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Global Optimization Methods 

 

Abstract – Training a neural network is a difficult optimization problem because of 

numerous local minimums.  Many global search algorithms have been used to train 

neural networks.  However, local search algorithms are more efficient with computational 

resources, and therefore numerous random restarts with a local algorithm may be more 

effective than a global algorithm.  This study uses Monte-Carlo simulations to determine 

the relative efficiency of a local search algorithm to 9 stochastic global algorithms.  The 

computational requirements of the global algorithms are several times higher than the 

local algorithm and there is little gain in using the global algorithms to train neural 

networks. 

 

Keywords – Evolutionary algorithms, neural networks, simulated annealing, stochastic 

global optimization 

 



 

Introduction 

Training neural networks is challenging because the objective function being minimized 

contains numerous local minima.  Therefore, some have used so called global search 

algorithms to train neural networks rather than the more traditional local search 

algorithms.  Global optimization algorithms are a class of algorithms that seek to avoid 

getting trapped in local minimums.   

Global search algorithms can be divided into two broad categories, stochastic and 

deterministic.  Deterministic global algorithms (eg. grid search) are not investigated here 

because they are too slow for problems with more than a few parameters.  Instead, 

several stochastic global algorithms are investigated.  Some examples of stochastic search 

algorithms are simulated annealing and various evolutionary algorithms such as genetic 

algorithms, evolutionary strategies, and evolutionary programming.  

Simulated annealing was used by Porto, Fogel, and Fogel; Sexton, Dorsey, and Johnson; 

and Day and Camporese to train neural networks.  Genetic algorithms are the most 

common evolutionary algorithm used to train neural networks (see Chen and O'Connell; 

and Yao).  Some examples of using evolutionary programming or evolutionary strategies 

are Porto, Fogel, and Fogel; Scholz; and Wienholt.  Evolutionary algorithms have also 

been used to evolve the architecture of neural networks as well as the weights (Maniezzo;  

Harp, Samad, and Guha,).  However, this study is only concerned with estimating the 

weights of neural networks with a fixed architecture.  That is, a neural network with a 

fixed number of hidden layers and hidden neurons.     



 

Global search algorithms have a potential advantage in accuracy, but local search 

techniques are much faster.  Therefore, restarts of a local search algorithm with random 

starting values are an alternative to using global algorithms.  Many studies have sought to 

compare local and global search algorithms for training neural networks.  However, the 

results reported in the literature are mixed.  From an experimental evaluation standpoint, 

many of these studies lack rigor.  Many of the studies looked at the performance of the 

algorithms on only one or two data sets and few of the studies compared results across 

different global optimization routines.  In addition, the majority of the data sets were 

classification problems.  Little attention has been paid to function approximation 

problems.  This study provides a rigorous comparison of nine global algorithms against 

an efficient local optimization routine across four data sets in a function approximation 

context.  The stochastic global algorithms are, 2 simulated annealing algorithms, 1 simple 

random stochastic algorithm, 1 genetic algorithm and 5 evolutionary strategy algorithms.  

The neural networks are estimated with either 250 or 500 random restarts of each 

algorithm. The distributions of the final objective function values from each of these 

restarts are then compared against each other.  Speed is measured as the time taken to 

solve the 250 or 500 optimizations.   

Stochastic Global Optimization 

Local search techniques use the gradient of the objective function with respect to the 

model parameters to guide the search.  The search will generally proceed downhill in the 

search space from its starting point towards the nearest minimum.  Stochastic global 

optimization algorithms are not restricted to taking only a downhill step.  In addition, 



 

they may simultaneously explore many different regions of the search space.   A concept 

at the core of stochastic global optimization is the generation of a trial point θ~  by taking 

a step from the current point θ  as follows: 

(1)                              r+=θθ~ , 

where r  is a random vector drawn from some probability density function.  The random 

move is often referred to as a mutation in the evolutionary algorithm literature.  

In the beginning of a simulated annealing algorithm, large steps are taken from the 

current point according to (1).  As the algorithm progresses, smaller and smaller steps are 

taken.  The degree of perturbation caused by the random vector r  in (1) is proportional to 

a parameter in the simulated annealing algorithm called the temperature.  As the 

algorithm progresses, the temperature cools.  A normal distribution is commonly used to 

generate the random steps.  A random step can be accepted or rejected as the starting 

point for the next iteration.  Most simulated annealing algorithms automatically accept a 

step that results in an improvement of the objective function.  However, a feature of 

simulated annealing is that the algorithm can also accept an inferior step that results in a 

worsening of the objective function.   

The acceptance of an inferior point is based on a probability generated by a function 

),( TQg ∆  where Q∆  is the change in the cost function and T is the temperature.  The 

function ),( TQg ∆  is an increasing function of Q∆  and a decreasing function of T.  The 

larger the increase in the objective function, the lower the probability of accepting the 

point and the lower the temperature, the lower the probability of accepting the point.  The 

value of ),( TQg ∆  is compared to a uniform random number s  in [0,1].  If ),( TQgs ∆< , the 



 

inferior point is accepted as the starting point for the next iteration.  In the beginning, the 

algorithm randomly bounces around by taking large steps and accepting a high 

percentage of inferior trial points.  As the algorithm progresses, the temperature 

decreases, steps are smaller, and the probability of accepting inferior trial points 

decreases.  The algorithm begins to focus on the most promising areas of the parameter 

space.  Eventually, we hope that it settles to a point that is close to the global minimum. 

Genetic algorithms as optimization algorithms are based loosely on the concepts of 

selection and reproduction found in nature.  As such, the literature draws much of its 

terminology from genetics and biology.  The driving force behind the operation of 

genetic algorithms, as it is in evolution of a species, is survival of the fittest.  Genetic 

algorithms require a set of potential or candidate solutions, called individuals, to the 

problem at hand.  The candidate solutions or individuals are referred to collectively as a 

population.  The individuals in a population are born, mate, and die.  A typical number of 

individuals in a population would be between 20 and 100.   

In some genetic algorithms, the individuals in the population are encoded as binary 

strings.  However, for real-valued optimization problems, there are advantages to using a 

real-valued encoding.  That is, leaving the individuals as floating point numbers as they 

are in simulated annealing.  (See Michalewicz; Wright; and Syswerda for more details.) 

Real-valued encoding is used in this research. 

An iteration of a genetic algorithm is referred to as a generation.  In each iteration or 

generation, the individuals are subject to the operations of mutation, crossover, and 

selection, which operate on the individuals to form the next generation of the population.  



 

The mutation operator is as that given in (1) and is applied to each individual in the 

population.  The crossover operator is next applied to each individual.  The crossover 

operator is the distinguishing operator of genetic algorithms (Davis).   Crossover has 

traditionally been viewed as the main search operator with mutation being only a 

background operator.  Crossover is the process by which “genetic” material from 

different individuals is combined to create a potentially superior offspring.  Pairs of 

individuals are picked at random from the population to serve as parents.  These parents 

are subjected to crossover to form offspring.  A simple crossover operator is the one-

point crossover scheme.  Two parents are drawn at random from the population.  A 

random point in the individuals is chosen after which all elements between the two 

parents are swapped.  Many other crossover schemes are have been used.   

The last operator to be employed in each generation is the selection operator.  The 

selection operator forms the population for the next generation by selecting those 

individuals that are most “fit”.  The fitness is based on how well the individual solves the 

problem at hand.  In the case of this research, an individual that produces a relatively low 

cost function value would have a high fitness value.  A probability value that is 

proportional to its fitness is assigned to each individual.  Selection for the next 

generation’s population is then based on this probability.   

Similar to genetic algorithms, modern evolutionary strategy algorithms operate on a 

population of potential solutions.  However, in contrast to genetic algorithms, mutation is 

the primary operator and recombination is only a background operator.  One of the most 

common multi-membered evolutionary strategies is the ),( λµ -evolutionary strategy.  The 



 

),( λµ -evolutionary strategy is so named because it generates λ  offspring from µ  

parents, 1≥> µλ .  The comma in ),( λµ  represents the fact that only the offspring are 

available for selection by survival of the fittest to be included in the next iteration of the 

algorithm.   

One of the defining characteristics of modern evolutionary strategies is their ability to 

evolve or self-adapt the variances and sometimes covariances of the mutations.  

Therefore, the individuals in the population are composed of the parameters being 

optimized, called object variables in the literature, and the variances and covariances, 

called strategy parameters, of a multivariate normal distribution for mutation.   

Simulation Details 

The simulations use either 250 or 500 random restarts of each algorithm to compare the 

final objective function values for each algorithm.  For the two largest neural network 

models, 250 random restarts are used to conserve computational resources. 

Neural network architectures and data 

This study is restricted to training of the feedforward type of multilayer perceptron 

(MLP).  The specific form used in this study is defined by: 

(2)               ∑
=

′+′=
p
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number of hidden neurons in the single hidden layer, and )(•G  is the hidden layer 

activation function defined by: 

(3) )]exp(1[1)( zzG −+= . 

Given a set of training data with T observations, the objective or cost function in this 

study is penalized least squares: 
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where yt is the dependent variable, sometimes called the target value, Θ  is the space of 

feasible weights or model parameters, and γβφ r,r,r and  are weight decay constants.  The 

weight decay constants penalize large weight values and were employed in Franses and 

van Dijk.  Following Franses and van Dijk the weight decay parameters are set equal to 

,01.=φr  and 0001.== γrr
B

.  The number of hidden neurons for each of the four data sets is 

chosen based upon the results presented in Franses and van Dijk.   

The four training data sets used in this study were taken from Franses and van Dijk and 

are detailed in the following sections.  Table 1 summarizes the four neural network 

models. 

1)   Bilinear 

Data with the bilinear model are generated by 

(5) 
tttt

yy εεβ += −− 12
  



 

with β = 0.6 in this study. The series is generated by setting 0
10

== −yy  and drawing εt 

from a Normal(0,1) distribution.  A total of 350 observations are generated with the first 

100 discarded leaving 250 observations for the training set.  Granger and Andersen 

showed that linear models will not be successful in modeling this series.  Following 

Franses and van Dijk, two lags are used as inputs to the model.  This training set is 

referred to as the Bilinear data set.   

2)  JYUS 

The exchange rate data are weekly returns on the Japanese  

Yen-US dollar exchange rate given by 

(6) 
1

lnln −−=
ttt
PPr ,                     

where rt  is the return for week t and Pt is the price level of the Japanese Yen-US dollar 

exchange rate for week t.  The training data consists of 364 observations from January 

1986 through December 1992.  The relationship between the JYUS returns and its lags is 

nonlinear (Franses and van Dijk).  Two lags of (6) are used as inputs.  This data set is 

referred to hereafter as the JYUS data set.    

3)  Mackey-Glass 

This study uses a discrete version of the Mackey-Glass equation as used in Gallant and 

White: 

(7) 
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This series is said to be qualitatively like financial market data.  The series can exhibit 

long stretches of volatile data of apparently random duration.  The Mackey-Glass data 



 

was generated from (9) with starting values of 6.1
0

=x  and ,0=
i
x  4,,1 −−= Ki .  There 

were 1000 observations generated with the first 500 discarded leaving 500 observations 

for training data.  The neural network model has five inputs consisting of five lags of the 

Mackey-Glass (MG) series.  As can be seen from (9), only lags t-1 and t-5 are necessary 

to approximate this series.  However, in most actual applications of neural networks, the 

true dimension of the problems is unknown.  Therefore, superfluous inputs are commonly 

part of neural network modeling.  The neural network model has one hidden layer with 6 

neurons, logistic activation functions for the hidden layer neurons and an identity transfer 

function for the output neuron. 

4) Flare 

The Flare data are solar-flare data.  The objective is to predict the number of small, 

medium, and large size flares that will happen during the next 24-hour period in a fixed 

active region of the suns surface.  There are 3 dependent variables in the data set, one 

each to predict the number of small, medium, and large solar flares.  There are 22 inputs 

describing the type and history of the active region and the previous flare activity.  The 

first 533 observations from the data file flare1.dt are used for training.  Based upon the 

training and prediction results on this data set from Prechelt, a network with 8 neurons in 

a single hidden layer with the logistic transfer function is chosen and a identity activation 

function in the output layer.  The scaling of the data is left as it is in the original file 

flare1.dt.  This leaves all the input variables scaled from 0 to 1 and.  All the outputs have 

minimum values of 0 with maximum values of .75, .375, and 1.00. 



 

Optimization algorithms 

Stochastic global algorithms are theoretically good at widely exploring the potential 

solution space.  However, they are poor at honing in on a particular solution once a 

promising area of the solution space is found.  Therefore, it is common to combine a local 

algorithm with a global algorithm by using the weights obtained from the global 

algorithm as starting values for the local routine.  This hybrid approach has been used for 

training neural networks (Skinner and Broughton; Yan, Zhu, and Hu).  This research uses 

a hybrid approach by using the local search routine used in this study with each global 

algorithm.  Since global algorithms are not very good at fine tuning a local minimum, 

convergence criterions that are used for local routines, such as the magnitude of the 

gradient, are not appropriate.  Therefore, for simplicity, all of the global routines are run 

for 100000 function evaluations.  The local routine then takes over and is run to 

convergence. The local and global optimization algorithms along with their abbreviations 

are enumerated below. 

1)  LO  

The two local optimization algorithms used in this study are the quasi-Newton routine 

DUMING and the conjugate-gradient routine DUMCGG from the IMSL subroutine 

libraries (IMSL).  The quasi-Newton routine is used on the Bilinear, JYUS, and Mackey-

Glass training problems.  The conjugate-gradient routine is used on the much larger Flare 

training problem.  The conjugate-gradient routine does not require calculation or storage 

of the BFGS approximation to the Hessian.  For the DUMING routine, the maximum 

number of iterations is set to 20,000 and the maximum number of function and gradient 



 

calculations is set to 30000.  For the DUMCGG routine, the maximum number of 

function evaluations is set to 60000.  All other user definable parameters for the 

DUMING and DUMCGG routines, including the gradient and step size based 

convergence criterions, are set to their default.  

2)  NNGA 

The NNGA algorithm is a genetic algorithm that uses the neural network specific 

crossover operator proposed by van Rooij, Jain, and Johnson.  Mutation for the NNGA is 

accomplished with a normal distribution.  The standard roulette selection mechanism is 

used for the selection operator.  The NNGA uses a generational replacement scheme 

whereby the entire population is replaced in each generation.  The replacement 

mechanism is implemented with elitism.  The best performing chromosome is retained 

and replaces a randomly selected individual in the next generation.  Following van Rooij, 

Jain, and Johnson, the population size is set at 50.  The bias of the fitness normalization, 

which maintains constant selective pressure, is set experimentally.  The standard 

deviation of the mutation and the probability of mutation and crossover are also set 

experimentally. 

3)  EVOL 

This algorithm is an evolutionary strategy taken from Schwefel who refers to the 

algorithm as EVOL.  In evolutionary strategy notation, the algorithm is referred to as a 

(1+1)-evolutionary strategy.  The algorithm employs Gaussian mutation of the model 

parameters.  The FORTRAN code included with Schwefel was used.   

4)  KORR1, KORR2, KORR3 and KORR4 



 

The KORR1, KORR2, KORR3, and KORR4 algorithms are variations of the KORR 

evolutionary strategy algorithm taken from Schwefel.  The KORR algorithm is a 

multimembered ),( λµ -evolutionary strategy.  As with the EVOL algorithm, the 

FORTRAN coding from Schwefel was used.  Similar to EVOL, the code was modified to 

suppress the default convergence criterion.  Instead a criterion based upon the number of 

function evaluations was used.  For all three algorithms, the covariance terms for 

mutation are set to zero and the number of parents and descendents is set to 10 and 60 

respectively.  The KORR1 algorithm utilized no recombination.  The KORR2 algorithm 

is similar to KORR1 except intermediary recombination is used for evolution of the 

object variables or neural network weights.  The KORR3 algorithm adds intermediary 

recombination of the step sizes of mutations to KORR1.  KORR4 uses intermediary 

recombination to evolve both the object variables and the standard deviations of 

mutation. 

5)  SA1and SA2 

The SA1 algorithm is a Boltzmann annealing version of simulated annealing.  This is 

sometimes referred to as classic simulated annealing.  See (Szu and Harley).  Details of 

the procedure for picking the beginning temperature and standard deviation are discussed 

in the next section.  The SA2 algorithm is a fast simulated-annealing algorithm (Szu and 

Harley).  The next section discusses the procedure for picking the beginning temperature 

and standard deviation. 

6)  SW 



 

The SW algorithm is the Solis and Wets Algorithm proposed by Solis and Wets and used 

in Baba, et al. and Baba.  

Global optimization algorithm parameters 

Some parameters of the various stochastic global algorithms must be chosen well in order 

for these algorithms to perform well.  Often parameters are chosen on an ad hoc basis.  

Much effort was expended to choose good parameters for these algorithms.  For each 

algorithm, a wide range of values was tried with a limited number of restarts of 25.  For 

example, for the simulated annealing algorithms, 72 combinations of the algorithm 

parameters were tried.  The best five of these were then chosen to run with 500 restarts.  

The results for that algorithm are then reported as the best one out of these five.  This 

procedure gives an unfair advantage to the global algorithms.  However, if the local 

optimization routine outperforms the global routines, this only further evidence that 

random restarts with a local search algorithm is competitive with many global algorithms.  

Results 

The global algorithms marginally outperformed the local routine in most cases.  

However, in some cases the local search routine outperformed one or more of the global 

routines.  With respect to the minimum value obtained across the restarts, the local 

routine obtained a solution that was equal or very close, and in some cases superior, to 

the minimums obtained by the global algorithms.   

Figures 1-4 show the objective function values using boxplots for each of the 

optimization routines and training data sets.  As figure 4 shows, the NNGA algorithm 

performed significantly worse than all other algorithms on the Mackey-Glass training 



 

data.  It can be seen from figures 1-4 that the global algorithms provide only marginally 

more probability, if any, of obtaining a solution that is in the lower end or left-hand side 

of the distribution of possible solutions.  Also, all of the algorithms have some very poor 

solutions. Thus, using a single set of starting values with any of the algorithms could lead 

to solutions far from the global optimum.  

Table 2 shows the computing time required for the global algorithms relative to the local 

optimization algorithm.  For example, 145 times as many restarts could be performed 

with the local optimization routine as the NNGA algorithm with the Bilinear data.  For 

the two larger problems, the time advantage of the local algorithm was not as great. With 

a fixed amount of computer time, many more restarts could be performed with the local 

routine than with the global algorithms.  Therefore, given an equal amount of 

computational resources, considering the results in table 2, the local search algorithms are 

superior to the 9 global search algorithms tested.  Furthermore, even ignoring 

computational time, there is no single algorithm that consistently or substantially 

outperformed all others.   

Conclusions 

The results indicate that with respect to the specific algorithms studied, there is little 

evidence to show that a global algorithm should be used over a more traditional local 

optimization routine for training neural networks.  Further, neural networks should not be 

estimated from a single set of starting values whether a global or local optimization 

method is used.  The results strictly apply only to the estimation methods and problems 

considered.  There may be problems where global optimization methods are superior. 



 

However, even ignoring computational time, there is still little evidence to support the 

use of stochastic global algorithms for training neural networks. We would suggest that 

stochastic global algorithms be used only as a last resort such as when poor scaling or 

nondifferentiability prevent using a local quasi-Newton algorithm. 

 

Table 1. Summary of Training Data Sets and Neural Network Models  

Data Set Obs NN architecture # parameters 

Bilinear 250 2-3-1, dc; logistic-identity 15 

JYUS 364 2-3-1, dc; logistic-identity 15 

Flare 533 22-8-3; logistic-identity 211 

MG 500 5-6-1; logistic-identity 43 

Notes: Column 2 is the number of observations in the data set.  The neural network 

architecture is shown in column 3.  The number of neurons in consecutive layers is 

enumerated as input-hidden-output, with a dc following indicating a direct connection 

between the input and output neurons.  Column 3 also likewise enumerates the activation 

functions beginning with the first hidden layer.  Column 4 is the number of weights for 

the model.
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Figure 1.  Boxplot of objective function values from random restarts of different 

optimization algorithms for neural network training on the bilinear training data.  

The boxplots indicate the median, upper and lower  quartiles, upper and lower 

adjacent values, and outside values.  In the box plot, the solid dot indicates the 

median and the right and left ends of the box are the upper and lower quartiles.  

The vertical lines or whiskers outside the box mark the highest (lowest) data points 

within a range defined by the upper (lower) quartile + (-) 1.5 times the interquartile 

range.  Any values outside of  the whiskers are considered outside values and are 

plotted by open circles. 



 

 
Figure 2.  Boxplot of objective function values from random restarts of  different 

optimization algorithms for neural network training on the JYUS training data.  



 

 
Figure 3.  Boxplot of objective function values from random restarts of different 

optimization algorithms for neural network training on the flare training data.   



 

 
Figure 4.  Boxplot of objective function values from random restarts of different 

optimization algorithms for neural network training on the Mackey-glass training 

data.   
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