments for corn, soybeans, and
cotton in the United States at the CRD level of aggregation. Based on relatively complex
nonlinear combinations of monthly (June, July, and August) precipitation and temper-
ature indexes, Vedenov and Barnett’s results suggest only the limited efficacy of WDs
in hedging disaggregated production exposures.*

2Most insurance markets have some degree of systemic risk. For example, life insurance may be sensitive to interest rates,
and health insurance markets may be sensitive to health care cost inflation. Agricultural insurance markets, however, are
unique in that the degree of systemic risk is so high that private markets have failed to develop without extreme government
intervention.

3 Hayes, Lence, and Mason (2003) investigate reinsurance hedging for the Risk Management Agency (RMA), the govern-
ment agency which administers the federal crop insurance program. Although the RMA is technically a reinsurer, it is likely
that the high degree of systemic risk in agricultural insurance markets exposes private insurers and reinsurers to the same
fundamental problem. Because the exposure to systemic risk is similar, we do not differentiate between hedging by the
insurer and the reinsurer in the discussion.

¢ Vedenov and Barnett (2004) assess the hedging effectiveness of WDs at the CRD level and make the assumption that
farmer-level yield risk is accurately reflected in CRD-level yield risk. They conclude that typical farmer yields are likely much
riskier than CRD yields.
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This study builds on earlier research in two important dimensions. First, hedging
effectiveness of WDs is investigated at varying levels of spatial aggregation. Yields
evaluated at low levels of aggregation (e.g., farm or CRD level) are likely much riskier
than those at higher levels (e.g., state level) because the potential degree to which idio-
syncratic risks self-diversify increases as the level of aggregation increases. Yet, high
temperature spatial correlations induce significant correlations among low-level yield
exposures. Thus, relatively more risk may be left in the form of systemic weather risk,
and the hedging effectiveness of WDs may increase as the level of aggregation is
increased. Analysis of aggregated yields also may be more relevant from the reinsurers’
viewpoint as aggregate yield risk more accurately embodies their systemic risk.

Second, we investigate straightforward seasonal temperature WDs in lieu of complex
monthly temperature and precipitation WDs. Persistence in weather conditions may
induce a high degree of collinearity between precipitation and temperature (Namias,
1983, 1986; Wolfson, Atlas, and Sud, 1987). This, along with the fact that U.S. weather
conditions during the summer tend to be autocorrelated (Jewson and Brix, 2005),
increases the probability of misspecifying weather hedges involving multiple underlying
indexes (Vedenov and Barnett, 2004). The current work simplifies the analysis by
investigating seasonal (June, July, and August) temperature WDs that correspond to
the important growth and development stages of the crops.

The Conceptual Model

Idiosyncratic effects may self-diversify when aggregated, leaving a greater proportion
of the total risk in the form of weather risk. Thus, WD hedging may be more effective
for aggregate rather than disaggregate yield exposures. The magnitude of the spatial
aggregation effect depends on the relative correlations of weather and idiosyncratic yield
effects across locations. To illustrate, assume yields can be decomposed into two effects,
weather effects (W) and all other effects (¢), which may be correlated. Consider a simple
model of crop yields which allows for nonlinear terms:

1) Y=o “fiW,) + &,
where ¢ is the time index, & is the location index, W, is a vector of weather variables,

fi(W,,) represents the systemic weather component of yields, ¢,, represents the idio-
syncratic risk component, and Ele,,] = 0. Summing across k locations gives:

g -Se [T 2T
and

3) Var

Yy Yt,k] = Var[ka(Wt,k)] + Var[z et,k} + Cov
F % F

g £ (W), Zk: €k }

If the ¢,,’s are relatively less positively correlated than the f,(W,,)’s across locations,
then, as the individual yields are summed, more variation in yields may be able to be
attributed to the weather effects at larger levels of spatial aggregation. Hence, WD
hedging may be more effective at larger levels of spatial aggregation.



38 April 2008 Journal of Agricultural and Resource Economics

ﬁk

’

\‘ .\‘ .\‘ .\‘ .\‘ '\‘ .\‘ .\‘ .\\ A
U U U ] U U v U
\

U
F VAV VAV VAV TR
— \. l. \' \. \' \. \. \' \. 0y R \ \
9 \l '\
[&] \
s y “\
[2) AN, )
—_— \,
[0] 4 v
< RN
g v
o —— Aggregate N\
k] - - - -Location 1
Q2 e | OCAtiON 2
>-
—

K* w
Figure 1. Spatial aggregation effect and weather hedging

To illustrate, consider an extreme case. Suppose there are two locations and the €, ,’s
are perfectly negatively correlated, f.(W,,)’s are perfectly positively correlated, and
Cov[f,(W,,), g,,1 =0,V j, k. In this case the variance of aggregate yields reduces to:

(4) Var[z Yt,k} = Var
p

;f,;wt,k)],

and all variation in yields can be attributed to weather events. This risk can be poten-
tially hedged with a WD equal in size but opposite in direction to the underlying systemic
weather effect, f,(W,,). Figure 1 depicts such a situation in which the two locations are
aggregated. In this case, if W can be approximated by a weather index, the risk of the
aggregated exposure can be hedged more effectively with a call option on the index with
strike price K" than can either of the individual exposures. This framework supports the
notion that while WDs may not be useful for individual producers, they may still prove
useful in hedging systemic risks borne by aggregators of risk.

Of course, this may not always be the case. At the other extreme, consider two
locations where the ¢,,’s are perfectly positively correlated, the f,(W,,)’s are perfectly
negatively correlated, and Cov[f,(W,,), €, 1=0,Vj, k. Here, the variance of aggregate
yields reduces to:

5) Var{z Yt’k] = Var
k

Z st,k]’
%

and thus all variation in aggregate yields is attributed to idiosyncratic effects and none
of the aggregate risk can be hedged using WDs.

While both cases are unrealistic, they illustrate the aggregation argument. If weather
events across locations are highly correlated, but other yield effects are relatively less
correlated, then relatively more variation (i.e., risk) in yields can be attributed to weather
events as yields are aggregated. Empirically, the relevant question for the reinsurer is
whether the differences in the correlations of weather effects and other yield effects are
significant enough to observe substantial differences in WD hedging effectiveness as the
level of aggregation increases.
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There are good reasons to believe WD hedging may be more effective as the level of
aggregation is increased. First, aggregating yields should have a diversifying effect
across locations. Popp, Rudstrom, and Manning (2005), for instance, find that the risk
of farm-level yields is substantially higher than county-level yields. This is partly due
to the diversifying effect as yields are aggregated over individual farms.® Second, weather
events tend to be highly spatially correlated. For example, the average correlation
between the temperature indexes used in this study (described below) across locations
was 0.755.°

Yields, Weather Indexes, Derivatives,
and Pricing

Failure to account for technological advancements in crop production can produce mis-
leading hedging results. Significant trends in historical yields may produce spurious
hedge ratios which are not representative of the underlying optimal hedge ratio distri-
bution. To account for changes in technology, district-level yields are detrended using
a simple log-linear trend model (Vedenov and Barnett, 2004):"

(6) log(Y") = ey + ay(t - 1971), ¢ =1971,1972, ..., 2002.
t 0 1

Detrended yields to 2002 equivalents are calculated as:

Ytr
@) v -y, 222, £=1971, ..., 2002,
Y r

t

where Y, represents observed yields and Y} denotes the corresponding yield trends.
The negative effect of temperature stress on corn yields during the summer season
is well accepted (Dixon et al., 1994; Kaufmann and Snell, 1997; Monjardino, Smith, and
Jones, 2005; Teigen, 1991). Moreover, temperature derivatives are likely the most feas-
ible weather variable on which to structure weather contracts from a transaction cost
standpoint. Thus temperature derivatives are adopted for this study. The temperature
variables used are accumulated cooling degree days (ACDDs) for the summer season:
June, July, and August. Agronomic experiments indicate that cooling degree days
(CDDs) are more relevant to crop yields than outright temperature measurements
(Schlenker, Hanemann, and Fisher, 2006). Further, the temperature derivatives traded
on the CME are written on ACDD indexes. The number of CDDs for a single day is
defined as the amount by which the average temperature is above the reference temp-
erature, 65° Fahrenheit. Explicitly, the number of CDDs on any day t is given by:

5 Preliminary analysis strongly suggested the presence of a self-diversifying aggregation effect. The average correlation
among individual district detrended yields was 0.746. Also, the data suggest that the variance of aggregate yields was signifi-
cantly less than the variance of the individual yields.

6 In addition, preliminary analysis strongly supported the spatial aggregation hypothesis. Preliminary analysis was con-
ducted by regressing individual district detrended yields on the temperature and temperature’ indexes for all districts. The
average of the district adjusted R’s was 0.366, compared to 0.526 for aggregated yields. The average correlation of the temper-
ature effects across all districts was 0.72, and the average correlation of the residuals was 0.52.

" This procedure does not impose any distributional assumptions on the residuals but removes their central tendency
(Vedenov and Barnett, 2004). While OLS is inefficient when errors are not normally distributed, the econometric properties
of an uninterrupted series independent variable, as well as the level of skewness typical of corn yields, can permit OLS to
generate better crop yield coefficient estimates than many robust regression methods (Swinton and King, 1991).
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(8) CDD, = Max(0, T, - 65),

where T, is the average temperature on day ¢. The average temperature is the simple
arithmetic average of the daily maximum and minimum temperatures. The index of
ACDDs on any date ¢ is simply defined as:

M
9) ACDDMN- ¥ ¢DD,, t=M-N,... M,

t=M-N

where M - N is the first day of the contract period, and M is the expiration date.

Although precipitation is also an important risk factor in crop yields, we restrict analy-
sis to temperature derivatives due to the higher potential for liquidity in temperature
derivatives. For instance, from October 14, 1997 to April 15, 2001, temperature deriv-
atives represented over 98% of all WDs (Brockett, Wang, and Yang, 2005). Further, we
use summer season contracts as opposed to more time-disaggregated contracts (e.g.,
monthly). The use of time-aggregated temperature derivatives may not be a major
shortcoming as atmospheric flow patterns that control much of the North American
climate tend to be persistent (Namias, 1983, 1986; Wolfson, Atlas, and Sud, 1987). In
particular, during extreme drought events—those most likely to result in widespread
crop losses—this persistence phenomenon causes heat and precipitation conditions to
interact, resulting in a self-perpetuating event across both time and space. On a large
scale, average temperature and precipitation conditions for a given region are highly
negatively correlated in these extreme events. The use of a seasonal index is further
motivated by the fact that in the U.S. corn growing regions, month-to-month tempera-
tures are typically autocorrelated (Jewson and Brix, 2005) during the summer season.’®

Figure 2 displays aggregate detrended Tllinois state corn yields for 1971-2002, with
the x-axis ordered by summer season ACDDs. The hottest years, those in which ACDDs
exceeded approximately 900, corresponded roughly to the driest years. In fact, four of
the five hottest years were also drought years. Furthermore, all droughts corresponded
to temperatures in excess of 900 ACDDs. Consequently, it appears that temperature
derivatives may act as a suitable substitute in hedging precipitation risk when it is most
needed.

Hedging yield risk with WDs becomes a difficult problem for two reasons. First, there
is a high degree of yield variability that cannot be attributed to potentially tradable
weather indexes. For instance, while yields are systemically related to summer ACDDs,
there is still considerable yield variability that cannot be ascribed to ACDDs. For
example, large yield shortfalls may be due to other events not related to ACDDs, such
as in 1974 when late planting and an early season-ending frost were responsible for
large yield shortfalls (figure 2). Second, the relationship between weather and yields is
likely nonlinear and quadratic. In figure 2, a trend line is obtained by plotting the fitted

8 While investigation of more time-disaggregated derivatives may improve hedging effectiveness, analysis of more specific
contracts raises concerns regarding the usefulness of instruments traded on market exchanges. Splitting the “contract space”
into a large number of highly specific contracts frequently reduces market activity and willingness of traders to participate.
Hence, the benefits of potentially improved hedging effectiveness are likely offset by limited liquidity which adds transaction
costs and further market risk. In a practical sense, it is important to note this focus is consistent with industry practices and
recent literature that identifies a movement toward more market-based weather derivatives (Roth, Ulardic, and Trueb, 2007).
It is also of value to note that the use of well-specified “generic” contracts like those proposed in this study should not dampen
their usefulness. Hedgers almost always use generic contracts and estimate basis risk to meet their firm-specific risk manage-
ment needs. Turvey (2001) provides a discussion of the use and pricing of more time- and event-specific structures.
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Figure 2. Illinois state corn yields (bushels/acre), 1971-2002

values from regressing yields on ACDDs for the highest (above 900) and lowest (below
900) observed ACDDs separately. For Illinois corn, it appears that yields are quadrati-
cally related to ACDDs, suggesting the potential advantage in hedging applications of
an options contract which can be nonlinearly related to an ACCD index. In this analysis
we include swaps as well as options in order to investigate the degree to which nonlinear
weather effects exist in yields.

All derivatives are priced using burn analysis (BA). BA is the simplest method for
pricing weather derivatives, and is based on calculating what the contract would have
paid out in the past as determined by observed historical distributions.’ It is attractive
because it does not require strong assumptions about the distribution of the underlying
index, and it is simple to compute.'® Pricing is conducted by integrating the derivative
payoff function over the distribution of the empirical distribution of the inter-year
ending value of the weather index. The expected payoffis then discounted back to obtain
the derivative price. BA assumes that the appropriate discount rate is the risk-free rate.
While some studies have investigated the use of equilibrium models to estimate the
discount rate (e.g., Cao and Wei, 2004; Richards, Manfredo, and Sanders, 2004), Turvey
(2005) argues that the market price of risk should be zero (and thus the discount rate
will equal the risk-free rate) in equilibrium because of spatial arbitrage.

9The assumptions of BA are that the historical index time series is stationary, and statistically consistent with the prevail-
ing climate during the contract period (Gi.e., the historical distribution of weather accurately reflects the true underlying
distribution), and that the values are independent across different years (Jewson and Brix, 2005). Regressing the temperature
indexes on a linear trend suggested no significant warming or cooling trends in our data.

10 Pricing estimates were also obtained by estimating a parametric functional form for the weather index and numerically
integrating the option payoff over the estimated distribution similar to the approach used by Vedenov and Barnett (2004).
The pricing was impacted only slightly. Burn analysis prices were not found to be biased on average relative to the estimated
index prices.
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Our analysis also assumes all pricing and hedging is conducted prior to realizations
of the current season. Although more complex intra-year models exist (e.g., Richards,
Manfredo, and Sanders, 2004; Turvey, 2005), they should correspond closely to inter-
year index pricing models if the processes underlying the daily model are well specified,
and if the pricing is conducted at a point in time at which information about the current
index value has not been incorporated into the market’s expectation of the ending index
distribution.

The payoff, f, from a long swap contract is given by:

(10) f(ACDD) = D(ACDD - K),

where ACDD is the index, D is the tick value measured in $/ACCD, and K is the strike
price of the contract (Jewson and Brix, 2005)—i.e., the contract pays $D per ACCD
above the chosen strike price K. The payoff is a linear function of the index. The buyer
is swapping a certain exposure, K, to the index for an uncertain exposure, ACDD, and
thus the term “swap.” Most swaps are costless (i.e., there is no premium, and the payoff
equals the profit). If the swap contract is to be traded without a premium, then the
strike must be set at a value such that the expected payoff is zero—i.e., K, = E(ACDD),
where K is known as the “fair strike.” Pricing of a swap thus entails determining the
fair strike. Pricing a zero-cost linear swap using BA simply involves setting the fair strike
equal to the historical average of the index. Most exchange-traded swap contracts—such
as those traded on the CME—are costless, settled daily, and are technically known as
futures contracts. Most OTC zero-cost swap contracts are settled at the end of the
contract and are known as forwards. This study uses derivatives which are settled as
forwards and assumes that borrowing and lending exist at the risk-free rate. Settlement
method would be unlikely to change the qualitative results in a significant way.
The payoff, p, from a long call option is denoted by:

(11) p(ACDD, K) = Max(0, D(ACDD -K)),
and the profit, «, is given by:
(12) n(ACDD, K) = Max(0, D(ACDD - K)) - P(K),

where P is the option price, or premium. For options, pricing entails simply determining
the fair premium, or fair price, which is defined whereby the expected profit on the con-
tract is zero. The fair price is equal to the expected payoff of the contract, or P = E(p),
and pricing using BA simply consists of calculating the mean of the historical payoffs,
p, given a strike, K.

Hedging Analysis and Risk Measures

Following Vedenov and Barnett (2004), the hedge ratio is determined by minimizing the
semivariance (SV) of a portfolio consisting of yields and a WD, restricting attention to
quantity risk alone. This assumes all price risk is previously hedged using price deriv-
atives and implies the estimated hedge ratio below can be scaled by the hedged price to
arrive at a standardized hedged revenue per acre exposure. SV, which only measures
deviations below the mean, reflects downside risk.
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Formally, for swaps, the hedge ratio (w) is chosen by solving:

(13) Min ) {Max[?k - (Yt')i,ft + wkft’k), O]}2,
Wp

where w is the hedge ratio measured in contracts/acre, Y, is detrended yield in bushels/
acre, Yk is the long-run average detrended yield, and f, is the return on the swap con-
tract which pays $1 per ACDD. Here the index k refers to either an individual district
or an aggregate-level exposure.

For options, the hedge ratio (contracts/acre), v, and strike price, K, are chosen by
solving:

(14) Min Y (Max{?k - [thl,ft + vknk(Kk)], O})

wy,K, t

2
s

where 7,(K) is the profit of an ACDD call option with strike price K. The hedging
effectiveness of weather derivatives is examined by comparing portfolios with and
without derivatives at different levels of aggregation. Hedging effectiveness isevaluated
using hypothetical ACDD derivatives written for the locations identified in table 1. A
single derivative is chosen for the individual districts as well as for the state-level expo-
sure. The state-level (i.e., aggregated) yield and ACDD index measures were calculated
as a simple average of the individual district yields and ACDD indexes."!

In the context of the discussion above regarding alternative pricing methods, since
the assumed objective is minimization of risk, the choice of pricing method will not alter
the risk-minimizing hedge because a change in the contract price will uniformly shift
the ex post revenue of the hedger up or down in all states of nature. Therefore, in this
framework, alternative pricing methods will not affect the payment schedule of the deriv-
ative or the correlation between crop revenue losses and derivative payoffs (Vedenov
and Barnett, 2004).

The tick, D, is standardized to $1 per unit of the weather index for simplicity, but the
choice is arbitrary. In practice, it can be rescaled to account for the tick of the particular
contract. As noted, attention is restricted to quantity risk only, and optimal portfolios
are estimated assuming price and quantity decisions are made separately. The hedge
ratio, w or v, is expressed in contracts per hedged revenue acre. For instance, consider
an exposure of 1,000 acres which is hedged with price derivatives at $2.50/bushel. If
average yield is ?k, and the price derivative (e.g., a futures contract) is expressed in
$/bushel standardized to one bushel per contract, then the optimal number of price
derivatives in terms of the optimal hedge ratio of the price derivative in bushels (say z)
purchased is z x 1,000 x _Y'k. If the price derivatives are standardized at 5,000 bushels
per contract, then the number of price derivatives purchased would simply be rescaled
and expressed as z x 1,000 x ?k + 5,000. The optimal weather hedge in terms of h can
then be expressed as  x 1,000 x $2.50. If the option paid $50 per tick of the underlying
weather index, then it is expressed as & x 1,000 x 2.5 + 50. Thus, the weather hedge
ratio need only be scaled by the hedged price, acres, and tick of the WD.

The criterion used to evaluate the change in risk exposure is the root mean squared
loss (RMSL). RMSL is a simple function of SV:

U The choice of weighting scheme for the districts is not central to the findings. The analysis was also conducted using a
production-weighted average and the results were not materially different.
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Table 1. Selected Weather Stations for Illinois Crop Reporting Districts

District City County District City County
D10 Northwest Dixon Lee D60 West Southwest Whitehall Greene
D20 Northeast Ottawa LaSalle D70 East Southeast  Olney Richland
D30 West LaHarpe Hancock D80 Southwest Sparta Randolph
D40 Central Lincoln Logan D90 Southeast McLeansboro ~ Hamilton
D50 East Hoopeston ~ Vermillion
(15) RMSL, = | = o2,
k T %

where T = 32 is the sample size, and 0% is the SV from equations (13) and (14).

In addition to expected net losses, agents also may be interested in the magnitude of
losses given an extreme event occurs. Thus, expected shortfall (ES) is also reported
(Dowd and Blake, 2006).? ES is the probability weighted average of the worst o out-
comes. In the case of a discrete distribution, the ES is given by:

o
(16) ES, = 1 Y (pth worst outcome) x (probability of pth worst outcome),
o p=0

and is reported for « = 6%, 9%. The ES measurements are calculated using a historical
simulation where each observation is assigned an equal probability of 1/T. Therefore,
ES 6% equals the average of the two lowest valued observations, and ES 9% equals the
average of the three lowest observations.’® It can be interpreted as an expectation of
yields in the case that a tail event does occur, and thus is a preference-free measure of
tail-risk.™* The expected shortfall measure is used rather than the value-at-risk (VaR),
which provides an estimate of the worst loss one might expect given a tail event does not
occur, because it is subadditive—making it less likely to produce puzzling and inconsist-
ent findings in hedging applications (Dowd and Blake, 2006).

Data

The data used in this study are Illinois CRD corn yields for 1971-2002. Illinois consists
of nine CRDs. Temperature data were collected for a location within each CRD. An
attempt was made to select the most centralized location in each district (table 1). Yield
data were obtained from the National Agricultural Statistics Service website, and
weather data from the United States Historical Climatology Network website (Williams
et al., 2006).

12 The ES measure used here is based on the revenue distribution, and hence is a modification of the measure reported in
Dowd and Blake (2006) which is calculated in terms of the loss distribution.

13 The ES statistics were also estimated using numerical integration after first estimating the distribution of the hedged
or unhedged exposure. The results using this method were not materially different.

% The ES measure has also been referred to as the “conditional tail expectation,” “expected tail loss,” “tail VaR,” “condi-
tional VaR,” “tail conditional VaR,” and “worst conditional expectation.” Alternatively, ES can be interpreted as the utility
of tail-risk for an agent with risk-neutral tail-risk preferences.
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Results and Discussion

The results of the hedging analysis appear in tables 2 and 3. All estimates are obtained
by minimizing SV as outlined above assuming a constant price of $2.50/bushel.’” Results
are first presented for the full sample (1972-2002, table 2), and then for the second half
(1987-2002, table 3) subsample period which provides an out-of-sample dimension to the
analysis. Out-of-sample estimates in table 3 are obtained by applying the in-sample
solution for the first half of the sample to the second half of the sample.

Within the tables the “average of districts” column statistics are calculated as the
average of the individual district statistics. The “average of districts” results serve as
a basis of comparison to the “state (aggregated)” portfolio statistics. The “state (aggre-
gated)” results are obtained by averaging the data across districts (i.e., aggregating) and
then performing the analysis. Notice, if the weather effects captured by an ACCD index
across districts are relatively uncorrelated and/or the other factors affecting yields are
strongly correlated, then the “state (aggregated)” results will closely mirror the “average
of districts” results. Substantial differences in the risk-reducing effectiveness of WDs
for the “state (aggregated)” portfolio compared to the “average of districts” portfolio
reveal that the risk reduction offered by WDs at the aggregate level is stronger than by
hedging the individual districts separately. For instance, in table 2, the RMSL of the
state portfolio when hedging with a call option was 22.56 versus 32.08 for the average
district-level result, indicating the hedging effectiveness obtained when hedging an
aggregated exposure is greater than by hedging at the individual district level.

Statistics measuring changes in RMSL and ES are calculated relative to the unhedged
yield exposures. If the change in RMSL resulting from the addition of a WD is negative
(positive), then the WD is risk reducing (risk increasing), whereas for the ES a positive
(negative) change implies a reduction (increase) in risk.

The results for the full sample are reported in table 2. The return is the same for all
hedged and unhedged portfolios in-sample, a direct result of fair option pricing. Hedging
effectiveness varied widely across districts, with reductions in RMSL (change in ES 6%)
ranging from 11.45% ($23.88) in the Southwest D80 region and 20.48% ($15.58) in the
East Southeast D70 region when hedging with swaps, to 41.76% ($67.76) for the South-
east D90 region when hedging with call options. The large variability indicates that at
low levels of aggregation there is a high degree of idiosyncratic risk present in crop yields.

Hedging with options was consistently more effective than hedging with swaps due
to the presence of strong nonlinear temperature effects. The superior performance of
options, which is illustrated in figure 2, is consistent across risk measures. For example,
in table 2, the “state (aggregated)” portfolio reduction in RMSL (change in ES 6%) was
43.31% ($59.91) when hedging with options compared to 31.88% ($46.37) when hedging
with swaps.

Next, attention is turned to investigation of the spatial aggregation effect. The
unhedged portfolio results for the full sample (table 2) show that the RMSL is lower
for the “state (aggregated)” portfolio than for the “average of districts” portfolio ($39.80
vs. $45.42), and results for ES 6% and 9%, respectively, are higher under the “state
(aggregated)” portfolio ($235.38 and $255.18) compared to the “average of districts”

15 Similar to previous research, the results are presented in terms of revenues assuming a constant price. Evaluation of
price-quantity risk interactions is an interesting area for future research.
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Table 2. Hedging Results: In-Sample Estimates, 1971-2002

Districts
Description D10 D20 D30 D40 D50 D60
Unhedged
Average Yield 152.09 147.44 151.81 158.60 144.36 157.66
RMSL 43.07 42.06 48.90 50.42 52.97 42.89
ES 6% 240.56 237.91 224.41 235.23 201.04 251.92
ES 9% 258.39 246.09 235.74 252.45 216.20 277.84
Hedged-Swap
Hedge Ratio (contracts/acre,
$1 tick) 0.17 0.19 0.26 0.31 0.33 0.28
Swap Fair Strike 644.26 803.91 798.75 851.04 804.03 907.38
RMSL 36.62 35.78 39.71 35.94 33.94 28.33
Change RMSL -6.45 -6.29 -9.19 -14.48 -19.04 -14.56
% Change RMSL -14.97 -14.95 -18.80 -28.72 -35.94 -33.95
ES 6% 268.96 265.89 253.94 276.25 263.69 318.32
ES 9% 281.75 268.19 273.14 292.36 270.04 326.55
Change ES 6% 28.41 27.98 29.53 41.03 62.65 66.40
Change ES 9% 23.36 22.10 37.40 39.91 53.85 48.72
Hedged -Call Option
Hedge Ratio (contracts/acre,
$1 tick) 2.44 0.69 0.59 0.73 0.56 0.39
Optimal Call Strike 864.96 875.89 876.00 920.78 819.00 929.68
RMSL 28.15 34.54 37.08 32.74 32.00 30.05
Change RMSL -14.91 -7.53 -11.82 -17.68 -20.98 -12.84
% Change RMSL -34.63 -17.90 -24.17 -35.06 -39.59 -29.93
ES 6% 296.46 254.24 265.16 290.69 263.34 314.05
ES 9% 304.80 273.51 274.00 306.76 271.39 319.75
Change ES 6% 55.90 16.33 40.75 55.46 62.30 62.13
Change ES 9% 46.41 27.42 38.26 54.31 55.19 41.91

Notes: The table presents results of the hedging analysis for a $2.50/bushel corn price. Estimates were obtained by
minimization of semivariance with respect to the WD hedge ratio (WD hedge ratio and optimal strike) when hedging with
swaps (options). The optimal hedge ratio and strike are defined as the SV-minimizing hedge ratio and strike. Statistics
measuring changes in RMSL and ES are calculated relative to the unhedged revenue exposures. “Average of Districts”
column statistic values were obtained by averaging the individual district statistic values and are provided to serve as a
basis of comparison to the “State (aggregated)” results. A decrease (increase) in the RMSL corresponds to a reduction
(increase) in risk as a result of the addition of a WD. In contrast, an increase (decrease) in the ES indicates a reduction
(increase) in risk exposure from adding a WD. ( table extended . . . =)

portfolio ($221.48 and $235.55). As implied by these findings, yield risk “self-diversifies”
to some extent in the aggregate portfolio.

Yet, a comparison of unhedged portfolios does not allow us to determine whether WD
hedging is more effective at larger levels of aggregation. For this we must examine the
hedged portfolios. We restrict attention to portfolios hedged with options for the
remainder of the discussion. The results from the swap hedging analysis, however, lead
to similar conclusions.

All estimates of hedging effectiveness support the aggregation argument. Reduction
in the RMSL for the “state (aggregated)” portfolio for the full sample (43.31%) was



Woodard and Garcia Weather Derivatives and Spatial Aggregation 47

Table 2. Extended

Districts [extended]

Average of State
Description D70 D80 D90 Districts (aggregated)
Unhedged
Average Yield 139.80 123.89 126.29 144.66 144.66
RMSL 43.07 41.07 44.34 45.42 39.80
ES 6% 2217.55 192.83 181.33 221.48 235.38
ES 9% 241.14 195.22 196.93 235.55 255.18
Hedged -Swap
Hedge Ratio (contracts/acre,
$1 tick) 0.27 0.15 0.30 0.25 0.27
Swap Fair Strike 1,000.38  1,092.37 994.53 8717.40 877.40
RMSL 34.25 36.36 29.35 34.47 27.11
Change RMSL -8.82 -4.70 -14.99 -10.95 -12.69
% Change RMSL -20.48 -11.45 -33.80 -23.67 -31.88
ES 6% 243.14 216.71 230.44 259.71 281.75
ES 9% 258.27 222.80 234.68 269.75 284.68
Change ES 6% 15.58 23.88 48.57 38.23 46.37
Change ES 9% 17.13 217.59 317.75 34.20 29.49
Hedged -Call Option
Hedge Ratio (contracts/acre,
$1 tick) 0.69 0.18 0.54 0.76 0.68
Optimal Call Strike 1,056.00 943.00  1,014.00 922.15 953.48
RMSL 32.94 35.40 25.82 32.08 22.56
Change RMSL -10.13 -5.67 -18.52 -13.34 -17.23
% Change RMSL -23.51 -13.81 -41.76 -28.93 -43.31
ES 6% 257.82 221.10 249.64 268.06 295.29
ES 9% 264.94 227.23 253.43 277.31 302.31
Change ES 6% 30.26 28.28 67.76 46.57 59.91
Change ES 9% 23.80 32.01 56.51 41.76 47.13

greater than for the average of the districts (28.93%), an improvement in hedging
effectiveness of approximately 50% over what is implied by separate evaluation of the
individual districts on average. The intuition behind this result is that the weather
effects are strongly correlated across the districts while the other effects are relatively
less correlated. Thus, the aggregated exposure is highly systemic and a substantial
portion of this can be effectively managed using WDs. The ES measure leads to similar
conclusions. For instance, the full-sample results indicate an ES 6% increase of $59.91
for the state portfolio, compared to $46.57 for the averaged district portfolios.

The hedging effectiveness results were also stronger for the “state (aggregated)”
portfolio than for any of the individual districts. As shown in table 2, the 43.31%
reduction in RMSL under the state portfolio was greater than for any of the individual
district portfolios, with the next closest being 41.76% for D90. Also, the hedging
effectiveness for the individual districts varied widely across districts, where reductions
in RMSL ranged from 41.76% for D90 to 13.81% for D80.
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Table 3. Hedging Results of Historical Simulation:
Out-of-Sample Estimates, 1987-2002

Average of State
Hedged: Call Option Districts (aggregated)
RMSL 25.56 19.65
Change RMSL -5.93 -6.78
% Change RMSL -16.85 -25.66
ES 6% 268.41 291.85
ES 9% 279.96 296.17

Note: The table presents out-of-sample estimates for the second half of the data
period (1987-2002) when hedging with call options. Out-of-sample estimates are
obtained by applying the optimal hedge estimated from the first half of the data
period to the second.

The out-of-sample results lead to similar conclusions.'® The out-of-sample estimates
for the second half (table 3) of the sample period show reductions in RMSL of 25.66% for
the state portfolio versus 16.85% for the averaged district portfolios. The change in ES
as well as the level of ES was greater for the state portfolio in all out-of-sample cases.
Specifically, table 3 reports the ES 6% (9%) was $291.85 ($296.17) for the state portfolio
versus $268.41 ($279.96) for the averaged district portfolios. On average, the hedging
effectiveness for the out-of-sample results in this study, which employs simple seasonal
temperature contracts, is comparable to the results obtained by Vedenov and Barnett’s
(2004) analysis, which employs complex combinations of monthly precipitation and
temperature derivatives. This suggests that although substantial amounts of yield risk
can be hedged using WDs, the marginal benefit of more complex instruments for weather
hedges may not be large, particularly when their components are correlated.

Based on our findings, aggregating individual production exposures has the effect of
reducing idiosyncratic yield risk, leaving a greater proportion of the aggregated
portfolio’s total risk in the form of systemic weather risk, a substantial portion of which
can be effectively hedged using WDs. These results support the notion that WDs may
be more useful than previously thought, particularly for aggregators of risk such as
reinsurers. In addition, the results show that the use of relatively simple temperature
contracts can achieve reasonable hedging effectiveness.

Conclusion

This study investigates whether WDs are more effective for hedging yield exposures at
large versus small levels of aggregation. Using relatively simple contract structures
similar to those traded on the CME, we demonstrate their potential in hedging yield
risk. Risk reduction is substantial for the aggregated portfolio as the RMSL can be
reduced by almost half, and the ES can be increased by about 25% relative to an un-
hedged portfolio. The analysis builds on earlier research in some important dimensions.

18 In-sample estimates of two subperiods, 1971-1986 and 1987-2002, were highly consistent with the out-of-sample esti-
mates. For example, separate analysis of the in-sample subperiods (not reported) revealed reductions in RMSL ranging from
3.88% (26.02%) in the first half of the sample, to 42.59% (4.68%) in the second half for district D20 (D80), whereas the state
portfolio RMSLs ranged only from 40.24% to 58.66%. A complete set of in-sample estimates for the subperiods is available
from the authors on request.
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We establish a simpler but clearer link between yields and temperature indexes and
highlight how market agents may employ relatively simple WDs to hedge yield risk.
Also, we establish a link between temperatures and yields at a higher level of aggre-
gation than in previous studies. The high performance of the temperature contracts in
hedging systemic risk is related to three factors: the autocorrelationsin month-to-month
temperatures (Jewson and Brix, 2005), the highly negative correlations between
temperature and precipitation in extreme events (Namias, 1983, 1986; Wolfson, Atlas,
and Sud, 1987), and the nonlinear response of yields to temperatures (Dixon et al., 1994;
Vedenov and Barnett, 2004) which emerges most noticeably at higher levels of aggre-
gation.

This study provides two important contributions. First, a conceptual basis is estab-
lished for the notion that WD hedging may be more effective at the reinsurance versus
the primary level, suggesting the potential of WDs for reinsurers. Second, the empirical
evidence substantiates the presence of the aggregation effect which supports the
proposition that WDs may provide benefits for aggregators of risk such as reinsurers.
Further, the use of simple temperature derivatives may provide risk management
benefits which are reasonably effective and also more consistent than those provided by
complex multivariate WDs. Given the problems that systemic weather risk has caused
in crop insurance markets, and also considering that crop insurance is now widespread
with more than 75% of corn and soybeans planted in 2003 insured (Coble et al., 2004),
our findings may be of interest to market-makers, reinsurers, and policy makers. In
addition, the aggregation effect outlined here may also be applicable to other domains
such as natural gas consumption.

Several qualifications are in order. First, the study only considers WDs written on
local and relatively remote weather stations. It is likely the transaction costs associated
with negotiating WDs in the OTC market on remote weather stations would entail high
transaction costs and render these contracts infeasible. Yet, WDs written on ACDD
indices for major international cities are traded on the CME. Given the great potential
liquidity for these CME contracts and the high degree of spatial correlation in temper-
atures, an assessment of geographical basis risk for larger areas using CME contracts
may be a worthwhile area of future research.

The analysis does not consider actual reinsurer portfolios, but rather only establishes
the basis for the spatial aggregation effect in yield hedging applications involving WDs.
It is likely, however, that yield risk is a reasonable proxy for reinsurer risk. For instance,
Hayes, Lence, and Mason (2003) conclude that the RMA’s reinsurance risk stems mostly
from yield, or quantity, risk. Still, future research of WD hedging with special attention
to specification of the reinsurer portfolio is needed. This may also include addressing
price risk, which is not considered here. Given the growing popularity of revenue
products and the interaction between prices and yields at the aggregate level, optimal
hedging of the reinsurer portfolio may involve simultaneous determination of optimal
hedge ratios with both price and weather derivatives. More complex weather derivative
structures could also be investigated.

[Received December 2006; final revision received January 2008.]
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