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Abstract 

This study examines the impacts of social learning and extension services on the time it takes to 
adopt an improved postharvest technology called Purdue Improved Crop Storage (PICS) bag in 
Tanzania. We utilized the doubly robust multivalued inverse probability weighted regression 
(MIPWRA) model in a survival treatment effects framework to estimate the impact. We also 
applied the Laplace regression model to evaluate the heterogeneous effects of the two 
information sources. Overall, results from the MIPWRA indicate that social learning and 
extension services reduce the time to adopt PICS bags by 51% and 49%, respectively. The results 
further show that the speed at which farmers adopted the technology was faster when using 
the two information sources jointly (61%) than individually. The results from the Laplace 
regression model also show that the impacts of social learning and extension services vary 
significantly across the time to adoption distribution. The marginal impacts of the two 
information sources are more meaningful for the households in the upper quantiles of the 
distribution, compared to the lower quantiles representing the early adopters. Designing 
policies that account for the complementarity of the two sources of information is essential to 
increasing the adoption of PICS bags in Tanzania. 

Keywords: Postharvest losses, improved postharvest technologies, social learning, extension 
services, Tanzania. 

 
 

1. Introduction  

In Eastern and Southern Africa, it is estimated that postharvest grain losses (hereafter referred 
to as PHLs) amount to about US $1.6 billion per year, equivalent to 13.5% of the total value of 
grain production predicted to be worth $11 billion (World Bank, 2011). Although these losses 
can occur at different stages of the post-production chain, most occur during storage, mainly 
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due to pest (insects/rodents) damage, spillage, spoilage, and contaminations (Affognon et al., 
2015; Abass et al., 2014). These losses reduce the quantities available for sale and future 
consumption, coupled with income loss through price discounts for damaged crop produce 
(Kadjo et al., 2016) for most smallholder farmers. Qualitative postharvest losses can also lead to 
a loss in market prospects and nutritional value, leading to severe health risks if associated with 
the consumption of aflatoxin-contaminated grain (World Bank, 2011).  

Most cereals, pulses, and oilseeds, such as maize, beans, and groundnuts, which form 
the base for food, income, and nutrition for most households in Tanzania, are highly vulnerable 
to aflatoxin contamination and insect damage. Notwithstanding the significant variations in the 
estimates, postharvest losses are generally estimated at over 20% for the major cereals and 
pulses (Abass et al., 2014; Mutungi and Affognon, 2013; Abass et al., 2018). The primary loss 
agent for stored maize is the infestation by insects infestations, such as the larger grain borer 
(LGB) and the maize weevils (Vowotor et al., 2005), while the significant pests for pulses such as 
beans are bruchids (Mutungi et al., 2020). PHLs should not only be viewed as the loss of solid 
matter and quality that pose food insecurity and food safety risks but also as the loss of all the 
resources (land, labor, capital) used in grain production (Sheahan and Barrett, 2017). Traditional 
storage structures commonly used by farmers (e.g., polypropylene bags, granaries made of 
plant materials, and mud) are not very effective in preventing insect infestations (Chigoverah 
and Mvumi, 2016; Abass et al., 2014; Omotilewa et al., 2019). Some farmers also use grain 
protectants, including traditional admixtures (ash, soil, inert dust, plant oils, and other 
botanicals) and synthetic insecticides. Still, these suffer from limited efficacy, poor 
standardization and labeling, expiration, and adulteration, which may make them ineffective 
and dangerous to the health of consumers and the environment (World Bank, 2011).  

Given the food security, food safety, economic and ecological implications of PHL 
reduction, it is critical to employ appropriate technologies at different stages of the post-
production chain. Adopting improved postharvest storage technologies (IPHTs) offers a potential 
solution to some of these problems. Recent studies show that airtight containers such as metal 
silos and PICS bags significantly reduce grain damage caused by insect infestation1. A study by 
Njoroge et al. (2014) showed that maize grain damage stored in airtight bags was considerably 
lower (3.4%) than in polypropylene bags (74%) in the presence of LGB infestation. Similarly, the 
adoption of metal silos almost wholly eliminated the losses caused by insect pests, making it 
possible for farmers to save an average of 150–200 kg of maize grain annually in Kenya (Gitonga 

 

1 Channa et al. (2022) define the PICS bag as a three-layer hermetic bag that consists of an outside layer of woven 
polypropylene and two inner layers of polyethylene. 
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et al., 2013). Apart from preventing grain damage from insect infestation, hermetic bags reduce 
aflatoxin accumulation in stored grain (Ng'ang'a et al., 2016) and avoid exposure to hazardous 
synthetic insecticides. Despite these positive effects of airtight storage containers, there is 
limited empirical evidence on the adoption dynamics of improved postharvest technologies in 
Tanzania. The empirical literature on agricultural technology adoption continues to ignore its 
dynamics (Munguia et al., 2021). Considering adoption as a one-off static decision, many studies 
(e.g., Baoua et al., 2014; Chigoverah and Mvumi, 2016; Sudini et al., 2015) assessed the 
effectiveness of airtight storage containers in reducing PHLs mainly based on ex-ante data and 
on-station experiments. However, technology adoption is not a one-off static decision but rather 
a dynamic process that entails information gathering and learning (Jabbar et al. 1998). Farmers 
move through several stages, from learning to adoption to continuous or discontinuous use over 
time (Rogers, 2003). The few existing ex-post studies (Gitonga et al., 2013; Tesfaye and Tirivayi, 
2018) on IPHTs have done the assessment at the extensive margin and did not consider the 
dynamic nature of technology adoption at the intensive margin. As such, rigorous studies on the 
dynamics of IPHT adoption remain rare in Tanzania. 

Understanding the diffusion of modern technology depends on understanding the 
dynamic and cross-sectional patterns of technology adoption (Maertens and Barrett, 2013). This 
article contributes to filling this research gap in the literature by examining the determinants of 
the time to adopt the PICS bags in Tanzania. Since PICS bags are relatively new and the 
uncertainties, risks, and information market imperfections accompanying such a technology are 
not well known, we explicitly study the individual roles and combination of learning from 
friends and relatives (social learning) and extension agents in speeding the adoption of PICS 
bags.  

It is widely recognized that farmers are informed about the presence and efficient use of 
any novel agricultural technology through social interface with other farmers and extension 
workers (Genius et al., 2013). The positive role of social learning in the adoption and diffusion of 
new agricultural technologies is well documented in the literature. For instance, learning from 
neighbors increased the farmers' adoption of improved seeds and fertilizer in Ethiopia (Krishnan 
and Patnam, 2013). Likewise, Genius et al. (2013) found that social learning strongly determines 
irrigation technology adoption and diffusion. Learning through extension services also enables 
both the adoption and adaptation of technology to local conditions by deciphering information 
from new research to farmers and helps to explain to research workers the difficulties and 
constraints farmers face (Anderson and Feder, 2007).  

Against this milieu, this paper examines the impact of social learning and extension 
services on the time it takes to adopt PICS bags in Tanzania. We use the time-to-event data for 
the outcome variable and apply the MIPWRA model in a survival treatment effects framework 
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to achieve this objective. To our knowledge, no study has used the MIPWRA model to analyze 
the dynamics of agricultural technology adoption in a multivalued setting. This study builds 
upon Manda et al. (2020), who used the inverse probability weighted regression (IPWRA) 
model, but not in a multivalued setting, to estimate the impact of cooperative membership on 
improved maize variety adoption in Zambia. Other studies (e.g., Beyene and Kassie, 2015; Dadi 
et al., 2004a; Nazli and Smale, 2016) have used models based on the difficult to interpret hazard 
rates to model the diffusion of agricultural technologies. Using the MIPWRA, we measure the 
impact of the learning from social networks and extension services on time to PICS adoption.  

The results from MIPWRA give the mean effects, which hide the distributional impact of 
learning from the two information sources across all categories of adopters (from innovators, 
early adopters, to laggards). For this reason, we further estimate the heterogeneous effects of 
social learning and extension services across the entire time to adoption distribution conditional 
on other covariates using the Laplace regression model. Most previous studies use the 
univariate nonparametric Kaplan-Meier estimates to assess a treatment's distributional effects 
and do not consider the effects of other covariates (e.g., Dadi et al., 2004; Nazli and Smale, 
2016). The other common methods of estimating quantile treatment effects (e.g., Frölich and 
Melly, 2013) do not consider our outcome variable's censored nature. The Laplace regression 
model (Bottai and Zhang, 2010) estimates the treatment effects across the percentiles of the 
time to adoption distribution. Unlike the other methods, this model accounts for the censored 
outcome variables and does not rely on the proportional hazard assumption like the cox 
proportional hazard model. 

The rest of the article is organized as follows: The next section describes the empirical 
framework, while section 3 presents the data and descriptive statistics. Section 4 presents the 
results and discussion, and the last section draws conclusions and policy recommendations. 

 

2. Empirical Framework 

 

2.1 Impact of social learning and extension services on time to the adoption of PICS bags 

 

Agricultural technology choice is a dynamic process that involves a series of judgments based on 
previous selections and the current or expected economic environment such that simple 
dichotomous decision models are incapable of capturing the dynamic nature of this process (An 
and Butler, 2012). Duration models, based on hazard ratios as the effects, have primarily been 
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used to model such as a dynamic process to understand the factors that explain the length of a 
spell ( e.g., Dadi, Burton and Ozanne, 2004; Abdulai and Huffman, 2005; Beyene and Kassie, 
2015; Canales, Bergtold and Williams, 2020). In the present study, a spell starts at the time 
when a farmer becomes aware of the PICS bags for the first time and ends at the time the 
farmer adopts the bags. In the subsequent section, we use “time to adoption” or “speed of 
adoption” to depict the length of the spell.  

Popular as they may be, hazard ratios or rates are only suitable for population effects 
when they are constant, which happens when the treatment enters linearly, and the outcome 
distribution has a proportional-hazards form (StataCorp, 2015). Results based on hazard ratios 
are also challenging to interpret causality even if the proportional hazard assumption is satisfied 
(Stensrud et al., 2019). In addition, even though most studies report the average hazard ratio, it 
may change over time, so its interpretation based on the average may be misleading (Miguel A., 
2010). To avoid these problems, we use the survival treatment effects, i.e., the likelihood-
adjusted censoring (LAC) MIPWRA (hereafter referred to as LAC-MIPWRA), in which the effect of 
interest is the average treatment effect on the treated (ATT). This measure is easier to interpret 
because the results are in the same time units as the outcome instead of the relative 
conditional probabilities in the case of hazard ratios. Second, no linearity in treatment nor 
proportional-hazards form is required to estimate and interpret the ATT effectively.  

In addition to the reasons mentioned above, our specific choice of the MIPWRA model is 
also based on the following considerations. First, the selection into the social learning and 
extension services is non-random. That is, households that used social learning and extension 
services and those that did not may differ systematically. For example, farmers who seek out 
and receive extension services might be more skilled and motivated than farmers who do not 
seek such services (Maertens et al., 2021). Therefore, estimating the impact of extension 
services and social learning without accounting for systematic variation may result in biased 
estimates. Second, the treatment variable takes on four levels, i.e., no social learning and 
extension services, social learning only, extension services only, and a combination of social 
learning and extension services. Propensity score-based approaches are the most popular 
methods used to deal with the problem of non-random assignment, albeit mainly applied to 
binary treatment variables. Only recently have more authors started using propensity score-
based methods applied to multivalued treatment models (Cattaneo, 2010; Kotu et al., 2017; 
Manda et al., 2021; Smale et al., 2018).  

To estimate the impact of social learning and extension services using the MIPWRA  
model, we follow three steps: First, we estimate the parameters of the propensity score model, 
and then we calculate the inverse probability weights (IPW) for each level of treatment. 
Specifically, we use the multinomial logit (MNL) model to estimate the propensity score model. 
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The propensity score, in this case, is defined as the probability of using social learning and 
extension services given observed characteristics (𝑥𝑥𝑖𝑖) and can be denoted as: 

 

𝑝𝑝(𝑥𝑥𝑖𝑖) = 𝑃𝑃𝑃𝑃(𝑇𝑇𝑖𝑖 = 0 … 3|𝑥𝑥𝑖𝑖)         (1) 

 

Where 𝑇𝑇𝑖𝑖 indicates whether or not a household i had access to social learning and extension 
services, social learning only, extension services only, and a combination of social learning and 
extension services, i.e., T = 0…3.  

We use the maximum likelihood weighted regression (regression adjustment model) in 
the second step for each treatment level to obtain the household’s treatment-specific predicted 
mean outcomes2. The estimated IPW are used to weight the maximum likelihood estimator, and 
a term in the likelihood function adjusts for right-censored survival times. In the last step, we 
compute the means of the treatment-specific predicted mean outcomes of the time to 
adoption. The differences in these outcomes provide the average treatment effects (ATEs): 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑖𝑖 = 𝐸𝐸(𝑦𝑦𝑇𝑇𝑖𝑖 − 𝑦𝑦0)           (2) 

 

Where  𝑦𝑦𝑇𝑇 denotes the potential outcome (time to the adoption of PICs bags)  for a household 
that had used either social learning, extension services or a combination of the two; and 𝑦𝑦0 
denotes the outcome for the control category, i.e., no social learning and extension services.  

Restricting the computations of the means to the sub-sample of households who have 
used social learning and extension services, we obtain the average treatment effect on the 
treated (ATT). The ATT can be defined as: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝚤𝚤� , 𝑇𝑇���⃗ = 𝐸𝐸��𝑦𝑦𝑇𝑇𝚤𝚤� −  𝑦𝑦0𝑖𝑖��𝑇𝑇 = 𝑇𝑇�⃗ �                                                                                               (3) 

 

 

2 As with other previous studies, we make the assumption that the outcome model follows a Weibull distribution. 
We make the same assumption for all the models presented in this study except for the Laplace regression model 
described in the subsequent sections.   
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The ATT requires three different treatment levels: 𝑡̂𝑡 defines the treatment level of the treated 

potential outcome; 0 is the treatment level of the potential control outcome, and 𝑇𝑇 = 𝑇𝑇�⃗  restricts 

the expectation to include only those individuals who receive treatment level 𝑇𝑇�⃗  . 

Since we use cross-sectional data to estimate the ATE and ATT, identifying the treatment 
effects relies mainly on three assumptions, i.e., conditional independence (CI), enough overlap, 
and correct adjustment for censoring. The first two assumptions are common to all methods 
that use propensity scores, while the third is specific to censored or time-to-event data. The 
fundamental idea behind the CI assumption is that confounding, if extant, is entirely accounted 
for by observed covariates (i.e., covariates included (x) in equation 1). The overlap assumption 
ensures that each household could receive any treatment level.3 The third assumption can be 
thought of as having two parts. The first part is the expected survival assumption which states 
that the censoring times are stochastically independent of the potential outcomes, and the 
treatment-assignment process is conditional on the variables included in the model (Kalbfleisch 
and Prentice, 2002). The second part is that the technique used to adjust censoring must be 
correct. This study uses the LAC- MIPWRA to adjust for right-censored times to adoption4. To 
the extent that the MIPWRA uses the LAC to account for censoring, we assume that the 
outcome model has been correctly specified (StataCorp, 2015).  

To assess the robustness of the LAC-MIPWRA model results, we also estimate the results 
using the ordinary least-squares (OLS) regression model and the two most popular methods 
used in modeling time to event data —the Cox proportional hazards and the survival time 
regression models.  

 

2.2 Laplace regression model 

 

A linear regression model typically creates a linear relationship between a set of predictor 
variables and the conditional mean of an outcome variable. However, modeling only the mean 
may obscure essential aspects of the association between the outcome and its predictors, 

 

3 In the ensuing sections, we test the overlap assumption using density distributions to assess whether balancing 
was achieved using the MIPWRA model 

4 We had some situations where we had left-censored observations i.e., cases where farmers adopted the same 
year they heard about that technology. Following Canales et al. (2020) we added 0.5 to these observations 
considering that farmers’ time to adoption was not necessarily zero.  
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especially if the outcome distribution is skewed, as with time to event data (Beyerlein, 2014). 
Similarly, as mentioned above, the Cox hazard proportional model is the most popular method 
of analyzing survival analysis data. However, it is based on the proportional hazard assumption 
and models the hazard rate instead of the survival time, making it difficult to interpret (Wang 
and Wang, 2009).  

 Quantile regression methods capture heterogeneity across the sample in variance and 
the structural model and relax the proportionality constraint on the hazard (Portnoy, 2003; 
Wang and Wang, 2009). Considering that the time to adoption is censored, we use the Laplace 
regression model (Bottai and Zhang, 2010) to model the censoring. Following Bottai and Zhang 
(2010) and Bottai and Orsini (2013), let 𝐷𝐷𝑖𝑖  be the time to adoption defined above and 𝑥𝑥𝑖𝑖 vector 
of observed covariates defined in equation 1. 𝐷𝐷𝑖𝑖  is censored, and we observe 𝑦𝑦𝑖𝑖 = min(𝐷𝐷𝑖𝑖, 𝐶𝐶𝑖𝑖), 
where 𝐶𝐶𝑖𝑖 is a censoring variable. It is assumed that 𝐶𝐶𝑖𝑖 is independent of 𝐷𝐷𝑖𝑖,  conditional on the 
covariates. 

 

𝐷𝐷𝑖𝑖 =  𝑥𝑥𝚤́𝚤𝛽𝛽(𝑝𝑝) + 𝜇𝜇𝑖𝑖               (5) 

 

Where 𝑝𝑝 ∈ (0,1) is a fixed and given probability and 𝜇𝜇𝑖𝑖 is an independent and identically 
distributed residual whose 𝑝𝑝 -quantile equals zero, i.e., P(𝜇𝜇𝑖𝑖 ≤0|𝑥𝑥𝑖𝑖 ) = 𝑝𝑝 and follows a standard 
Laplace distribution. It is important to note that equation 5 is the same as assuming that  
𝑥𝑥𝚤́𝚤𝛽𝛽(𝑝𝑝) is the 𝑝𝑝-quantile of the conditional distribution of 𝐷𝐷𝑖𝑖  given 𝑥𝑥𝑖𝑖, which can be expressed as 
P(𝐷𝐷𝑖𝑖 ≤ 𝑥𝑥𝚤́𝚤𝛽𝛽(𝑝𝑝)|𝑥𝑥𝑖𝑖 ) = 𝑝𝑝. 

 

3. Data and Descriptive Statistics 

 

3.1 Data 

 

The data comes from a survey conducted using a multistage stratified sampling procedure. The 
survey was conducted in August and September 2020 in four purposively selected districts—
Babati, Kilolo, Kongwa, and Mbozi for two reasons: predominantly maize and beans growing, 
and the Africa RISING East and Southern Africa project has promoted significant postharvest 
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interventions 5. Next, using probability proportional to size sampling (PPS), ten wards were 
selected, from which 14 villages were chosen randomly. All the villages in the selected wards 
were listed, and a random sampling led to 14 villages. A sampling frame was developed based 
on the household list with the help of the extension agents from the selected villages. Well-
trained enumerators interviewed 579 randomly selected households using CAPI-based survey 
software called surveybe. All participants received a clear explanation of the survey objectives, 
after which only those who gave verbal consent to participate in the study were interviewed. In 
this study, we use a sub-sample of 429 households for which we collected data on postharvest 
technologies.  

Detailed information was collected on demographic and socioeconomic characteristics, 
e.g., household head's age, sex, and education; livestock ownership, farm size, crop production 
awareness, and adoption of PICS bags.  

 

3.2 Descriptive statistics 

 

Table 1 shows the descriptive statistics of the treatment variables. On average, 13% of the 
households did not access information on improved postharvest technologies from 
friends/relatives or extension agents (Table 1). Results further indicate that more farmers 
obtained information on postharvest technologies from extension agents (27%) than from social 
networks (19%). Overall, 40% of the households accessed postharvest-related information from 
social networks and extension agents.   

 

Table 1: Social learning and extension services 

 Category Abbreviation Frequency (N) Percent 

No social learning and extension S0 E0 55 13.23 

Social learning only S1 E0 84 19.49 

Extension services only S0 E1 117 27.15 

 

5 See  https://africa-rising.net/east-and-southern-africa/ for details about the project 

 

https://africa-rising.net/east-and-southern-africa/
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Social learning and extension services S1 E1 173 40.14 

Total   429 
 

 

Section 2 defined the time to adoption as the difference between the year farmers became 
aware of PICS bags (Figure 1 a) and the year of the first adoption (Figure 1 b). In the technology 
adoption–diffusion process, individuals pass through different phases; awareness, persuasion, 
decision (adoption or rejection), implementation, and confirmation (Rogers, 1995). Information 
is sought at all these stages to reduce risk and uncertainty about the usefulness of the 
technology. Figure 1a and Table A1 in the appendix show that few farmers were aware of PICS 
bags between 2000 and 2013. However, we see a significant increase in technology awareness 
between 2014-2020. For instance, 25% and 38% of the farmers became aware of PICS bags in 
2017 and 2018, respectively. Coincidentally, most of the farmers first adopted PICS bags during 
this period. This may reflect the awareness campaigns undertaken by several non-governmental 
organizations (NGOs) to increase the use of airtight containers to reduce postharvest grain 
losses.  

 

 

Figure 1: Awareness (a) and first adoption (b) of PICS bags  

 

We present the description of variables and summary statistics of the variables considered in 
the study disaggregated by the treatment variables in Table 2. On average, the time to adopt 
PICS bags is 2.2 years for farmers who did not learn from friends/relatives or extension agents 
and 1.5 years for households with access to both. Overall, the time to adoption is 1.7, which is 



12 

 

relatively small compared to crop varieties (e.g., Nazli and Smale, 2016; Manda et al., 2020) and 
conservation agriculture (CA) technologies (Khataza et al., 2018) partly because PICS bags 
maybe not be as knowledge-intensive as CA6. On average, about 84% of the sampled household 
heads are male. Households own about 1.9 ha of land, with farmers jointly learning from social 
networks and extension owning the most significant land. The percentage of households with 
access to credit is 16%, while those with mobile money (M-pesa) and savings accounts were 
88% and 23%, respectively. It is apparent from the results in Table 2 that households who had 
an opportunity to learn more about PICS bags through social networks and extension agents 
were more aware of aflatoxins than those who did not at all or knew from only one of the two 
sources of information. We capture the transaction costs regarding acquiring information about 
PICS bags using the distance to the PICS bags market, input and output markets (district and 
village markets), and distance to the extension agent's office.  

 

 

 

 

 

6 The average time to adoption for crop varieties ranged from 6-8 years and that CA from 4-6 years based on the 
cited studies. 
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Table 2: Descriptive statistics 1 

Variable Variable description 

S0 E0 
 

S1 E0 
 

S0 E1 
 

S1 E1 
 

All 

  Mean 
(N = 57) 

  SD 
  Mean 
(N=84) 

  SD 
  Mean 
(N = 117) 

  SD 
  Mean 
(N =173) 

  SD 
  Mean 
(N = 429) 

  SD 

Dependent variable 

Time to 
adoption  

Time to the adoption of PICS 
bags (years) 

2.228 1.443 2.06 1.616 1.594 1.352 1.457 1.483 1.713 1.496 

Independent variables 

Sex  Sex of the household head (1 
= Male) 

0.842 0.368 0.869 0.339 0.786 0.412 0.867 0.341 0.842 0.365 

 Marital status Married and living with 
spouse (1= Yes, 0 = otherwise) 

0.825 0.384 0.798 0.404 0.803 0.399 0.85 0.358 0.824 0.382 

Household size  Household size in adult 
equivalent (number) 

4.694 2.41 4.797 2.076 4.282 1.934 4.937 2.212 4.7 2.151 

Education Education level of household 
head (years of formal) 

6.877 3.295 6.524 2.98 6.733 4.609 7 2.222 6.818 3.295 

Livestock ownership of livestock in 
Tropical Livestock Units (TLU)  

2.017 2.502 2.57 5.095 2.18 2.988 5.027 3.039 3.377 19.481 

Land Total land owned in hectares 1.975 1.905 1.735 1.448 1.781 2.188 2.059 2.246 1.909 2.051 

Years in village Number of years household 
head has lived the village  

33.842 18.642 33.94 15.399 33.513 16.502 33.306 17.46 33.557 16.927 
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Credit Access to credit (1= Yes, 0 = 
otherwise) 

0.088 0.285 0.19 0.395 0.077 0.268 0.231 0.423 0.162 0.369 

 M-Pesa 
account 

Household has mobile money 
account (1= Yes, 0 = 
otherwise) 

0.807 0.398 0.869 0.339 0.846 0.362 0.925 0.264 0.877 0.329 

Savings account Household has savings 
account (1= Yes, 0 = 
otherwise) 

0.211 0.411 0.143 0.352 0.299 0.46 0.231 0.423 0.23 0.421 

Aware of 
aflatoxin 

Household aware of aflatoxin 
(1= Yes, 0 = otherwise) 

0.07 0.258 0.298 0.46 0.12 0.326 0.393 0.49 0.258 0.438 

 Leadership Household has 
friends/relatives in leadership 
positions (1= Yes, 0 = 
otherwise) 

0.368 0.487 0.464 0.502 0.393 0.491 0.491 0.501 0.443 0.497 

PICS bag market Distance to PICS bag market in 
walking minutes 

150.491 115.37 120.179 133.84
6 

131.983 125.09 134.451 125.03
3 

133.121 125.457 

District market Distance to district market in 
walking minutes 

216.842 135.21 187.56 137.79
1 

185.239 106.51 209.075 289.84
5 

199.439 207.05 

Village market Distance to village market in 
walking minutes 

27.193 26.297 26.012 30.023 28.274 38.103 34.532 40.175 30.202 36.256 

Extension office Distance to extension office in 
walking minutes 

45.281 60.207 45.845 49.712 37.513 35.19 42.081 53.032 41.998 
49.172 

Number of 
observations 

 57  84  117  173  431 
 

 2 
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Figure 2 further presents the distribution of the time to adoption by the treatment variables. 
Like a strip or box plot, the violin plot shows the median as a short horizontal line with a dot, 
the interquartile range (first-to-third) as a narrow-shaded box, and the lower-to-upper adjacent 
value range as a vertical line. There seems to be significant heterogeneity in the time to 
adoption distribution, with clustering in the upper and lower tails of the distributions. To 
explore this heterogeneity, in the subsequent sections, we use the censored quantile regression 
model described in section 2 to estimate the effects of the treatment variable on different levels 
of the time to adoption distribution conditional on the household and farm characteristics. 

 
 

 
Figure 2: Violin plots for the distribution of the time to adoption by social learning and 
extension services 
 
 

4. Empirical results and discussion  

 

4.1 Nonparametric analysis-Kaplan–Meier curve 
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We first explore the distribution of the time to the adoption of PICS bags and the relationship 
with learning through social networks and extension agents. Figure 3 shows the Kaplan–Meier 
survival estimates for the adoption spell. Most households adopted PICS bags in the first five 
years of hearing or becoming aware of the technology. In other words, the probability that a 
household will adopt, given that they have not adopted, increases gradually, as shown by the 
decline in the survival rate.  

Figure 4 shows the Kaplan–Meier survival estimates for our treatment variables and time 
to adoption. The nonparametric Kaplan–Meier curve presented in Figure 4 does not account for 
other factors that may affect adoption time or social and extension learning. The estimates 
show that farmers who jointly learned from social networks and extension were more likely to 
adopt PICS earlier than those from either of the two information channels in isolation. Similarly, 
farmers were more likely to adopt PICS faster if they had access to either social learning or 
extension agents than those who didn't have access to any of the two. The Log-rank test for the 
equality of survival function also affirms this result since we reject the null hypothesis that the 
distribution of the estimates in Figure 4 is the same (χ2 = 33.08; P = 0.000). It is apparent that 
there is a potential relationship between the treatment variables and the time to adoption; 
however, we didn't account for other confounding variables which are likely to affect the 
treatment and outcome variables. We address this issue next using the LAC-MIPWRA and the 
parametric survival models. 

 

 

Figure 3: The time to adoption of PICS  
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Figure 4: The time adoption of PICS by the social learning and extension services  

 

 

4.2 Multivalued survival treatment effects 

 

4.2.1 Determinants of the time to the adoption of PICS bags 

Table 3 presents the second stage parameter estimates from the LAC-MIPWRA model described 
in Section 3. The first stage results from estimating the multinomial logit model (equation 1) are 
shown in Table A2 in the appendix. As mentioned in section 3, the LAC-MIPWRA model results 
are valid if drawn from observationally similar groups according to the reweighted propensity 
scores. Results in Figure A1 show that our four groups' overlap assumption is satisfied after the 
propensity score reweighting, suggesting that the specification in section 3 is valid for deriving 
the impact estimates. 
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As the study's main objective is to assess the explanatory and treatment variables' 
impact on the time to adoption, we don't interpret the first stage results. Results in Table 3 
indicate that being a male household head reduces adoption time for households who jointly 
learned from social networks and extension. The results also suggest heterogeneity concerning 
the effect of some variables on the outcome variable. For instance, results show that married 
household heads who did not have access to information on PICS bags from social networks and 
extension agents were likelier to adopt PICS bags earlier than their married counterparts who 
obtained information from the two sources. The time to adoption reduces with the size of the 
household, suggesting the importance of labor in adopting improved postharvest technologies. 
The household size is usually a proxy for family labor endowments, especially in developing 
countries. Consistent with other studies (e.g., Abdulai and Huffman, 2005; Euler et al., 2016; 
Nazli and Smale, 2016), education reduces the time to adopt for households who obtained 
information on PICS bags from social networks, pointing to the complementarity of the two. 
Livestock ownership generally reduces the time to adoption in the social learning and extension 
equations while increasing the time for those who jointly access both. The results align with 
those of Manda et al. (2020) and Dadi et al. (2004b) regarding the importance of livestock in 
technology adoption. As expected, land ownership minimizes the time to adoption.  

Relative to the single woven bags commonly used by farmers to store their harvest, PICS 
bags are more expensive (Channa et al., 2019); hence, access to credit becomes vital to ease 
farmers' liquidity constraints. Like other studies (e.g., Abdulai and Huffman, 2005; Alcon et al., 
2011; Dadi et al., 2004b), Table 3 shows that the time to adopt PICS bags is reduced with getting 
credit. Consistent with similar studies (e.g., Gitonga et al., 2013), having a bank account 
increases the adoption rate. The coefficient on aflatoxin awareness has the expected sign in the 
equation for households that didn't access information from social networks and extension 
agents. PICS bags create an airtight seal that lowers insect storage loss and counteracts aflatoxin 
contamination in stored grain (Channa et al., 2019). Therefore, it is envisaged that farmers 
aware of aflatoxins are more likely to adopt PICS bags. Results also indicate that households 
with friends or relatives in leadership positions adopt PICS bags faster than those without 
leadership positions. This variable is a proxy for political connections that impact networking 
and play a vital role in farmers adopting improved agricultural technologies by facilitating better 
access to inputs and credit supplied by public institutions (Kassie et al., 2013). 

Overall, the variables capturing the transaction costs, i.e., distance to the village, district, 
and PICS bags markets, correlate with the adoption speed. The positive coefficients for 
distances to the market (i.e., district, village, and PICS markets) imply that farmers far away from 
the market are less likely to adopt PICS bags. The result is expected because of the costs 
associated with traveling to distant markets, which might prevent farmers from accessing 
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information about airtight storage technologies such as PICS bags. These results are broadly 
consistent with Tesfaye and Tirivayi (2018). 

Finally, considering the geographical heterogeneity, the results show that the time to 
adoption is shorter for Babati and Kongwa households than those in Mbozi district. Relative to 
other districts, households in Mbozi took more time to adopt PICS bags (on average, 1.9 years). 
This reflects the differences in climatic conditions, institutional support services, and other 
factors that might affect the adoption/dissemination of postharvest technologies such as PICS 
bags. 

 

Table 3: Determinants of the time to adoption of PICS bags  

Variable Time to adoption (years) 

(S0 E0) (S1 E0) (S0 E1) (S1 E1) 

Sex 1.131 -0.060 0.088 -0.448** 

 (0.745) (0.158) (0.421) (0.223) 

Marital status -0.884** -0.107 -0.364 0.560** 

 (0.426) (0.214) (0.288) (0.261) 

Household size -0.250*** 0.058 -0.071* 0.016 

 (0.073) (0.050) (0.042) (0.027) 

Education -0.012 -0.044** 0.022 -0.030 

 (0.048) (0.020) (0.021) (0.031) 

Livestock -0.035 -0.010** -0.090** 0.002* 

 (0.061) (0.004) (0.036) (0.001) 

Land 0.033 0.006 -0.025 -0.077*** 

 (0.085) (0.045) (0.023) (0.028) 

Years in village -0.005 0.001 -0.002 0.005 

 (0.005) (0.002) (0.008) (0.006) 

Credit -0.413 -0.286 -0.789*** -0.634*** 

 (0.709) (0.178) (0.146) (0.079) 

M-Pesa account -0.328 0.045 -0.190 0.010 



20 

 

 (0.287) (0.192) (0.223) (0.279) 

Savings account -0.258 -0.224*** -0.179 0.101 

 (0.396) (0.085) (0.316) (0.216) 

Aware of aflatoxin -0.511*** 0.581*** -0.026 -0.170 

 (0.174) (0.104) (0.181) (0.156) 

Leaders -0.991*** 0.004 0.158 0.223 

 (0.228) (0.177) (0.267) (0.155) 

Ln District market -0.131 -0.167* 0.228** 0.015 

 (0.412) (0.102) (0.103) (0.060) 

Ln Village market -0.402 0.167* 0.155* -0.075 

 (0.329) (0.102) (0.084) (0.059) 

Ln PICS bag market 0.182 0.083* -0.113 0.211*** 

 (0.204) (0.048) (0.102) (0.045) 

Babati district 0.981 -0.411** 0.061 -0.324 

 (1.309) (0.204) (0.281) (0.345) 

Kilolo district -0.709 0.067 0.358 -0.287 

 (1.336) (0.131) (0.317) (0.194) 

Kongwa district 0.783 0.067 0.584 -1.018*** 

 (0.717) (0.080) (0.363) (0.227) 

Constant 4.319 0.864 0.392 0.043 

 (3.081) (0.751) (1.184) (0.395) 

Observations 429 429 429 429 

Note: Cluster robust standard errors reported in parenthesis. * p<0.05, ** p<0.01, *** p<0.001 

 

4.2.2 Impact of social learning and extension services 
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Table 4 shows the effect on the subpopulations of households who learned from social 
networks and extension agents in isolation and jointly, i.e., the ATT7. The ATE results are 
presented in Table A3 in the appendix. The ATT results indicate that the average adoption time 
would be 4.3 years if no household accessed social learning and extension services. However, if 
the households learned only from social networks, the average time to adoption would 
decrease by 2.2 years, a 51% reduction compared with the potential outcome of no social and 
extension learning. These results are broadly consistent with those of Genius et al. (2013) and 
Khataza et al. (2018). 

Similarly, if households only learned from extension agents, the average time to 
adoption would decrease by 2.1 years, an estimated 49% reduction relative to the case of no 
social and extension learning. The ATT estimates also indicate that the collective knowledge 
from social networks and extension agents is associated with the most significant decline in the 
years to adoption. On average, joint learning from social networks and extension would reduce 
the average time to adoption by 2.6 years, a 61% reduction in the years to adoption relative to 
the potential outcome of no social learning and extension services. These results are consistent 
with Genius et al. (2013), who contend that the presence of the other enhances the 
effectiveness of each type of information channel. Further, they explain that extension services 
will be more effective than social networks for speeding up the adoption process in areas with a 
critical mass of adopters. 

 

Table 4: Impact of social and extension learning on time to adoption of PICS bags 

 Treatment Potential outcome mean 
(without social learning and 

extension services) 

ATT Percent 
reduction (%) 

S0 E0 4.325*** 
(0.541) 

  

S1 E0  -2.188*** 
(0.575) 

51 

S0 E1  -2.126*** 
(0.473) 

49 

S1 E1  -2.626*** 
(0.685) 

61 

 

7 In survival analysis language, this is also known as the effect in a well-defined subpopulation that is at-risk. 
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Note: Cluster robust standard errors reported in parenthesis. * p<0.05, ** p<0.01, *** p<0.001 

 

 

4.3 OLS, Cox Proportional Hazard, and survival time models 

 

We also estimated the results using OLS, Cox Proportional Hazard, and survival time models to 
provide a robustness check for the LAC-MIPWRA results (Table 5). For brevity, we concentrate 
on the results from the treatment variables only. The OLS estimates show that the time to 
adoption reduces by 0.68 and 0.72 years with extension learning only and joint learning from 
social networks, respectively.  

The Cox Proportional Hazard and survival time models are based on the hazard ratio. A 
hazard ratio greater (less) than one indicates that the variable reduces (increases) the time to 
adoption. Results from the two models suggest that the time to adoption by households who 
jointly learned from social networks and extension agents was more likely to reduce by 59% and 
71%, respectively, compared to those who did not know about PICS bags from the two 
information channels. This speed of adoption is much higher than that if the household were to 
learn from only the extension agents (42% and 63%) or social networks (21%). The impacts of 
the treatment variables and the other explanatory variables are similar to the LAC-MIPWRA 
results regarding the direction of the effects with minimal differences in the magnitudes.    

 

 

 

 

 

 

Table 5: Estimation results for OLS, Cox Proportional Hazard, and survival time models 

Variable OLS COX Survival time 

S1 E0 -0.119 
(0.150) 

0.213** 
(0.095) 

0.188 
(0.134) 
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S0 E1 -0.680** 
(0.274) 

0.445*** 
(0.167) 

0.629*** 
(0.239) 

S1 E1 -0.729* 
(0.364) 

0.588*** 
(0.188) 

0.708** 
(0.300) 

Sex  0.246** 
(0.099) 

-0.252** 
(0.102) 

-0.323** 
(0.135) 

 Marital status -0.149 
(0.167) 

0.186 
(0.155) 

0.233 
(0.183) 

Household size  -0.028 
(0.030) 

0.014 
(0.022) 

0.027 
(0.033) 

Education -0.009 
(0.013) 

0.002 
(0.007) 

0.001 
(0.012) 

Livestock 0.003*** 
(0.001) 

-0.002*** 
(0.000) 

-0.002*** 
(0.001) 

Land -0.048 
(0.029) 

0.048*** 
(0.018) 

0.063*** 
(0.022) 

Years in village 0.004 
(0.004) 

-0.002 
(0.002) 

-0.006 
(0.004) 

Credit -0.626*** 
(0.123) 

0.497*** 
(0.061) 

0.792*** 
(0.087) 

 M-Pesa account 0.058 
(0.094) 

0.170* 
(0.098) 

0.113 
(0.108) 

Savings account -0.152 
(0.197) 

0.221** 
(0.090) 

0.192 
(0.187) 

Aware of aflatoxin 0.168 
(0.212) 

0.033 
(0.111) 

0.008 
(0.165) 

 Leadership 0.101 
(0.093) 

0.017 
(0.067) 

-0.028 
(0.079) 

Ln District market 0.054 
(0.060) 

-0.040 
(0.038) 

-0.053 
(0.060) 

Ln Village market 0.091 
(0.133) 

-0.038 
(0.061) 

-0.023 
(0.091) 

Ln PICS bag market 0.056 
(0.063) 

-0.037 
(0.038) 

-0.073 
(0.058) 
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Ln Extension office -0.061 
(0.065) 

0.039 
(0.033) 

0.042 
(0.059) 

Babati district -0.434*** 
(0.092) 

0.183** 
(0.072) 

0.402*** 
(0.105) 

Kilolo district -0.363** 
(0.157) 

0.008 
(0.135) 

0.166 
(0.189) 

Kongwa district -0.394** 
(0.130) 

-0.180** 
(0.080) 

0.105 
(0.110) 

Constant 1.908** 
(0.601) 

 
 

-1.289 
(0.843) 

Observations 429 429 429 

Note: Cluster robust standard errors reported in parenthesis. * p<0.05, ** p<0.01, *** p<0.001 

 

 

 

 

4.4 Laplace regression quantile survival effects 

 

The violin plots presented in Figure 2 suggest that the effects of learning from social networks 
and extension agents on time to adoption are likely to be heterogeneous. Unlike the Kaplan–
Meier curves (Figure 3 and Figure 4), which give estimates at the univariate level, Table 6 
reports the estimated quantile effects of social and extension learning on the 10th–90th 
quantiles or percentiles of the outcome variable conditional on the characteristics of the 
households. The first (10th) quantile includes households with the fastest speed of adoption, 
while the opposite is true for the farmers in the 90th quantile. The results have the expected 
signs and show that social and extension learning impacts are not homogenous but vary 
significantly across the distribution of the adoption spell. We also reject the null hypothesis that 
the treatment effects are equal across the time to adoption percentiles. The results displayed in 
Table 6 are consistent with those in Tables 3 and 4 as they indicate that the combination of 
social and extension learning results in the most significant reduction in the time to adoption 
than if farmers learned from social networks or extension agents in isolation, regardless of the 
quantile in consideration.  
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Moreover, the results show that the impact of social learning and extension services is 
more pronounced in the upper sections than in the lower area of the distribution. For instance, 
learning from social networks reduces the time to adoption by 0.6 years in the 80th quantile 
compared with those in the 60th quantile (0.45 years). Similarly, learning jointly from social 
networks and extension agents reduces the speed of adoption by 0.37 and 1.23 years in the 10th 
and 90th quantiles, respectively.  

 

Table 6: Estimation results for the Laplace regression model 

Quantile S1 E0 S0 E1 S1 E1 

Q10 
0.090 

(0.141) 

-0.366*** 

(0.140) 

-0.365*** 

(0.125) 

Q20 
-0.016 

(0.210) 

-0.513** 

(0.215) 

-0.515** 

(0.208) 

Q30 
-0.094 

(0.268) 

-0.860*** 

(0.206) 

-1.025*** 

(0.211) 

Q40 
-0.114 

-(0.182) 

-0.990*** 

(0.214) 

-1.130*** 

(0.21) 

Q50 
-0.205 

-(0.189) 

-0.708*** 

(0.243) 

-1.061*** 

(0.247) 

Q60 
-0.458* 

(0.248) 

-0.716*** 

(0.270) 

-0.881*** 

(0.269) 

Q70 
-0.486 

(0.343) 

-1.021*** 

(0.358) 

-1.110*** 

(0.346) 

Q80 
-0.602* 

(0.357) 

-1.032*** 

(0.391) 

-1.218*** 

(0.346) 

Q90 
-0.446 

(0.411) 

-0.915* 

(0.517) 

-1.229*** 

(0.443) 

Test for differences in the 
effects 

               χ2(27) =125.81*** 

Note: Bootstrapped standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001 
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5. Summary and concluding remarks 

 

Most cereals, pulses, and oilseeds, such as maize, beans, and groundnuts, which form the 
foundation for food, income, and nutrition for most households in Tanzania, are highly 
susceptible to postharvest losses due to insect damage and aflatoxin contamination. Previous 
studies show that adopting improved postharvest technologies such as PICS bags can potentially 
reduce these problems. However, in most of these studies, much attention has been given to 
evaluating the effectiveness of the PICS bags based on on-farm trials and does not consider the 
adoption dynamics. Furthermore, there is a dearth of evidence on the role of social networks 
and access to extension access on the time it takes for farmers to adopt PICS bags in Tanzania. 
This paper contributes to the empirical literature in this area by examining the interdependent 
impacts of learning from friends/relatives and extension agents on the speed of PICS bag 
adoption in Tanzania. We apply the doubly robust multivalued inverse probability weighted 
regression (MIPWRA) model in a survival treatment effects framework to estimate the impact 
and the Laplace regression model to evaluate the heterogeneous effects of the two information 
transmission channels. 

 Overall, results indicate that learning from friends/relatives and extension agents 
reduces the time it takes for farmers to adopt PICS bags. On average, social and extension 
learning reduces the time to adoption by 51% and 49%, respectively. The results further show 
that the rate at which farmers adopted the technology was faster when they jointly learned 
from the two information sources (61%) than from the individual sources. This indicates that 
these sources are complements rather than substitutes. Furthermore, results from the Laplace 
regression model suggest that the effects are not homogenous but heterogeneous, as the 
marginal impacts of information transmission are more prominent for households in the upper 
quantiles and smaller for the in the lower quantiles of the time adoption distribution. 

 Overall, two policy issues emerge from our research. First, recognizing the 
complementarity of learning from friends/relatives and extension agents in designing public 
extension policies is vital to increasing the rate at which farmers adopt improved agricultural 
technologies. Although agricultural extension is also provided by private institutions, in most 
cases, this is usually offered by public institutions that face several challenges, including but not 
limited to inadequate extension staff and transaction costs associated with covering extensive 
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distances to train farmers. Social learning could complement public extension as farmers can 
quickly learn from other farmers even if few have access to extension; hence events promoting 
community interactions such as field days and demonstrations are essential.   

Second, the significance of access to credit in reducing the time to adoption suggests 
that the provision of loans or subsidies to farmers can be one of the policy objectives that can 
be pursued for farmers to adopt PICS bags. Seeing that PICS bags are relatively new, there may 
be some uncertainties about their effectiveness; hence the provision of a one-time use subsidy 
to build awareness and reduce risk can help generate demand for such a novel technology 
(Omotilewa et al., 2019). 

Though we have tried to isolate the impact of social and extension learning rigorously, a 
significant limitation of our study is the definition of social learning. Future studies could explore 
using alternative definitions and construction methods of social learning, such as using 
geographical positioning systems (GPS) to measure the distances between friends or neighbors 
who had access to or adopted PICS bags and those who did not. 
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Appendix 

 

Table A1: Year of awareness and first adoption of PICS bags (% of farmers). 

Year Awareness First adoption 

2000 0.23 
 

2003 0.23 
 

2005 
 

0.45 

2007 0.23 
 

2010 0.46 
 

2012 0.23 
 

2013 0.7 1.36 

2014 1.62 1.81 

2015 9.98 4.98 

2016 10.9 6.79 

2017 23.43 25.79 

2018 38.98 38.46 

2019 12.3 19.91 

2020 0.7 0.45 
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Figure A1: Balanced plots for the time to adoption by social and extension learning.   
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Table A2: Determinants of social learning and extension services 

Variable Social learning  Extension services Social learning and 
extension services 

Sex 0.665 -0.854* -0.366 

 (0.457) (0.466) (0.497) 

Marital status -0.666 0.366 0.169 

 (0.528) (0.400) (0.600) 
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Household size 0.082 -0.086 0.071 

 (0.095) (0.128) (0.133) 

Education -0.058 -0.016 -0.013 

 (0.059) (0.044) (0.042) 

Livestock 0.018 -0.003 0.023 

 (0.034) (0.066) (0.035) 

Land -0.046 0.002 0.007 

 (0.108) (0.161) (0.078) 

Years in village -0.002 0.005 0.003 

 (0.008) (0.009) (0.012) 

Credit 0.711* -0.560 0.855* 

 (0.390) (0.504) (0.493) 

M-Pesa account 0.673 0.509 1.377*** 

 (0.580) (0.403) (0.406) 

Savings account -0.601 0.413 -0.174 

 (0.509) (0.311) (0.511) 

Aware of aflatoxin 2.056*** 0.944* 2.489*** 

 (0.714) (0.561) (0.722) 

Leaders 0.139 0.325 0.367 

 (0.320) (0.408) (0.264) 

Ln District market -0.207 -0.181 -0.194 

 (0.297) (0.273) (0.199) 

Ln Village market -0.124 -0.320** 0.067 

 (0.172) (0.129) (0.199) 

Ln PICS bag market -0.219** 0.074 0.126 

 (0.103) (0.134) (0.146) 

Ln Extension office 0.241 0.224 -0.038 

 (0.345) (0.300) (0.250) 
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Babati district -0.645 -0.631* -0.233 

 (0.418) (0.346) (0.467) 

Kilolo district 0.497 0.238 0.899*** 

 (0.308) (0.269) (0.267) 

Kongwa district -0.430** -2.660*** -2.233*** 

 -0.645 -0.631* -0.233 

Constant 1.130 1.901 -0.646 

 (2.500) (1.875) (1.831) 

Observations 429 429 429 

Note: Cluster robust standard errors reported in parenthesis. * p<0.05, ** p<0.01, *** p<0.001 

 

 

 

 

 

 

 
Table A3: Impact of social learning and extension services on time to adoption of PICS bags 
(ATE) 

Treatment Potential outcome (without 
social learning and extension 

services) 

ATE 

S0 E0 4.209*** 
(0.991) 

 

S1 E0  -1.930* 
(1.027) 

S0 E1  -2.101** 
(0.823) 

S1 E1  -2.564** 
(1.172) 

Note: Cluster robust standard errors reported in parenthesis. * p<0.05, ** p<0.01, *** p<0.001 


