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Abstract

This study examines the impacts of social learning and extension services on the time it takes to
adopt an improved postharvest technology called Purdue Improved Crop Storage (PICS) bag in
Tanzania. We utilized the doubly robust multivalued inverse probability weighted regression
(MIPWRA) model in a survival treatment effects framework to estimate the impact. We also
applied the Laplace regression model to evaluate the heterogeneous effects of the two
information sources. Overall, results from the MIPWRA indicate that social learning and
extension services reduce the time to adopt PICS bags by 51% and 49%, respectively. The results
further show that the speed at which farmers adopted the technology was faster when using
the two information sources jointly (61%) than individually. The results from the Laplace
regression model also show that the impacts of social learning and extension services vary
significantly across the time to adoption distribution. The marginal impacts of the two
information sources are more meaningful for the households in the upper quantiles of the
distribution, compared to the lower quantiles representing the early adopters. Designing
policies that account for the complementarity of the two sources of information is essential to
increasing the adoption of PICS bags in Tanzania.

Keywords: Postharvest losses, improved postharvest technologies, social learning, extension
services, Tanzania.

1. Introduction

In Eastern and Southern Africa, it is estimated that postharvest grain losses (hereafter referred
to as PHLs) amount to about US $1.6 billion per year, equivalent to 13.5% of the total value of
grain production predicted to be worth $11 billion (World Bank, 2011). Although these losses
can occur at different stages of the post-production chain, most occur during storage, mainly



due to pest (insects/rodents) damage, spillage, spoilage, and contaminations (Affognon et al.,
2015; Abass et al., 2014). These losses reduce the quantities available for sale and future
consumption, coupled with income loss through price discounts for damaged crop produce
(Kadjo et al., 2016) for most smallholder farmers. Qualitative postharvest losses can also lead to
a loss in market prospects and nutritional value, leading to severe health risks if associated with
the consumption of aflatoxin-contaminated grain (World Bank, 2011).

Most cereals, pulses, and oilseeds, such as maize, beans, and groundnuts, which form
the base for food, income, and nutrition for most households in Tanzania, are highly vulnerable
to aflatoxin contamination and insect damage. Notwithstanding the significant variations in the
estimates, postharvest losses are generally estimated at over 20% for the major cereals and
pulses (Abass et al., 2014; Mutungi and Affognon, 2013; Abass et al., 2018). The primary loss
agent for stored maize is the infestation by insects infestations, such as the larger grain borer
(LGB) and the maize weevils (Vowotor et al., 2005), while the significant pests for pulses such as
beans are bruchids (Mutungi et al., 2020). PHLs should not only be viewed as the loss of solid
matter and quality that pose food insecurity and food safety risks but also as the loss of all the
resources (land, labor, capital) used in grain production (Sheahan and Barrett, 2017). Traditional
storage structures commonly used by farmers (e.g., polypropylene bags, granaries made of
plant materials, and mud) are not very effective in preventing insect infestations (Chigoverah
and Mvumi, 2016; Abass et al., 2014; Omotilewa et al., 2019). Some farmers also use grain
protectants, including traditional admixtures (ash, soil, inert dust, plant oils, and other
botanicals) and synthetic insecticides. Still, these suffer from limited efficacy, poor
standardization and labeling, expiration, and adulteration, which may make them ineffective
and dangerous to the health of consumers and the environment (World Bank, 2011).

Given the food security, food safety, economic and ecological implications of PHL
reduction, it is critical to employ appropriate technologies at different stages of the post-
production chain. Adopting improved postharvest storage technologies (IPHTs) offers a potential
solution to some of these problems. Recent studies show that airtight containers such as metal
silos and PICS bags significantly reduce grain damage caused by insect infestation®. A study by
Njoroge et al. (2014) showed that maize grain damage stored in airtight bags was considerably
lower (3.4%) than in polypropylene bags (74%) in the presence of LGB infestation. Similarly, the
adoption of metal silos almost wholly eliminated the losses caused by insect pests, making it
possible for farmers to save an average of 150-200 kg of maize grain annually in Kenya (Gitonga

1 Channa et al. (2022) define the PICS bag as a three-layer hermetic bag that consists of an outside layer of woven
polypropylene and two inner layers of polyethylene.



et al., 2013). Apart from preventing grain damage from insect infestation, hermetic bags reduce
aflatoxin accumulation in stored grain (Ng'ang'a et al., 2016) and avoid exposure to hazardous
synthetic insecticides. Despite these positive effects of airtight storage containers, there is
limited empirical evidence on the adoption dynamics of improved postharvest technologies in
Tanzania. The empirical literature on agricultural technology adoption continues to ignore its
dynamics (Munguia et al., 2021). Considering adoption as a one-off static decision, many studies
(e.g., Baoua et al., 2014; Chigoverah and Mvumi, 2016; Sudini et al., 2015) assessed the
effectiveness of airtight storage containers in reducing PHLs mainly based on ex-ante data and
on-station experiments. However, technology adoption is not a one-off static decision but rather
a dynamic process that entails information gathering and learning (Jabbar et al. 1998). Farmers
move through several stages, from learning to adoption to continuous or discontinuous use over
time (Rogers, 2003). The few existing ex-post studies (Gitonga et al., 2013; Tesfaye and Tirivayi,
2018) on IPHTs have done the assessment at the extensive margin and did not consider the
dynamic nature of technology adoption at the intensive margin. As such, rigorous studies on the
dynamics of IPHT adoption remain rare in Tanzania.

Understanding the diffusion of modern technology depends on understanding the
dynamic and cross-sectional patterns of technology adoption (Maertens and Barrett, 2013). This
article contributes to filling this research gap in the literature by examining the determinants of
the time to adopt the PICS bags in Tanzania. Since PICS bags are relatively new and the
uncertainties, risks, and information market imperfections accompanying such a technology are
not well known, we explicitly study the individual roles and combination of learning from
friends and relatives (social learning) and extension agents in speeding the adoption of PICS
bags.

It is widely recognized that farmers are informed about the presence and efficient use of
any novel agricultural technology through social interface with other farmers and extension
workers (Genius et al., 2013). The positive role of social learning in the adoption and diffusion of
new agricultural technologies is well documented in the literature. For instance, learning from
neighbors increased the farmers' adoption of improved seeds and fertilizer in Ethiopia (Krishnan
and Patnam, 2013). Likewise, Genius et al. (2013) found that social learning strongly determines
irrigation technology adoption and diffusion. Learning through extension services also enables
both the adoption and adaptation of technology to local conditions by deciphering information
from new research to farmers and helps to explain to research workers the difficulties and
constraints farmers face (Anderson and Feder, 2007).

Against this milieu, this paper examines the impact of social learning and extension
services on the time it takes to adopt PICS bags in Tanzania. We use the time-to-event data for
the outcome variable and apply the MIPWRA model in a survival treatment effects framework
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to achieve this objective. To our knowledge, no study has used the MIPWRA model to analyze
the dynamics of agricultural technology adoption in a multivalued setting. This study builds
upon Manda et al. (2020), who used the inverse probability weighted regression (IPWRA)
model, but not in a multivalued setting, to estimate the impact of cooperative membership on
improved maize variety adoption in Zambia. Other studies (e.g., Beyene and Kassie, 2015; Dadi
et al., 2004a; Nazli and Smale, 2016) have used models based on the difficult to interpret hazard
rates to model the diffusion of agricultural technologies. Using the MIPWRA, we measure the
impact of the learning from social networks and extension services on time to PICS adoption.

The results from MIPWRA give the mean effects, which hide the distributional impact of
learning from the two information sources across all categories of adopters (from innovators,
early adopters, to laggards). For this reason, we further estimate the heterogeneous effects of
social learning and extension services across the entire time to adoption distribution conditional
on other covariates using the Laplace regression model. Most previous studies use the
univariate nonparametric Kaplan-Meier estimates to assess a treatment's distributional effects
and do not consider the effects of other covariates (e.g., Dadi et al., 2004; Nazli and Smale,
2016). The other common methods of estimating quantile treatment effects (e.g., Frélich and
Melly, 2013) do not consider our outcome variable's censored nature. The Laplace regression
model (Bottai and Zhang, 2010) estimates the treatment effects across the percentiles of the
time to adoption distribution. Unlike the other methods, this model accounts for the censored
outcome variables and does not rely on the proportional hazard assumption like the cox
proportional hazard model.

The rest of the article is organized as follows: The next section describes the empirical
framework, while section 3 presents the data and descriptive statistics. Section 4 presents the
results and discussion, and the last section draws conclusions and policy recommendations.

2. Empirical Framework

2.1 Impact of social learning and extension services on time to the adoption of PICS bags

Agricultural technology choice is a dynamic process that involves a series of judgments based on
previous selections and the current or expected economic environment such that simple
dichotomous decision models are incapable of capturing the dynamic nature of this process (An
and Butler, 2012). Duration models, based on hazard ratios as the effects, have primarily been
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used to model such as a dynamic process to understand the factors that explain the length of a
spell ( e.g., Dadi, Burton and Ozanne, 2004; Abdulai and Huffman, 2005; Beyene and Kassie,
2015; Canales, Bergtold and Williams, 2020). In the present study, a spell starts at the time
when a farmer becomes aware of the PICS bags for the first time and ends at the time the
farmer adopts the bags. In the subsequent section, we use “time to adoption” or “speed of
adoption” to depict the length of the spell.

Popular as they may be, hazard ratios or rates are only suitable for population effects
when they are constant, which happens when the treatment enters linearly, and the outcome
distribution has a proportional-hazards form (StataCorp, 2015). Results based on hazard ratios
are also challenging to interpret causality even if the proportional hazard assumption is satisfied
(Stensrud et al., 2019). In addition, even though most studies report the average hazard ratio, it
may change over time, so its interpretation based on the average may be misleading (Miguel A.,
2010). To avoid these problems, we use the survival treatment effects, i.e., the likelihood-
adjusted censoring (LAC) MIPWRA (hereafter referred to as LAC-MIPWRA), in which the effect of
interest is the average treatment effect on the treated (ATT). This measure is easier to interpret
because the results are in the same time units as the outcome instead of the relative
conditional probabilities in the case of hazard ratios. Second, no linearity in treatment nor
proportional-hazards form is required to estimate and interpret the ATT effectively.

In addition to the reasons mentioned above, our specific choice of the MIPWRA model is
also based on the following considerations. First, the selection into the social learning and
extension services is non-random. That is, households that used social learning and extension
services and those that did not may differ systematically. For example, farmers who seek out
and receive extension services might be more skilled and motivated than farmers who do not
seek such services (Maertens et al., 2021). Therefore, estimating the impact of extension
services and social learning without accounting for systematic variation may result in biased
estimates. Second, the treatment variable takes on four levels, i.e., no social learning and
extension services, social learning only, extension services only, and a combination of social
learning and extension services. Propensity score-based approaches are the most popular
methods used to deal with the problem of non-random assignment, albeit mainly applied to
binary treatment variables. Only recently have more authors started using propensity score-
based methods applied to multivalued treatment models (Cattaneo, 2010; Kotu et al., 2017,
Manda et al., 2021; Smale et al., 2018).

To estimate the impact of social learning and extension services using the MIPWRA
model, we follow three steps: First, we estimate the parameters of the propensity score model,
and then we calculate the inverse probability weights (IPW) for each level of treatment.
Specifically, we use the multinomial logit (MNL) model to estimate the propensity score model.
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The propensity score, in this case, is defined as the probability of using social learning and
extension services given observed characteristics (x;) and can be denoted as:

p(x;) = Pr(T; =0...3|x;) (2)

Where T; indicates whether or not a household i had access to social learning and extension
services, social learning only, extension services only, and a combination of social learning and
extension services, i.e., T=0...3.

We use the maximum likelihood weighted regression (regression adjustment model) in
the second step for each treatment level to obtain the household’s treatment-specific predicted
mean outcomes?. The estimated IPW are used to weight the maximum likelihood estimator, and
a term in the likelihood function adjusts for right-censored survival times. In the last step, we
compute the means of the treatment-specific predicted mean outcomes of the time to
adoption. The differences in these outcomes provide the average treatment effects (ATEs):

ATEr, = E(Yr, — Yo) (2)

Where y; denotes the potential outcome (time to the adoption of PICs bags) for a household
that had used either social learning, extension services or a combination of the two; and y,
denotes the outcome for the control category, i.e., no social learning and extension services.

Restricting the computations of the means to the sub-sample of households who have
used social learning and extension services, we obtain the average treatment effect on the
treated (ATT). The ATT can be defined as:

ATT; 7 = E{(y7, — y0))|T = T} (3)

2 As with other previous studies, we make the assumption that the outcome model follows a Weibull distribution.
We make the same assumption for all the models presented in this study except for the Laplace regression model
described in the subsequent sections.



The ATT requires three different treatment levels: £ defines the treatment level of the treated
potential outcome; 0 is the treatment level of the potential control outcome, and T = T restricts

the expectation to include only those individuals who receive treatment level T

Since we use cross-sectional data to estimate the ATE and ATT, identifying the treatment
effects relies mainly on three assumptions, i.e., conditional independence (Cl), enough overlap,
and correct adjustment for censoring. The first two assumptions are common to all methods
that use propensity scores, while the third is specific to censored or time-to-event data. The
fundamental idea behind the Cl assumption is that confounding, if extant, is entirely accounted
for by observed covariates (i.e., covariates included (x) in equation 1). The overlap assumption
ensures that each household could receive any treatment level.? The third assumption can be
thought of as having two parts. The first part is the expected survival assumption which states
that the censoring times are stochastically independent of the potential outcomes, and the
treatment-assignment process is conditional on the variables included in the model (Kalbfleisch
and Prentice, 2002). The second part is that the technique used to adjust censoring must be
correct. This study uses the LAC- MIPWRA to adjust for right-censored times to adoption®. To
the extent that the MIPWRA uses the LAC to account for censoring, we assume that the
outcome model has been correctly specified (StataCorp, 2015).

To assess the robustness of the LAC-MIPWRA model results, we also estimate the results
using the ordinary least-squares (OLS) regression model and the two most popular methods
used in modeling time to event data —the Cox proportional hazards and the survival time
regression models.

2.2 Laplace regression model

A linear regression model typically creates a linear relationship between a set of predictor
variables and the conditional mean of an outcome variable. However, modeling only the mean
may obscure essential aspects of the association between the outcome and its predictors,

3 In the ensuing sections, we test the overlap assumption using density distributions to assess whether balancing
was achieved using the MIPWRA model

4 We had some situations where we had left-censored observations i.e., cases where farmers adopted the same
year they heard about that technology. Following Canales et al. (2020) we added 0.5 to these observations
considering that farmers’ time to adoption was not necessarily zero.
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especially if the outcome distribution is skewed, as with time to event data (Beyerlein, 2014).
Similarly, as mentioned above, the Cox hazard proportional model is the most popular method
of analyzing survival analysis data. However, it is based on the proportional hazard assumption
and models the hazard rate instead of the survival time, making it difficult to interpret (Wang
and Wang, 2009).

Quantile regression methods capture heterogeneity across the sample in variance and
the structural model and relax the proportionality constraint on the hazard (Portnoy, 2003;
Wang and Wang, 2009). Considering that the time to adoption is censored, we use the Laplace
regression model (Bottai and Zhang, 2010) to model the censoring. Following Bottai and Zhang
(2010) and Bottai and Orsini (2013), let D; be the time to adoption defined above and x; vector
of observed covariates defined in equation 1. D; is censored, and we observe y; = min(D;, C;),
where C; is a censoring variable. It is assumed that C; is independent of D;, conditional on the
covariates.

D; = X%,B(p) + 1 (5)

Where p € (0,1) is a fixed and given probability and y; is an independent and identically
distributed residual whose p -quantile equals zero, i.e., P(1; <0|x; ) = p and follows a standard
Laplace distribution. It is important to note that equation 5 is the same as assuming that

X,B(p) is the p-quantile of the conditional distribution of D; given x;, which can be expressed as

P(D; < X,L(P)|x; ) =p.

3. Data and Descriptive Statistics

3.1 Data

The data comes from a survey conducted using a multistage stratified sampling procedure. The
survey was conducted in August and September 2020 in four purposively selected districts—
Babati, Kilolo, Kongwa, and Mbozi for two reasons: predominantly maize and beans growing,
and the Africa RISING East and Southern Africa project has promoted significant postharvest



interventions °. Next, using probability proportional to size sampling (PPS), ten wards were
selected, from which 14 villages were chosen randomly. All the villages in the selected wards
were listed, and a random sampling led to 14 villages. A sampling frame was developed based
on the household list with the help of the extension agents from the selected villages. Well-
trained enumerators interviewed 579 randomly selected households using CAPI-based survey
software called surveybe. All participants received a clear explanation of the survey objectives,
after which only those who gave verbal consent to participate in the study were interviewed. In
this study, we use a sub-sample of 429 households for which we collected data on postharvest

technologies.

Detailed information was collected on demographic and socioeconomic characteristics,
e.g., household head's age, sex, and education; livestock ownership, farm size, crop production
awareness, and adoption of PICS bags.

3.2 Descriptive statistics

Table 1 shows the descriptive statistics of the treatment variables. On average, 13% of the
households did not access information on improved postharvest technologies from
friends/relatives or extension agents (Table 1). Results further indicate that more farmers
obtained information on postharvest technologies from extension agents (27%) than from social
networks (19%). Overall, 40% of the households accessed postharvest-related information from

social networks and extension agents.

Table 1: Social learning and extension services

Category Abbreviation Frequency (N) Percent
No social learning and extension SoEo 55 13.23
Social learning only S1 Eo 84 19.49
Extension services only So E1 117 27.15

5 See https://africa-rising.net/east-and-southern-africa/ for details about the project
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Social learning and extension services S; E; 173 40.14

Total 429

Section 2 defined the time to adoption as the difference between the year farmers became
aware of PICS bags (Figure 1 a) and the year of the first adoption (Figure 1 b). In the technology
adoption—diffusion process, individuals pass through different phases; awareness, persuasion,
decision (adoption or rejection), implementation, and confirmation (Rogers, 1995). Information
is sought at all these stages to reduce risk and uncertainty about the usefulness of the
technology. Figure 1a and Table Al in the appendix show that few farmers were aware of PICS
bags between 2000 and 2013. However, we see a significant increase in technology awareness
between 2014-2020. For instance, 25% and 38% of the farmers became aware of PICS bags in
2017 and 2018, respectively. Coincidentally, most of the farmers first adopted PICS bags during
this period. This may reflect the awareness campaigns undertaken by several non-governmental
organizations (NGOs) to increase the use of airtight containers to reduce postharvest grain
losses.

- <
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g 8
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2000 2005 2010 2015 2020 2005 2010 2015 2020
Year aware of PICS bags Year first used PICS bags

Figure 1: Awareness (a) and first adoption (b) of PICS bags

We present the description of variables and summary statistics of the variables considered in
the study disaggregated by the treatment variables in Table 2. On average, the time to adopt
PICS bags is 2.2 years for farmers who did not learn from friends/relatives or extension agents
and 1.5 years for households with access to both. Overall, the time to adoption is 1.7, which is
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relatively small compared to crop varieties (e.g., Nazli and Smale, 2016; Manda et al., 2020) and
conservation agriculture (CA) technologies (Khataza et al., 2018) partly because PICS bags
maybe not be as knowledge-intensive as CA®. On average, about 84% of the sampled household
heads are male. Households own about 1.9 ha of land, with farmers jointly learning from social
networks and extension owning the most significant land. The percentage of households with
access to credit is 16%, while those with mobile money (M-pesa) and savings accounts were
88% and 23%, respectively. It is apparent from the results in Table 2 that households who had
an opportunity to learn more about PICS bags through social networks and extension agents
were more aware of aflatoxins than those who did not at all or knew from only one of the two
sources of information. We capture the transaction costs regarding acquiring information about
PICS bags using the distance to the PICS bags market, input and output markets (district and
village markets), and distance to the extension agent's office.

6 The average time to adoption for crop varieties ranged from 6-8 years and that CA from 4-6 years based on the

cited studies.
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1 Table 2: Descriptive statistics

So Eo 51 Eo So E1 51 E1 All
Variable Variable description
Mean Mean Mean Mean Mean
SD SD SD SD SD
(N=57) (N=84) (N=117) (N =173) (N =429)
Dependent variable
Time to Time to the adoption of PICS 2.228 1.443 2.06 1.616 1.594 1.352 1.457 1.483 1.713 1.496
adoption bags (years)
Independent variables
Sex Sex of the household head (1 0.842 0.368 0.869 0.339 0.786 0.412 0.867 0.341 0.842 0.365
= Male)
Marital status Married and living with 0.825 0.384 0.798 0.404 0.803 0.399 0.85 0.358 0.824 0.382
spouse (1= Yes, 0 = otherwise)
Household size Household size in adult 4.694 2.41 4.797 2.076 4.282 1.934 4.937 2.212 4.7 2.151
equivalent (number)
Education Education level of household 6.877 3.295 6.524 2.98 6.733 4.609 7 2.222 6.818 3.295
head (years of formal)
Livestock ownership of livestock in 2.017 2.502 2.57 5.095 2.18 2.988 5.027 3.039 3.377 19.481
Tropical Livestock Units (TLU)
Land Total land owned in hectares 1.975 1.905 1.735 1.448 1.781 2.188 2.059 2.246 1.909 2.051
Years in village Number of years household 33.842 18.642 33.94 15.399 33.513 16.502 33.306 17.46 33.557 16.927

head has lived the village
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Credit

M-Pesa
account

Savings account

Aware of
aflatoxin

Leadership

PICS bag market

District market

Village market

Extension office

Number of
observations

Access to credit (1= Yes, 0 =

otherwise)

Household has mobile money
account (1=Yes, 0 =

otherwise)

Household has savings
account (1=VYes, 0 =

otherwise)

Household aware of aflatoxin
(1= Yes, 0 = otherwise)

Household has

friends/relatives in leadership
positions (1= Yes, 0 =

otherwise)

Distance to PICS bag market in

walking minutes

Distance to district market in

walking minutes

Distance to village market in

walking minutes

Distance to extension office in

walking minutes

0.088

0.807

0.211

0.07

0.368

150.491

216.842

27.193

45.281

57

0.285

0.398

0.411

0.258

0.487

115.37

135.21

26.297

60.207

0.19

0.869

0.143

0.298

0.464

120.179

187.56

26.012

45.845

84

0.395

0.339

0.352

0.46

0.502

133.84

6

137.79

30.023

49.712

0.077

0.846

0.299

0.12

0.393

131.983

185.239

28.274

37.513

117

0.268

0.362

0.46

0.326

0.491

125.09

106.51

38.103

35.19

0.231

0.925

0.231

0.393

0.491

134.451

209.075

34.532

42.081

173

0.423

0.264

0.423

0.49

0.501

125.03

289.84

40.175

53.032

0.162

0.877

0.23

0.258

0.443

133.121

199.439

30.202

41.998

431

0.369

0.329

0.421

0.438

0.497

125.457

207.05

36.256

49.172
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Figure 2 further presents the distribution of the time to adoption by the treatment variables.
Like a strip or box plot, the violin plot shows the median as a short horizontal line with a dot,
the interquartile range (first-to-third) as a narrow-shaded box, and the lower-to-upper adjacent
value range as a vertical line. There seems to be significant heterogeneity in the time to
adoption distribution, with clustering in the upper and lower tails of the distributions. To
explore this heterogeneity, in the subsequent sections, we use the censored quantile regression
model described in section 2 to estimate the effects of the treatment variable on different levels
of the time to adoption distribution conditional on the household and farm characteristics.
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and learning services and
extension extension
services services

Figure 2: Violin plots for the distribution of the time to adoption by social learning and
extension services

4. Empirical results and discussion

4.1 Nonparametric analysis-Kaplan—Meier curve
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We first explore the distribution of the time to the adoption of PICS bags and the relationship
with learning through social networks and extension agents. Figure 3 shows the Kaplan—Meier
survival estimates for the adoption spell. Most households adopted PICS bags in the first five
years of hearing or becoming aware of the technology. In other words, the probability that a
household will adopt, given that they have not adopted, increases gradually, as shown by the
decline in the survival rate.

Figure 4 shows the Kaplan—Meier survival estimates for our treatment variables and time
to adoption. The nonparametric Kaplan—Meier curve presented in Figure 4 does not account for
other factors that may affect adoption time or social and extension learning. The estimates
show that farmers who jointly learned from social networks and extension were more likely to
adopt PICS earlier than those from either of the two information channels in isolation. Similarly,
farmers were more likely to adopt PICS faster if they had access to either social learning or
extension agents than those who didn't have access to any of the two. The Log-rank test for the
equality of survival function also affirms this result since we reject the null hypothesis that the
distribution of the estimates in Figure 4 is the same (x*>= 33.08; P = 0.000). It is apparent that
there is a potential relationship between the treatment variables and the time to adoption;
however, we didn't account for other confounding variables which are likely to affect the
treatment and outcome variables. We address this issue next using the LAC-MIPWRA and the
parametric survival models.

Kaplan—Meier survival estimates

0.50 0.75 1.00
| | |

0.25
|

0.00
|

0 5 10 15

Time to adoption (years)

Figure 3: The time to adoption of PICS
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Kaplan—Meier survival estimates
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B No social leaming and extension services [l Social learning
I Extension services [ Social learning and extension

Figure 4: The time adoption of PICS by the social learning and extension services

4.2 Multivalued survival treatment effects

4.2.1 Determinants of the time to the adoption of PICS bags

Table 3 presents the second stage parameter estimates from the LAC-MIPWRA model described
in Section 3. The first stage results from estimating the multinomial logit model (equation 1) are
shown in Table A2 in the appendix. As mentioned in section 3, the LAC-MIPWRA model results
are valid if drawn from observationally similar groups according to the reweighted propensity
scores. Results in Figure Al show that our four groups' overlap assumption is satisfied after the
propensity score reweighting, suggesting that the specification in section 3 is valid for deriving
the impact estimates.
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As the study's main objective is to assess the explanatory and treatment variables'
impact on the time to adoption, we don't interpret the first stage results. Results in Table 3
indicate that being a male household head reduces adoption time for households who jointly
learned from social networks and extension. The results also suggest heterogeneity concerning
the effect of some variables on the outcome variable. For instance, results show that married
household heads who did not have access to information on PICS bags from social networks and
extension agents were likelier to adopt PICS bags earlier than their married counterparts who
obtained information from the two sources. The time to adoption reduces with the size of the
household, suggesting the importance of labor in adopting improved postharvest technologies.
The household size is usually a proxy for family labor endowments, especially in developing
countries. Consistent with other studies (e.g., Abdulai and Huffman, 2005; Euler et al., 2016;
Nazli and Smale, 2016), education reduces the time to adopt for households who obtained
information on PICS bags from social networks, pointing to the complementarity of the two.
Livestock ownership generally reduces the time to adoption in the social learning and extension
equations while increasing the time for those who jointly access both. The results align with
those of Manda et al. (2020) and Dadi et al. (2004b) regarding the importance of livestock in
technology adoption. As expected, land ownership minimizes the time to adoption.

Relative to the single woven bags commonly used by farmers to store their harvest, PICS
bags are more expensive (Channa et al., 2019); hence, access to credit becomes vital to ease
farmers' liquidity constraints. Like other studies (e.g., Abdulai and Huffman, 2005; Alcon et al.,
2011; Dadi et al., 2004b), Table 3 shows that the time to adopt PICS bags is reduced with getting
credit. Consistent with similar studies (e.g., Gitonga et al., 2013), having a bank account
increases the adoption rate. The coefficient on aflatoxin awareness has the expected sign in the
equation for households that didn't access information from social networks and extension
agents. PICS bags create an airtight seal that lowers insect storage loss and counteracts aflatoxin
contamination in stored grain (Channa et al., 2019). Therefore, it is envisaged that farmers
aware of aflatoxins are more likely to adopt PICS bags. Results also indicate that households
with friends or relatives in leadership positions adopt PICS bags faster than those without
leadership positions. This variable is a proxy for political connections that impact networking
and play a vital role in farmers adopting improved agricultural technologies by facilitating better
access to inputs and credit supplied by public institutions (Kassie et al., 2013).

Overall, the variables capturing the transaction costs, i.e., distance to the village, district,
and PICS bags markets, correlate with the adoption speed. The positive coefficients for
distances to the market (i.e., district, village, and PICS markets) imply that farmers far away from
the market are less likely to adopt PICS bags. The result is expected because of the costs
associated with traveling to distant markets, which might prevent farmers from accessing

18



information about airtight storage technologies such as PICS bags. These results are broadly
consistent with Tesfaye and Tirivayi (2018).

Finally, considering the geographical heterogeneity, the results show that the time to
adoption is shorter for Babati and Kongwa households than those in Mbozi district. Relative to
other districts, households in Mbozi took more time to adopt PICS bags (on average, 1.9 years).
This reflects the differences in climatic conditions, institutional support services, and other
factors that might affect the adoption/dissemination of postharvest technologies such as PICS
bags.

Table 3: Determinants of the time to adoption of PICS bags

Variable Time to adoption (years)
(So Eo) (S1 Eo) (So E1) (S1Eq)
Sex 1.131 -0.060 0.088 -0.448**
(0.745) (0.158) (0.421) (0.223)
Marital status -0.884** -0.107 -0.364 0.560**
(0.426) (0.214) (0.288) (0.261)
Household size -0.250*** 0.058 -0.071* 0.016
(0.073) (0.050) (0.042) (0.027)
Education -0.012 -0.044** 0.022 -0.030
(0.048) (0.020) (0.021) (0.031)
Livestock -0.035 -0.010** -0.090** 0.002*
(0.061) (0.004) (0.036) (0.001)
Land 0.033 0.006 -0.025 -0.077***
(0.085) (0.045) (0.023) (0.028)
Years in village -0.005 0.001 -0.002 0.005
(0.005) (0.002) (0.008) (0.006)
Credit -0.413 -0.286 -0.789*** -0.634***
(0.709) (0.178) (0.146) (0.079)
M-Pesa account -0.328 0.045 -0.190 0.010
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Savings account

Aware of aflatoxin

Leaders

Ln District market

Ln Village market

Ln PICS bag market

Babati district

Kilolo district

Kongwa district

Constant

Observations

Note: Cluster robust standard errors reported in parenthesis. * p<0.05, ** p<0.01, *** p<0.001

(0.287)
-0.258
(0.396)
-0.511%**
(0.174)
-0.991%**

(0.228)
-0.131
(0.412)
-0.402
(0.329)
0.182

(0.204)
0.981

(1.309)
-0.709
(1.336)
0.783

(0.717)
4319

(3.081)

429

(0.192)
-0.224%%*
(0.085)
0.581%**
(0.104)
0.004
(0.177)
-0.167*
(0.102)
0.167*
(0.102)
0.083*
(0.048)
-0.411%*
(0.204)
0.067
(0.131)
0.067
(0.080)
0.864
(0.751)

429

4.2.2 Impact of social learning and extension services

20

(0.223)
-0.179
(0.316)
-0.026
(0.181)
0.158
(0.267)
0.228**
(0.103)
0.155*
(0.084)
-0.113
(0.102)
0.061
(0.281)
0.358
(0.317)
0.584
(0.363)
0.392
(1.184)

429

(0.279)
0.101
(0.216)
-0.170
(0.156)
0.223
(0.155)
0.015
(0.060)
-0.075
(0.059)
0.211%**
(0.045)
-0.324
(0.345)
-0.287
(0.194)
-1.018%**
(0.227)
0.043
(0.395)

429



Table 4 shows the effect on the subpopulations of households who learned from social
networks and extension agents in isolation and jointly, i.e., the ATT’. The ATE results are
presented in Table A3 in the appendix. The ATT results indicate that the average adoption time
would be 4.3 years if no household accessed social learning and extension services. However, if
the households learned only from social networks, the average time to adoption would
decrease by 2.2 years, a 51% reduction compared with the potential outcome of no social and
extension learning. These results are broadly consistent with those of Genius et al. (2013) and
Khataza et al. (2018).

Similarly, if households only learned from extension agents, the average time to
adoption would decrease by 2.1 years, an estimated 49% reduction relative to the case of no
social and extension learning. The ATT estimates also indicate that the collective knowledge
from social networks and extension agents is associated with the most significant decline in the
years to adoption. On average, joint learning from social networks and extension would reduce
the average time to adoption by 2.6 years, a 61% reduction in the years to adoption relative to
the potential outcome of no social learning and extension services. These results are consistent
with Genius et al. (2013), who contend that the presence of the other enhances the
effectiveness of each type of information channel. Further, they explain that extension services
will be more effective than social networks for speeding up the adoption process in areas with a
critical mass of adopters.

Table 4: Impact of social and extension learning on time to adoption of PICS bags

Treatment Potential outcome mean ATT Percent
(without social learning and reduction (%)
extension services)

So Eo 4.325%**
(0.541)

S Eo -2.188%** 51
(0.575)

So Es -2.126%** 49
(0.473)

S1E -2.626%** 61
(0.685)

7 In survival analysis language, this is also known as the effect in a well-defined subpopulation that is at-risk.
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Note: Cluster robust standard errors reported in parenthesis. * p<0.05, ** p<0.01, *** p<0.001

4.3 OLS, Cox Proportional Hazard, and survival time models

We also estimated the results using OLS, Cox Proportional Hazard, and survival time models to
provide a robustness check for the LAC-MIPWRA results (Table 5). For brevity, we concentrate
on the results from the treatment variables only. The OLS estimates show that the time to
adoption reduces by 0.68 and 0.72 years with extension learning only and joint learning from
social networks, respectively.

The Cox Proportional Hazard and survival time models are based on the hazard ratio. A
hazard ratio greater (less) than one indicates that the variable reduces (increases) the time to
adoption. Results from the two models suggest that the time to adoption by households who
jointly learned from social networks and extension agents was more likely to reduce by 59% and
71%, respectively, compared to those who did not know about PICS bags from the two
information channels. This speed of adoption is much higher than that if the household were to
learn from only the extension agents (42% and 63%) or social networks (21%). The impacts of
the treatment variables and the other explanatory variables are similar to the LAC-MIPWRA
results regarding the direction of the effects with minimal differences in the magnitudes.

Table 5: Estimation results for OLS, Cox Proportional Hazard, and survival time models

Variable oLS COX Survival time
S1 Eo -0.119 0.213" 0.188
(0.150) (0.095) (0.134)
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So E1

S1 E1

Sex

Marital status

Household size

Education

Livestock

Land

Years in village

Credit

M-Pesa account

Savings account

Aware of aflatoxin

Leadership

Ln District market

Ln Village market

Ln PICS bag market

-0.680"
(0.274)

-0.729°
(0.364)

0.246™
(0.099)

-0.149
(0.167)

-0.028
(0.030)

-0.009
(0.013)

ETEY

0.003
(0.001)

-0.048
(0.029)

0.004
(0.004)

-0.626™"
(0.123)

0.058
(0.094)

-0.152
(0.197)

0.168
(0.212)

0.101
(0.093)

0.054
(0.060)

0.091
(0.133)

0.056
(0.063)
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EETY

0.445
(0.167)

dokk

0.588
(0.188)

-0.252"
(0.102)

0.186
(0.155)

0.014
(0.022)

0.002
(0.007)

* kK

-0.002
(0.000)

0.048""
(0.018)

-0.002
(0.002)

sk

0.497
(0.061)

0.170"
(0.098)

0.221™
(0.090)

0.033
(0.111)

0.017
(0.067)

-0.040
(0.038)

-0.038
(0.061)

-0.037
(0.038)

*k ok

0.629
(0.239)

0.708"*
(0.300)

-0.323"
(0.135)

0.233
(0.183)

0.027
(0.033)

0.001
(0.012)

EETY

-0.002
(0.001)

0.063"
(0.022)

-0.006
(0.004)

*kk

0.792
(0.087)

0.113
(0.108)

0.192
(0.187)

0.008
(0.165)

-0.028
(0.079)

-0.053
(0.060)

-0.023
(0.091)

-0.073
(0.058)



Ln Extension office -0.061 0.039 0.042

(0.065) (0.033) (0.059)
Babati district -0.434™" 0.183" 0.402™"
(0.092) (0.072) (0.105)
Kilolo district -0.363"" 0.008 0.166
(0.157) (0.135) (0.189)
Kongwa district -0.394™" -0.180" 0.105
(0.130) (0.080) (0.110)
Constant 1.908" -1.289
(0.601) (0.843)
Observations 429 429 429

Note: Cluster robust standard errors reported in parenthesis. * p<0.05, ** p<0.01, *** p<0.001

4.4 Laplace regression quantile survival effects

The violin plots presented in Figure 2 suggest that the effects of learning from social networks
and extension agents on time to adoption are likely to be heterogeneous. Unlike the Kaplan—
Meier curves (Figure 3 and Figure 4), which give estimates at the univariate level, Table 6
reports the estimated quantile effects of social and extension learning on the 10th—90th
guantiles or percentiles of the outcome variable conditional on the characteristics of the
households. The first (10™) quantile includes households with the fastest speed of adoption,
while the opposite is true for the farmers in the 90t quantile. The results have the expected
signs and show that social and extension learning impacts are not homogenous but vary
significantly across the distribution of the adoption spell. We also reject the null hypothesis that
the treatment effects are equal across the time to adoption percentiles. The results displayed in
Table 6 are consistent with those in Tables 3 and 4 as they indicate that the combination of
social and extension learning results in the most significant reduction in the time to adoption
than if farmers learned from social networks or extension agents in isolation, regardless of the
guantile in consideration.
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Moreover, the results show that the impact of social learning and extension services is

more pronounced in the upper sections than in the lower area of the distribution. For instance,

learning from social networks reduces the time to adoption by 0.6 years in the 80" quantile

compared with those in the 60t quantile (0.45 years). Similarly, learning jointly from social

networks and extension agents reduces the speed of adoption by 0.37 and 1.23 years in the 10t

and 90" quantiles, respectively.

Table 6: Estimation results for the Laplace regression model

Quantile 51 Eo So E1 51 E1

0.090 -0.366*** -0.365***
Qlo

(0.141) (0.140) (0.125)

-0.016 -0.513** -0.515**
Q20

(0.210) (0.215) (0.208)

-0.094 -0.860*** -1.025***
Q30

(0.268) (0.206) (0.2112)

-0.114 -0.990*** -1.130***
Q40

-(0.182) (0.214) (0.21)

-0.205 -0.708*** -1.061%**
Q50

-(0.189) (0.243) (0.247)

-0.458* -0.716*** -0.881***
Q60

(0.248) (0.270) (0.269)

-0.486 -1.021*** -1.110%**
Q70

(0.343) (0.358) (0.346)

-0.602* -1.032*** -1.218***
Q80

(0.357) (0.391) (0.346)

-0.446 -0.915* -1.229%**
Q90

(0.4112) (0.517) (0.443)
Test for differences in the X2(27) =125.81***
effects

Note: Bootstrapped standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001
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5. Summary and concluding remarks

Most cereals, pulses, and oilseeds, such as maize, beans, and groundnuts, which form the
foundation for food, income, and nutrition for most households in Tanzania, are highly
susceptible to postharvest losses due to insect damage and aflatoxin contamination. Previous
studies show that adopting improved postharvest technologies such as PICS bags can potentially
reduce these problems. However, in most of these studies, much attention has been given to
evaluating the effectiveness of the PICS bags based on on-farm trials and does not consider the
adoption dynamics. Furthermore, there is a dearth of evidence on the role of social networks
and access to extension access on the time it takes for farmers to adopt PICS bags in Tanzania.
This paper contributes to the empirical literature in this area by examining the interdependent
impacts of learning from friends/relatives and extension agents on the speed of PICS bag
adoption in Tanzania. We apply the doubly robust multivalued inverse probability weighted
regression (MIPWRA) model in a survival treatment effects framework to estimate the impact
and the Laplace regression model to evaluate the heterogeneous effects of the two information
transmission channels.

Overall, results indicate that learning from friends/relatives and extension agents
reduces the time it takes for farmers to adopt PICS bags. On average, social and extension
learning reduces the time to adoption by 51% and 49%, respectively. The results further show
that the rate at which farmers adopted the technology was faster when they jointly learned
from the two information sources (61%) than from the individual sources. This indicates that
these sources are complements rather than substitutes. Furthermore, results from the Laplace
regression model suggest that the effects are not homogenous but heterogeneous, as the
marginal impacts of information transmission are more prominent for households in the upper
guantiles and smaller for the in the lower quantiles of the time adoption distribution.

Overall, two policy issues emerge from our research. First, recognizing the
complementarity of learning from friends/relatives and extension agents in designing public
extension policies is vital to increasing the rate at which farmers adopt improved agricultural
technologies. Although agricultural extension is also provided by private institutions, in most
cases, this is usually offered by public institutions that face several challenges, including but not
limited to inadequate extension staff and transaction costs associated with covering extensive
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distances to train farmers. Social learning could complement public extension as farmers can
quickly learn from other farmers even if few have access to extension; hence events promoting
community interactions such as field days and demonstrations are essential.

Second, the significance of access to credit in reducing the time to adoption suggests
that the provision of loans or subsidies to farmers can be one of the policy objectives that can
be pursued for farmers to adopt PICS bags. Seeing that PICS bags are relatively new, there may
be some uncertainties about their effectiveness; hence the provision of a one-time use subsidy
to build awareness and reduce risk can help generate demand for such a novel technology
(Omotilewa et al., 2019).

Though we have tried to isolate the impact of social and extension learning rigorously, a
significant limitation of our study is the definition of social learning. Future studies could explore
using alternative definitions and construction methods of social learning, such as using
geographical positioning systems (GPS) to measure the distances between friends or neighbors
who had access to or adopted PICS bags and those who did not.
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Appendix

Table Al: Year of awareness and first adoption of PICS bags (% of farmers).

Year Awareness First adoption
2000 0.23

2003 0.23

2005 0.45
2007 0.23

2010 0.46

2012 0.23

2013 0.7 1.36
2014 1.62 1.81
2015 9.98 4.98
2016 10.9 6.79
2017 23.43 25.79
2018 38.98 38.46
2019 12.3 19.91
2020 0.7 0.45
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Figure Al: Balanced plots for the time to adoption by social and extension learning.
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Table A2: Determinants of social learning and extension services

Variable

Social learning

Extension services

Social learning and
extension services

Sex

Marital status

0.665
(0.457)
-0.666

(0.528)

35

-0.854*
(0.466)
0.366

(0.400)

-0.366
(0.497)
0.169

(0.600)



Household size

Education

Livestock

Land

Years in village

Credit

M-Pesa account

Savings account

Aware of aflatoxin

Leaders

Ln District market

Ln Village market

Ln PICS bag market

Ln Extension office

0.082
(0.095)
-0.058
(0.059)

0.018
(0.034)
-0.046
(0.108)
-0.002
(0.008)
0.711*
(0.390)

0.673
(0.580)
-0.601
(0.509)

2.056%**

(0.714)
0.139
(0.320)
-0.207
(0.297)
-0.124
(0.172)

-0.219%*
(0.103)
0.241

(0.345)

36

-0.086
(0.128)
-0.016
(0.044)
-0.003
(0.066)

0.002
(0.161)
0.005
(0.009)
-0.560
(0.504)
0.509
(0.403)
0.413
(0.311)
0.944*
(0.561)
0.325
(0.408)
-0.181
(0.273)

-0.320%*
(0.129)
0.074
(0.134)
0.224

(0.300)

0.071
(0.133)
-0.013
(0.042)

0.023
(0.035)
0.007
(0.078)
0.003
(0.012)
0.855*
(0.493)

1.377%%*
(0.406)
-0.174
(0.511)

2.489%**
(0.722)

0.367
(0.264)
-0.194
(0.199)

0.067
(0.199)

0.126
(0.146)
-0.038

(0.250)



Babati district

Kilolo district

Kongwa district

Constant

Observations

-0.64

5

(0.418)

0.497

(0.308)

-0.430

-0.64

* %

5

1.130

(2.500)

429

-0.631*
(0.346)
0.238
(0.269)
-2.660%**
-0.631*
1.901
(1.875)

429

-0.233
(0.467)
0.899%**
(0.267)
-2.233%%*
-0.233
-0.646
(1.831)

429

Note: Cluster robust standard errors reported in parenthesis. * p<0.05, ** p<0.01, *** p<0.001

Table A3: Impact of social learning and extension services on time to adoption of PICS bags

(ATE)
Treatment Potential outcome (without ATE
social learning and extension
services)
S0 Eo 4.209%**
(0.991)
S1 Eo -1.930*
(1.027)
So E1 -2.101**
(0.823)
S1E; -2.564**
(1.172)

Note: Cluster robust standard errors reported in parenthesis. * p<0.05, ** p<0.01, *** p<0.001
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