

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Global Optimization Methods

by

Lonnie Hamm

B. Wade Brorsen

Correspondence Author: B. Wade Brorsen
Department of Agricultural Economics
Oklahoma State University
414 Agricultural Hall
Stillwater, Oklahoma 74078-6026
Tel: (405) 744-6836
Fax: (405) 744-8210
E-mail: brorsen@okstate.edu

Paper presented at the Western Agricultural Economics Association Annual Meetings,

Long Beach, CA, July, 2002

Copyright 2002 by Lonnie Hamm and B. Wade Brorsen. All rights reserved. Readers

may make verbatim copies of this document for non-commercial purposes by any means,

provided that this copyright notice appears on all such copies.

Lonnie Hamm is a Ph.D. candidate, Department of Agricultural Economics, Oklahoma
State University, Stillwater, Oklahoma. B. Wade Brorsen, is a regents professor and Jean
& Patsy Neustadt chair, Department of Agricultural Economics, Oklahoma State
University, Stillwater, Oklahoma

 b

Global Optimization Methods

Abstract – Training a neural network is a difficult optimization problem because of

numerous local minimums. Many global search algorithms have been used to train

neural networks. However, local search algorithms are more efficient with computational

resources, and therefore numerous random restarts with a local algorithm may be more

effective than a global algorithm. This study uses Monte-Carlo simulations to determine

the relative efficiency of a local search algorithm to 9 stochastic global algorithms. The

computational requirements of the global algorithms are several times higher than the

local algorithm and there is little gain in using the global algorithms to train neural

networks.

Keywords – Evolutionary algorithms, neural networks, simulated annealing, stochastic

global optimization

Introduction

Training neural networks is challenging because the objective function being minimized

contains numerous local minima. Therefore, some have used so called global search

algorithms to train neural networks rather than the more traditional local search

algorithms. Global optimization algorithms are a class of algorithms that seek to avoid

getting trapped in local minimums.

Global search algorithms can be divided into two broad categories, stochastic and

deterministic. Deterministic global algorithms (eg. grid search) are not investigated here

because they are too slow for problems with more than a few parameters. Instead,

several stochastic global algorithms are investigated. Some examples of stochastic search

algorithms are simulated annealing and various evolutionary algorithms such as genetic

algorithms, evolutionary strategies, and evolutionary programming.

Simulated annealing was used by Porto, Fogel, and Fogel; Sexton, Dorsey, and Johnson;

and Day and Camporese to train neural networks. Genetic algorithms are the most

common evolutionary algorithm used to train neural networks (see Chen and O'Connell;

and Yao). Some examples of using evolutionary programming or evolutionary strategies

are Porto, Fogel, and Fogel; Scholz; and Wienholt. Evolutionary algorithms have also

been used to evolve the architecture of neural networks as well as the weights (Maniezzo;

Harp, Samad, and Guha,). However, this study is only concerned with estimating the

weights of neural networks with a fixed architecture. That is, a neural network with a

fixed number of hidden layers and hidden neurons.

Global search algorithms have a potential advantage in accuracy, but local search

techniques are much faster. Therefore, restarts of a local search algorithm with random

starting values are an alternative to using global algorithms. Many studies have sought to

compare local and global search algorithms for training neural networks. However, the

results reported in the literature are mixed. From an experimental evaluation standpoint,

many of these studies lack rigor. Many of the studies looked at the performance of the

algorithms on only one or two data sets and few of the studies compared results across

different global optimization routines. In addition, the majority of the data sets were

classification problems. Little attention has been paid to function approximation

problems. This study provides a rigorous comparison of nine global algorithms against

an efficient local optimization routine across four data sets in a function approximation

context. The stochastic global algorithms are, 2 simulated annealing algorithms, 1 simple

random stochastic algorithm, 1 genetic algorithm and 5 evolutionary strategy algorithms.

The neural networks are estimated with either 250 or 500 random restarts of each

algorithm. The distributions of the final objective function values from each of these

restarts are then compared against each other. Speed is measured as the time taken to

solve the 250 or 500 optimizations.

Stochastic Global Optimization

Local search techniques use the gradient of the objective function with respect to the

model parameters to guide the search. The search will generally proceed downhill in the

search space from its starting point towards the nearest minimum. Stochastic global

optimization algorithms are not restricted to taking only a downhill step. In addition,

they may simultaneously explore many different regions of the search space. A concept

at the core of stochastic global optimization is the generation of a trial point θ~ by taking

a step from the current point θ as follows:

(1) r+=θθ~ ,

where r is a random vector drawn from some probability density function. The random

move is often referred to as a mutation in the evolutionary algorithm literature.

In the beginning of a simulated annealing algorithm, large steps are taken from the

current point according to (1). As the algorithm progresses, smaller and smaller steps are

taken. The degree of perturbation caused by the random vector r in (1) is proportional to

a parameter in the simulated annealing algorithm called the temperature. As the

algorithm progresses, the temperature cools. A normal distribution is commonly used to

generate the random steps. A random step can be accepted or rejected as the starting

point for the next iteration. Most simulated annealing algorithms automatically accept a

step that results in an improvement of the objective function. However, a feature of

simulated annealing is that the algorithm can also accept an inferior step that results in a

worsening of the objective function.

The acceptance of an inferior point is based on a probability generated by a function

),(TQg ∆ where Q∆ is the change in the cost function and T is the temperature. The

function),(TQg ∆ is an increasing function of Q∆ and a decreasing function of T. The

larger the increase in the objective function, the lower the probability of accepting the

point and the lower the temperature, the lower the probability of accepting the point. The

value of),(TQg ∆ is compared to a uniform random number s in [0,1]. If),(TQgs ∆< , the

inferior point is accepted as the starting point for the next iteration. In the beginning, the

algorithm randomly bounces around by taking large steps and accepting a high

percentage of inferior trial points. As the algorithm progresses, the temperature

decreases, steps are smaller, and the probability of accepting inferior trial points

decreases. The algorithm begins to focus on the most promising areas of the parameter

space. Eventually, we hope that it settles to a point that is close to the global minimum.

Genetic algorithms as optimization algorithms are based loosely on the concepts of

selection and reproduction found in nature. As such, the literature draws much of its

terminology from genetics and biology. The driving force behind the operation of

genetic algorithms, as it is in evolution of a species, is survival of the fittest. Genetic

algorithms require a set of potential or candidate solutions, called individuals, to the

problem at hand. The candidate solutions or individuals are referred to collectively as a

population. The individuals in a population are born, mate, and die. A typical number of

individuals in a population would be between 20 and 100.

In some genetic algorithms, the individuals in the population are encoded as binary

strings. However, for real-valued optimization problems, there are advantages to using a

real-valued encoding. That is, leaving the individuals as floating point numbers as they

are in simulated annealing. (See Michalewicz; Wright; and Syswerda for more details.)

Real-valued encoding is used in this research.

An iteration of a genetic algorithm is referred to as a generation. In each iteration or

generation, the individuals are subject to the operations of mutation, crossover, and

selection, which operate on the individuals to form the next generation of the population.

The mutation operator is as that given in (1) and is applied to each individual in the

population. The crossover operator is next applied to each individual. The crossover

operator is the distinguishing operator of genetic algorithms (Davis). Crossover has

traditionally been viewed as the main search operator with mutation being only a

background operator. Crossover is the process by which “genetic” material from

different individuals is combined to create a potentially superior offspring. Pairs of

individuals are picked at random from the population to serve as parents. These parents

are subjected to crossover to form offspring. A simple crossover operator is the one-

point crossover scheme. Two parents are drawn at random from the population. A

random point in the individuals is chosen after which all elements between the two

parents are swapped. Many other crossover schemes are have been used.

The last operator to be employed in each generation is the selection operator. The

selection operator forms the population for the next generation by selecting those

individuals that are most “fit”. The fitness is based on how well the individual solves the

problem at hand. In the case of this research, an individual that produces a relatively low

cost function value would have a high fitness value. A probability value that is

proportional to its fitness is assigned to each individual. Selection for the next

generation’s population is then based on this probability.

Similar to genetic algorithms, modern evolutionary strategy algorithms operate on a

population of potential solutions. However, in contrast to genetic algorithms, mutation is

the primary operator and recombination is only a background operator. One of the most

common multi-membered evolutionary strategies is the),(λµ -evolutionary strategy. The

),(λµ -evolutionary strategy is so named because it generates λ offspring from µ

parents, 1≥> µλ . The comma in),(λµ represents the fact that only the offspring are

available for selection by survival of the fittest to be included in the next iteration of the

algorithm.

One of the defining characteristics of modern evolutionary strategies is their ability to

evolve or self-adapt the variances and sometimes covariances of the mutations.

Therefore, the individuals in the population are composed of the parameters being

optimized, called object variables in the literature, and the variances and covariances,

called strategy parameters, of a multivariate normal distribution for mutation.

Simulation Details

The simulations use either 250 or 500 random restarts of each algorithm to compare the

final objective function values for each algorithm. For the two largest neural network

models, 250 random restarts are used to conserve computational resources.

Neural network architectures and data

This study is restricted to training of the feedforward type of multilayer perceptron

(MLP). The specific form used in this study is defined by:

(2) ∑
=

′+′=
p

j

jtjtt Gf
1

)~(~),(γβφθ xxx

where
t

x is an 1×n vector of inputs or explanatory variables for observation t,),1(~
tt

xx ′= ,

jγ is an 1)1(×+n vector of weights connecting the inputs to hidden neuron j,

),,,,,,,,(
110 ppn

γγββφφθ ′′= KKK is the vector of model parameters or weights, p is the

number of hidden neurons in the single hidden layer, and)(•G is the hidden layer

activation function defined by:

(3))]exp(1[1)(zzG −+= .

Given a set of training data with T observations, the objective or cost function in this

study is penalized least squares:

(4) ∑∑
==Θ∈

+−=
n

i

i

T

t

tt
rxfyQ

0

2

1

2)],([)(min φθθ φθ

 ∑∑∑
= ==

++
p

j

n

i

ji

p

j

j rr

1 0

2

1

2 γβ γβ

where yt is the dependent variable, sometimes called the target value, Θ is the space of

feasible weights or model parameters, and γβφ r,r,r and are weight decay constants. The

weight decay constants penalize large weight values and were employed in Franses and

van Dijk. Following Franses and van Dijk the weight decay parameters are set equal to

,01.=φr and 0001.== γrr
B

. The number of hidden neurons for each of the four data sets is

chosen based upon the results presented in Franses and van Dijk.

The four training data sets used in this study were taken from Franses and van Dijk and

are detailed in the following sections. Table 1 summarizes the four neural network

models.

1) Bilinear

Data with the bilinear model are generated by

(5)
tttt

yy εεβ += −− 12

with β = 0.6 in this study. The series is generated by setting 0
10

== −yy and drawing εt

from a Normal(0,1) distribution. A total of 350 observations are generated with the first

100 discarded leaving 250 observations for the training set. Granger and Andersen

showed that linear models will not be successful in modeling this series. Following

Franses and van Dijk, two lags are used as inputs to the model. This training set is

referred to as the Bilinear data set.

2) JYUS

The exchange rate data are weekly returns on the Japanese

Yen-US dollar exchange rate given by

(6)
1

lnln −−=
ttt
PPr ,

where rt is the return for week t and Pt is the price level of the Japanese Yen-US dollar

exchange rate for week t. The training data consists of 364 observations from January

1986 through December 1992. The relationship between the JYUS returns and its lags is

nonlinear (Franses and van Dijk). Two lags of (6) are used as inputs. This data set is

referred to hereafter as the JYUS data set.

3) Mackey-Glass

This study uses a discrete version of the Mackey-Glass equation as used in Gallant and

White:

(7)

⋅−

+
⋅

⋅+= −
−

−
−−−

∗
110

5

5

115
1.0

1

2.0
5.10),(

t

t

t

ttt
x

x

x
xxxg .

This series is said to be qualitatively like financial market data. The series can exhibit

long stretches of volatile data of apparently random duration. The Mackey-Glass data

was generated from (9) with starting values of 6.1
0

=x and ,0=
i
x 4,,1 −−= Ki . There

were 1000 observations generated with the first 500 discarded leaving 500 observations

for training data. The neural network model has five inputs consisting of five lags of the

Mackey-Glass (MG) series. As can be seen from (9), only lags t-1 and t-5 are necessary

to approximate this series. However, in most actual applications of neural networks, the

true dimension of the problems is unknown. Therefore, superfluous inputs are commonly

part of neural network modeling. The neural network model has one hidden layer with 6

neurons, logistic activation functions for the hidden layer neurons and an identity transfer

function for the output neuron.

4) Flare

The Flare data are solar-flare data. The objective is to predict the number of small,

medium, and large size flares that will happen during the next 24-hour period in a fixed

active region of the suns surface. There are 3 dependent variables in the data set, one

each to predict the number of small, medium, and large solar flares. There are 22 inputs

describing the type and history of the active region and the previous flare activity. The

first 533 observations from the data file flare1.dt are used for training. Based upon the

training and prediction results on this data set from Prechelt, a network with 8 neurons in

a single hidden layer with the logistic transfer function is chosen and a identity activation

function in the output layer. The scaling of the data is left as it is in the original file

flare1.dt. This leaves all the input variables scaled from 0 to 1 and. All the outputs have

minimum values of 0 with maximum values of .75, .375, and 1.00.

Optimization algorithms

Stochastic global algorithms are theoretically good at widely exploring the potential

solution space. However, they are poor at honing in on a particular solution once a

promising area of the solution space is found. Therefore, it is common to combine a local

algorithm with a global algorithm by using the weights obtained from the global

algorithm as starting values for the local routine. This hybrid approach has been used for

training neural networks (Skinner and Broughton; Yan, Zhu, and Hu). This research uses

a hybrid approach by using the local search routine used in this study with each global

algorithm. Since global algorithms are not very good at fine tuning a local minimum,

convergence criterions that are used for local routines, such as the magnitude of the

gradient, are not appropriate. Therefore, for simplicity, all of the global routines are run

for 100000 function evaluations. The local routine then takes over and is run to

convergence. The local and global optimization algorithms along with their abbreviations

are enumerated below.

1) LO

The two local optimization algorithms used in this study are the quasi-Newton routine

DUMING and the conjugate-gradient routine DUMCGG from the IMSL subroutine

libraries (IMSL). The quasi-Newton routine is used on the Bilinear, JYUS, and Mackey-

Glass training problems. The conjugate-gradient routine is used on the much larger Flare

training problem. The conjugate-gradient routine does not require calculation or storage

of the BFGS approximation to the Hessian. For the DUMING routine, the maximum

number of iterations is set to 20,000 and the maximum number of function and gradient

calculations is set to 30000. For the DUMCGG routine, the maximum number of

function evaluations is set to 60000. All other user definable parameters for the

DUMING and DUMCGG routines, including the gradient and step size based

convergence criterions, are set to their default.

2) NNGA

The NNGA algorithm is a genetic algorithm that uses the neural network specific

crossover operator proposed by van Rooij, Jain, and Johnson. Mutation for the NNGA is

accomplished with a normal distribution. The standard roulette selection mechanism is

used for the selection operator. The NNGA uses a generational replacement scheme

whereby the entire population is replaced in each generation. The replacement

mechanism is implemented with elitism. The best performing chromosome is retained

and replaces a randomly selected individual in the next generation. Following van Rooij,

Jain, and Johnson, the population size is set at 50. The bias of the fitness normalization,

which maintains constant selective pressure, is set experimentally. The standard

deviation of the mutation and the probability of mutation and crossover are also set

experimentally.

3) EVOL

This algorithm is an evolutionary strategy taken from Schwefel who refers to the

algorithm as EVOL. In evolutionary strategy notation, the algorithm is referred to as a

(1+1)-evolutionary strategy. The algorithm employs Gaussian mutation of the model

parameters. The FORTRAN code included with Schwefel was used.

4) KORR1, KORR2, KORR3 and KORR4

The KORR1, KORR2, KORR3, and KORR4 algorithms are variations of the KORR

evolutionary strategy algorithm taken from Schwefel. The KORR algorithm is a

multimembered),(λµ -evolutionary strategy. As with the EVOL algorithm, the

FORTRAN coding from Schwefel was used. Similar to EVOL, the code was modified to

suppress the default convergence criterion. Instead a criterion based upon the number of

function evaluations was used. For all three algorithms, the covariance terms for

mutation are set to zero and the number of parents and descendents is set to 10 and 60

respectively. The KORR1 algorithm utilized no recombination. The KORR2 algorithm

is similar to KORR1 except intermediary recombination is used for evolution of the

object variables or neural network weights. The KORR3 algorithm adds intermediary

recombination of the step sizes of mutations to KORR1. KORR4 uses intermediary

recombination to evolve both the object variables and the standard deviations of

mutation.

5) SA1and SA2

The SA1 algorithm is a Boltzmann annealing version of simulated annealing. This is

sometimes referred to as classic simulated annealing. See (Szu and Harley). Details of

the procedure for picking the beginning temperature and standard deviation are discussed

in the next section. The SA2 algorithm is a fast simulated-annealing algorithm (Szu and

Harley). The next section discusses the procedure for picking the beginning temperature

and standard deviation.

6) SW

The SW algorithm is the Solis and Wets Algorithm proposed by Solis and Wets and used

in Baba, et al. and Baba.

Global optimization algorithm parameters

Some parameters of the various stochastic global algorithms must be chosen well in order

for these algorithms to perform well. Often parameters are chosen on an ad hoc basis.

Much effort was expended to choose good parameters for these algorithms. For each

algorithm, a wide range of values was tried with a limited number of restarts of 25. For

example, for the simulated annealing algorithms, 72 combinations of the algorithm

parameters were tried. The best five of these were then chosen to run with 500 restarts.

The results for that algorithm are then reported as the best one out of these five. This

procedure gives an unfair advantage to the global algorithms. However, if the local

optimization routine outperforms the global routines, this only further evidence that

random restarts with a local search algorithm is competitive with many global algorithms.

Results

The global algorithms marginally outperformed the local routine in most cases.

However, in some cases the local search routine outperformed one or more of the global

routines. With respect to the minimum value obtained across the restarts, the local

routine obtained a solution that was equal or very close, and in some cases superior, to

the minimums obtained by the global algorithms.

Figures 1-4 show the objective function values using boxplots for each of the

optimization routines and training data sets. As figure 4 shows, the NNGA algorithm

performed significantly worse than all other algorithms on the Mackey-Glass training

data. It can be seen from figures 1-4 that the global algorithms provide only marginally

more probability, if any, of obtaining a solution that is in the lower end or left-hand side

of the distribution of possible solutions. Also, all of the algorithms have some very poor

solutions. Thus, using a single set of starting values with any of the algorithms could lead

to solutions far from the global optimum.

Table 2 shows the computing time required for the global algorithms relative to the local

optimization algorithm. For example, 145 times as many restarts could be performed

with the local optimization routine as the NNGA algorithm with the Bilinear data. For

the two larger problems, the time advantage of the local algorithm was not as great. With

a fixed amount of computer time, many more restarts could be performed with the local

routine than with the global algorithms. Therefore, given an equal amount of

computational resources, considering the results in table 2, the local search algorithms are

superior to the 9 global search algorithms tested. Furthermore, even ignoring

computational time, there is no single algorithm that consistently or substantially

outperformed all others.

Conclusions

The results indicate that with respect to the specific algorithms studied, there is little

evidence to show that a global algorithm should be used over a more traditional local

optimization routine for training neural networks. Further, neural networks should not be

estimated from a single set of starting values whether a global or local optimization

method is used. The results strictly apply only to the estimation methods and problems

considered. There may be problems where global optimization methods are superior.

However, even ignoring computational time, there is still little evidence to support the

use of stochastic global algorithms for training neural networks. We would suggest that

stochastic global algorithms be used only as a last resort such as when poor scaling or

nondifferentiability prevent using a local quasi-Newton algorithm.

Table 1. Summary of Training Data Sets and Neural Network Models

Data Set Obs NN architecture # parameters

Bilinear 250 2-3-1, dc; logistic-identity 15

JYUS 364 2-3-1, dc; logistic-identity 15

Flare 533 22-8-3; logistic-identity 211

MG 500 5-6-1; logistic-identity 43

Notes: Column 2 is the number of observations in the data set. The neural network

architecture is shown in column 3. The number of neurons in consecutive layers is

enumerated as input-hidden-output, with a dc following indicating a direct connection

between the input and output neurons. Column 3 also likewise enumerates the activation

functions beginning with the first hidden layer. Column 4 is the number of weights for

the model.

 T
a
b

le
 2

.
 R

a
ti

o
 o

f
T

ra
in

in
g
 T

im
es

 f
o
r

G
lo

b
a
l

O
p

ti
m

iz
a
ti

o
n

 A
lg

o
ri

th
m

s
in

 C
o
m

p
a
ri

so
n

 t
o
 L

o
ca

l
O

p
ti

m
iz

a
ti

o
n

 A
lg

o
ri

th
m

s

 D
at

a
S

et

N
N

G
A

E
V

O
L

K
O

R
R

1

K
O

R
R

2

K
O

R
R

3

K
O

R
R

4

S
A

1

S
A

2

S
W

B
il

in
ea

r
1
4
5

1
7
4

1
7
5

1
7
5

1
7
5

1
7
5

1
7
4

1
8
5

1
5
9

JY
U

S

9
3

1
1
1

1
0
6

1
0
6

1
0
6

1
0

6

1
1

3

1
1

9

9
3

F
la

re

4

4

4

4

5

4

4

4

4

M
ac

k
ey

-G
la

ss

1
2

1
4

1
4

1
3

1
4

1
3

1
5

1
4

1
3

 A

v
er

ag
e:

6
3
.5

7
7
.7

5

7
4
.7

5

7
4
.5

7
5

7
4

.5

7
6

.5

8
0

.7
5

6

4
.7

5

N
o
te

:
 T

h
e

n
u

m
b
er

s
in

d
ic

at
e

th
e

ra
ti

o
 o

f
th

e
av

er
ag

e
tr

ai
n
in

g
 t

im
e

fo
r

th
e

g
lo

b
al

 o
p
ti

m
iz

at
io

n
 r

o
u
ti

n
e

d
iv

id
ed

 b
y

 t
h

e
av

er
ag

e
tr

ai
n
in

g

ti
m

e
fo

r
th

e
lo

ca
l

o
p
ti

m
iz

at
io

n
 r

o
u
ti

n
e.

F

o
r

ex
am

p
le

,
fo

r
th

e
D

A
X

 n
eu

ra
l

n
et

w
o
rk

 m
o
d
el

,
th

e
N

N
G

A
 t

o
o

k
 o

n
 a

v
er

ag
e

4
8

 t
im

es
 l

o
n

g
er

to
 t

ra
in

 t
h
en

 t
h
e

lo
ca

l
o
p
ti

m
iz

at
io

n
 r

o
u
ti

n
e.

T

h
e

tr
ai

n
in

g
 t

im
es

 a
re

 a
v
er

ag
ed

 a
cr

o
ss

 a
ll

 r
es

ta
rt

s.

Figure 1. Boxplot of objective function values from random restarts of different

optimization algorithms for neural network training on the bilinear training data.

The boxplots indicate the median, upper and lower quartiles, upper and lower

adjacent values, and outside values. In the box plot, the solid dot indicates the

median and the right and left ends of the box are the upper and lower quartiles.

The vertical lines or whiskers outside the box mark the highest (lowest) data points

within a range defined by the upper (lower) quartile + (-) 1.5 times the interquartile

range. Any values outside of the whiskers are considered outside values and are

plotted by open circles.

Figure 2. Boxplot of objective function values from random restarts of different

optimization algorithms for neural network training on the JYUS training data.

Figure 3. Boxplot of objective function values from random restarts of different

optimization algorithms for neural network training on the flare training data.

Figure 4. Boxplot of objective function values from random restarts of different

optimization algorithms for neural network training on the Mackey-glass training

data.

References

Baba, N. “A New Approach for Finding the Global Minimum of Error Function of

Neural Networks." Neural Networks 2(1989):367-373.

Baba, N. Yoshio Mogami, Motokazu Kohzaki, Ysuhiro Shiraihi, and Yutaka Yoshida. "A

Hybrid Algorithm for Finding the Global Minimum of Error Function of Neural

Networks and Its Applications." Neural Networks 7(1994):1253-1265.

Chen, and R.M. O'Connell. "Active Power Line Conditioner with a Neural Network

Control." IEEE Transactions on Industry Applications 33(1997):1131-1136.

Davis, L. Ed. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold,

1991.

Day, S.P. and D.S. Camporese. "A Stochastic Training Technique for Feed-Forward

Neural Networks." Proceedings of the International Joint Conference on Neural

Networks. (undated).

Franses, P.H. and D. van Dijk. Nonlinear Time Series Models in Empirical Finance.

Cambridge: Cambridge University Press, 2000.

Gallant, A. and H. White. “On Learning the Derivatives of an Unknown Mapping with

Multilayer Feedforward Networks."Neural Networks 5(1992):129-138.

Granger, C.W. and A.P. Andersen. An Introduction to Bilinear Time Series Models.

Gottingen: Vandenhoek and Ruprecht, 1978.

Harp, S. T. Samad, and A. Guha. "Towards the Genetic Synthesis of Neural Networks."

Proceedings of the Third International Conference on Genetic Algorithms. San

Mateo, CA:Morgan Kaufmann, 1989, pp. 360-369.

IMSL Math/Library version 3.0. "Visual Numerics." Houston, TX, 1997.

Maniezzo, V. "Genetic Evolution of the Topology and Weight Distribution of Neural

Networks." IEEE Transactions on Neural Networks 5(No. 1, 1994):39-53.

Michalewicz, Z. "Genetic Algorithms + Data Structures = Evolution Programs." 3
rd

 rev.

and extended ed., Berlin: Springer-Verlag, 1996.

Porto, V.W., D.B. Fogel, and L.J. Fogel, "Alternative Neural Network Training Models."

IEEE Expert. (June, 1995):16-22.

Scholz, M. “A Learning Strategy for Neural Networks Based on a Modified Evolutionary

Strategy." In Proceedings of Parallel Problem Solving from Nature, 1
st
 Workshop,

PPSN I, Dortmund Germany, October 1-3, 1990, pp. 314-318.

Schwefel, H.P. Evolution and Optimum Seeking. New York: Wiley, 1995.

Sexton, R.S., R.E. Dorsey, and J.D. Johnson. “Beyond Backpropagation: Using

Simulated Annealing for Training Neural Networks." Journal of End User

Computing, 11(1999):3-10.

Skinner, A.J., and J. Q. Broughton. "Neural Networks in Computational Materials

Science: Training Algorithms." Modelling Simulation Materials Science Engineering

3(1995):371-390.

Solis, F.J., and J.B. Wets. “Minimization by Random Search Techniques." Mathematics

of Operations Research 6(1981):19-30.

Syswerda, G. "Schedule Optimization Using Genetic Algorithms." In Handbook of

Genetic Algorithms, L. Davis (ed) New York: Van Nostrand Reinhold, pp. 332-349,

1991.

Szu, H. and R. Hartley. "Fast Simulated Annealing." Physics Letters A 122(1987):157-

162.

van Rooij, A.J.F., L.C. Jain, and R.P. Johnson. Neural Network Training Using Genetic

Algorithms. Singapore: World Scientific Publishing Co. 1996.

Wienholt, W. “Minimizing the System Error in Feedforward Neural Networks with

Evolution Strategy." In Proceedings of the International Conference on Artificial

Neural Networks (Spring, 1993): 490-493.

Wright, A.H. "Genetic Algorithms for Real Parameter Optimization." Foundations of

Genetic Algorithms G.J.E. Rawlins, Ed. San Mateo, CA: Morgan Kaufmann

Publishers, pp. 205-218, 1991.

Yan, W. Z. Zhu, and R. Hu, "A Hybrid Genetic/BP Algorithm and Its Application for

Radar Target Classification." in Proceedings of the 1997 IEEE National Aerospace

and Electronics Conference, NAECON, vol. 2, pp. 981-984.

Yao, X., “Evolving Artificial Neural Networks." Proceedings of the IEEE, vol. 87, no. 9,

1999.

