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Abstract 
Farmer adoption of improved crop varieties can potentially increase yields and enhance household 
welfare in the developing world. However, the presence of measurement errors in household 
surveys poses a serious challenge to estimating the true returns to adopting improved varieties. 
This article analyzed the impacts of three sources of measurement error caused by farmers’ 
misperceptions of the varieties they planted, the area they planted, and the quantities they 
harvested, on maize yields and input use, using the 2018/19 Ethiopia Socio-economic Survey. 
These data included DNA-fingerprinting of seed, GPS plot size information, and crop cuts that we 
compared to farmers’ self-reported estimates of these measures. Doing so allowed us to determine 
the degree of measurement error in the estimates of improved maize adoption. Results indicated 
that the measurement error in self-reported adoption of improved maize varieties attenuated their 
estimated yield gains by 12 percentage points on average. Furthermore, we used the relationship 
between self-reported and DNA-fingerprinted adoption to disaggregate how much of the yield 
gains from improved seeds was due to better seed genetics and how much was due to increased 
effort by the farmers who planted them. We found that improved seed genetics accounted for a 22 
percentage point yield increase over traditional seed, and observable effort through increased input 
use accounted for a 15 percentage point gain for improved varieties on average. Understanding 
these effects has important implications for justifying the continued funding of development of 
improved seed varieties and their dissemination to smallholder farmers. 
 
Key words: DNA-fingerprinting; Crop cut; Improved maize varieties; Measurement error; Effort 
effect; Seed effect; Technology adoption; Ethiopia; Sub-Saharan Africa.
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Increasing farmer adoption of improved crop varieties can potentially raise agricultural 
productivity and reduce poverty in the developing world. As such, estimating the yield impacts of 
using improved varieties has been an important topic of research in many disciplines, including 
economics, for decades. Findings from agronomic field trials, conducted under specific researcher-
managed conditions, generally found that improved crop varieties generated high yields (Geleti et 
al., 2011; Legesse et al., 2011). However, studies that estimated returns under actual smallholder 
farmer conditions often found that improved crop varieties generated yields that were not different 
from those of traditional varieties, and/or that yields of improved crop varieties were much lower 
on farmers’ plots than they were in agronomic trials (Lobell, Cassman and Field, 2009; Abate et 
al., 2018; Michler et al., 2019; Khonje et al., 2022). These yield gaps have been explained through 
differences between the trial and smallholder farmers’ plots. For example, differences in soil 
quality and planting density, and complementary inputs such as labor and fertilizer (Bulte et al., 
2014; Bulte, di Falco and Lensink, 2020; Laajaj et al., 2020). These findings raise questions about 
whether or not improved varieties are actually effective at increasing yields in the limited resource 
environments that typically characterize smallholder agriculture.  

That being said, it is also possible that the empirical yield gaps for improved varieties 
between agronomic trials and smallholder fields were the result of measurement error caused by 
farmers incorrectly stating whether or not they used improved seed varieties, that also influenced 
potential misallocation of other yield-enhancing inputs. Until recently, researchers had to rely on 
farmers to self-report their use of improved crop varieties to determine the adoption and impacts 
(e.g., Conley and Udry, 2010; Suri, 2011; Amare, Asfaw and Shiferaw, 2012; Khonje et al., 2015; 
Zeng et al., 2017; Jaleta et al., 2018; Michler et al., 2019; Manda et al., 2020). The presence of 
error in self-reported variables potentially makes the smallholder data unreliable for estimating 
accurately the returns to adoption of improved crops. 

The problem of measurement error in adoption of improved varieties could be compounded 
by subjective misperceptions of self-reported land area and self-reported quantities harvested. 
Recently, several studies compared these self-reported estimates with more precise measures of 
area cultivated that were calculated using Global Positioning System (GPS), and more precise 
measures of quantities harvested calculated via crop cuts. These studies found that misperceptions 
by farmers of both the denominator (land area) and the numerator (quantity harvested) introduced 
two potential sources of biases in the measurement of yields. For example, Carletto, Savastano and 
Zezza (2013), Carletto, Gourlay and Winters (2015), and Dillon et al. (2019) all showed that GPS 
devices provided more precise measurements of land area compared to farmers’ self-reporting. 
Furthermore, Desiere and Jolliffe (2018), Abay et al. (2019), Gourlay, Kilic and Lobell (2019), 
Kosmowski et al. (2021), and Yacoubou Djima and Kilic (2021) showed that using crop cuts 
instead of self-reported quantities harvested reduced bias in the measurements of yields. These 
findings suggest that the past studies that did not have access to error-free methods of data 
collection in the field may have overestimated or underestimated yields. However, measurement 
error is not only present in yield calculations as showed through previous studies. It is likely 
present in technology adoption data related to improved seed varieties as well (Kosmowski et al., 
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2020). To our knowledge, the effect of measurement error in yields and in improved seed adoption 
has yet to be studied. Understanding the combined magnitude of these possible sources of error is 
important for accurately estimating returns to adoption of improved seed varieties.  

With this in mind, the objectives of the present study are to: i) estimate the impacts of 
improved seed adoption on maize yields, and determine how sensitive such estimations are to the 
measurement error in adoption of improved seeds and yields data; and ii) separate out the genetic 
effect of the improved seeds (seed effect in further text) on yields from the observable and 
unobservable effort effects, that we define as the behavioral response of farmers to their perception 
whether or not the seed they planted was improved (e.g., by adjusting the use of complementary 
inputs). We addressed these objectives using the most recent wave of the Ethiopia Socio-economic 
Survey (ESS) from 2018/19. The ESS is a unique dataset that incorporated both error-prone and 
error-free measurements of improved maize seed adoption and yields. The error-prone 
measurements included in the ESS were: self-reported adoption of maize varieties (traditional or 
improved), self-reported land area planted with maize, and self-reported quantities of maize 
harvest. The corresponding error-free measurements included in the ESS dataset were: DNA-
fingerprinting information for the same seed for which a farmer self-reported adoption status, GPS 
area of the same plot for which a farmer self-reported the land area, and crop cut information for 
the same plot for which a farmer self-reported quantities harvested. We classified maize as being 
improved if it was hybrid or open pollinated variety with greater than 95% germplasm purity, 
regardless of germplasm origin.  

These data provided us with two measurements of seed adoption and we created three 
measurements of yields with varying levels of error. First, self-reported yields were generated from 
self-reported harvest and self-reported land area and were deemed as having the highest level of 
error. Second, substituting self-reported land area with measurements obtained from GPS devices 
we corrected the measurement error in the denominator. Hence, we perceived yields generated 
from self-reported harvest and GPS land area as having medium level of error. Third, yields 
generated from crop cut information had the lowest level of error.  

Our main contribution is that we estimate the magnitude and direction of bias in both 
dependent and independent variables, by dealing with measurement errors in maize adoption data 
on the right side and yields on the left side of the regression. That is, we use the relationship 
between DNA-fingerprinted adoption and crop cut yields as benchmark to understand how much 
bias is introduced to the estimates by farmers self-reporting their seed varieties, quantities 
harvested, and land area. This main contribution could therefore be broken down into two. Namely, 
we analyze the extent to which measurement error in yield variables alters the estimates of returns 
to improved maize adoption. Several recent studies on the inverse relationship between land size 
and productivity showed that the measurement error in yields caused the returns to land to be 
significantly mis-estimated (Desiere and Jolliffe, 2018; Abay et al., 2019; Gourlay, Kilic and 
Lobell, 2019). We expand this literature by estimating how much bias is introduced through the 
measurement error in yield variables to the estimates of returns to improved seed varieties.  
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Next, we determine how much bias is introduced to the estimates of the impact of improved 
maize varieties on yields, through the measurement error in self-reported adoption data. Relying 
on the self-reported data, previous studies established that there was a positive relationship 
between the use of improved maize varieties and yields and household welfare (Bezu et al., 2014; 
Zeng et al., 2015; Abdoulaye, Wossen and Awotide, 2018; Darko et al., 2018). However, these 
studies may have mismeasured the effects of adoption of improved varieties due to bias in self-
reported adoption data, as shown by Wossen et al. (2019) and Wineman et al. (2020). Both of these 
studies compared the effects of self-reported and DNA-fingerprinted adoption of improved maize 
varieties on yields and found that the measurement error from self-reported adoption produced 
biased estimates. However, Wossen et al. (2019) generated their yield outcome variable using self-
reported harvest and GPS land area, while Wineman et al. (2020) generated the yields from self-
reported harvest and self-reported land area. We add to this literature by dealing with measurement 
error on both sides of the regression with our data on DNA-fingerprinting and crop cuts.  

Our second contribution is that we disentangle the seed effect on yields from the effort 
effect. Our data allows us to separately identify and estimate these effects because we know the 
relationship between self-reported adoption (farmers’ perceptions) and DNA-fingerprinting 
(actual adoption). Previous studies have found that farmers’ use of inputs, or their perceptions on 
the use, guided their decisions about investing effort in crop production where the effort can be 
observed (e.g., labor and other plot inputs) and unobserved in agricultural datasets (Beaman et al., 
2013; Bulte et al., 2014; Wineman et al., 2020; Abay, Bevis and Barrett, 2021; Wossen, Abay and 
Abdoulaye, 2022). For example, Beaman et al. (2013) found that distributing fertilizer to farmers 
led to crowding in of herbicide and hired labor in Mali. We add to this literature by separating out 
how much of the estimated yield gain from adopting improved maize seeds was due to the 
improved genetics of the seed and how much was due to farmers’ perceptions that the seed was 
traditional or improved, expressed through their observable and unobservable effort.  

Data, descriptive statistics, and sources of measurement error 
Household- and production-level data come from the Ethiopia Socio-economic Survey conducted 
in 2018/19 growing season (CSA, 2020). The ESS was collaborative work between the World 
Bank Living Standards Measurement Study – Integrated Surveys of Agriculture project (LSMS-
ISA) and the Central Statistics Agency of Ethiopia (CSA). The survey included 7,527 households 
from 565 enumeration areas across 11 regions, and it collected data using four questionnaires: 
post-planting, post-harvest, household, and community. From this sample, 447 maize-growing 
households from 5 regions (Tigray, Amhara, Oromia, SNNPR, Harar, and Dire Dawa) were 
randomly selected for data collection with advanced techniques in an effort to increase data 
accuracy. First, the arable land area was measured using GPS devices. Second, trained enumerators 
performed crop cutting of maize from a 4×4 meters quadrant that was randomly laid over a plot. 
Dry weight of the harvest from each quadrant was used to generate yield measurements. Third, 
dried crop cuts were also used to collect maize samples for DNA-fingerprinting. DNA-
fingerprinting was carried out to determine if a farmer adopted an improved maize variety or not, 
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and it implied examining the level of purity and variety by matching sample’s genetic material to 
the closest genetic match from the reference library for Ethiopia (Kosmowski et al., 2020). We 
excluded 12 households from the initial sample of 447 maize-growing households because they 
did not fill out the household questionnaire. This reduced our working sample to 435 households 
that planted maize on 491 plots. 

Land area 
Our data provided two measures of land area with unequal degrees of error: plot area under maize 
as estimated by farmers and land measurements obtained using GPS devices. The area estimated 
by farmers, that is self-reported land area, is subject to two types of error. The first error is 
associated with the use of land units where the farmers may use local, non-standard, units to 
express their land area for which conversion factors to standard units are not known. Or, in the 
case of both standard and non-standard units, the farmers may have different perceptions about 
how much land area is contained in a unit (e.g., farmers could have a different idea how much one 
timad of land is). Second, farmers may be uncertain of the number of units they actually cultivate 
or may round the number of land units for simplicity. Considering these two types of measurement 
errors in self-reported land area, we excluded bottom and top 5% of data as well as observations 
for which we could not obtain conversion factors from non-standard to standard land units. Our 
final sample consists of 376 households that grew maize on 419 plots.1 

The GPS measure of land area is considered a more consistent and accurate measure 
compared to farmers’ estimations, although it may have a certain degree of inaccuracy. 
Enumerators were trained on how to conduct land measurements using GPS devices and area was 
always reported in standard units such as meters squared. 

Table 1 shows that 96% of farmers did not report land area accurately. Taking GPS land 
area as a benchmark, farmers overreported their land under maize on 55% of plots and 
underreported the land area on 41% of plots. The self-reported and GPS land area were in 
agreement for only 4% of the sample (17 plots). However, even though farmers were more likely 
to overreport their land under maize cultivation, the magnitude of underreporting was almost twice 
as large as that of overreporting (|–0.146| > 0.078).  

Harvest 
Similarly to land area, our data allowed us to generate two different variables for harvest. Harvest 
was completed on 93.8% of plots by the time the post-harvest survey was conducted in February 
and March 2019, and these farmers were asked to report their maize harvest for the entire plot. For 
the remaining 6.2% of plots where the harvest had not been completed, the farmers were asked 
how much harvest they expected to have from each plot. We used the reported and expected 
harvest to generate self-reported harvest variable. The second harvest variable was generated using 
harvest from crop cut and GPS land area, where we extrapolated harvest from the sub-plot selected 
for crop cut to the entire plot. We acknowledge that, even though sub-plots for crop cut were 

 
1 335 households grew maize on 1 plot, 39 households grew maize on 2 plots, and 2 households grew maize on 3 plots. 
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randomly laid over the maize plot, generating harvest variable in this way may also contain a 
certain degree of error due to assumption that yields were uniform on the entire plot. However, 
this measure of harvest remains less prone to error compared to self-reporting.  

Comparing the self-reported harvest to harvest generated from crop cut and GPS land area 
in table 1, we can see that 53% of farmers overreported and 47% of farmers underreported their 
harvest where the absolute value of underreporting was higher than the value of overreporting (|–
176| > 76).  

Yields 
Having two different variables for land area, self-reported harvest, and information from crop cuts, 
we were able to generate three yield variables with varying levels of measurement error. The first 
variable, self-reported yields (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝑆𝑆𝑆𝑆), was generated using self-reported land area and self-
reported harvest, and it is expected to have the highest level of error due to measurement error 
contained in both land and harvest variables. The second yield variable (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺) was generated 
using GPS land area and self-reported harvest. The GPS land area is intended to correct for 
measurement error in farmers’ self-reporting of land planted with maize, and as such 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺 
should have less error compared to 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝑆𝑆𝑆𝑆. The third variable for yields was generated from crop 
cuts (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝐶𝐶𝐶𝐶). We used 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝐶𝐶𝐶𝐶 as benchmark since it does not rely on farmers’ estimates of 
harvest and land area and as such is a more accurate measurement of yields (Lobell et al., 2020; 
Kosmowski et al., 2021). We accounted for intercropping on 23% of plots in all three yield 
variables. 

We note that, when accounted for skewness in yield data, these three measures of yields 
were indeed different (table 1, panel D). On average, self-reported yields were 15% lower than 
GPS yields (approximately 70 kg/acre) and 22% lower than crop cut yields (approximately 107 
kg/acre) on average (p-values < 0.01 for both). The GPS yields were 7% lower than crop cut yields 
on average (approximately 37 kg/acre), but this difference was not statistically significant at the 
10 percent level. These findings imply that, at least descriptively, using GPS land area in the 
denominator could potentially reduce the measurement error in self-reported yields without the 
use of crop cuts.  
  



6 
 
 

Table 1. Summary at the plot level: land area, harvest, and yields  
Variable Mean Standard Deviation N 
Panel A: Percentages    
% Underreporting land area (SR < GPS) 41  173 
% Overreporting land area (SR > GPS) 55  229 
% Accurate land area (SR = GPS) 4  17 
    
% Underreporting harvest (SR < CC) 47  196 
% Overreporting harvest (SR > CC) 53  223 
% Accurate harvest (SR = CC) 0  0 
    
Panel B: Land area (acres)    
Self-reported land (SR) 0.21 0.171 419 
GPS land 0.228 0.261 419 

If underreporting (SR < GPS)  –0.146 0.191 173 
If overreporting (SR > GPS) 0.078 0.093 229 

    
Panel C: Harvest (kg)    
Self-reported harvest (SR) 156 212 419 
Crop cut harvest (CC) 198 344 419 

 If underreporting (SR < CC)  –176 288 196 
If overreporting (SR > CC) 76 93 223 

    
Panel D: log Yield    
log yieldSR  6.08 1.44 419 
log yieldGPS  6.23 1.26 419 
log yieldCC  6.3 0.77 419 
    
t-test for difference in means    

log yieldSR = log yieldGPS  –0.15***  419 
log yieldSR = log yieldCC  –0.22***  419 

log yieldGPS = log yieldCC  –0.07  419 
Significance for difference in means: *** p<0.01, ** p<0.05, * p<0.1 

Improved seed adoption 
As part of the post-planting survey, households were asked to identify the seed used in 2018/19 
growing season on each maize plot as traditional or improved variety. A random sub-sample of all 
maize plots was selected for crop cut and for collecting maize samples that were then DNA-
fingerprinted after the post-harvest survey. DNA-fingerprinting information enabled us to classify 
seeds as a traditional or improved variety based on seed germplasm purity level, and as such it is 
an objective measure of improved seed adoption. The variable indicating purity percentage of each 
maize sample came from data associated with the Kosmowski et al. (2020) report, and was 
matched with the main dataset using household and plot identifiers. All DNA-fingerprinted seed 
samples were matched with 16 different seeds from maize seed reference library. 
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In our data all maize samples had germplasm purity above 70% (appendix figure A.1), 
however we defined seed to be an improved variety if its purity was 95% or above and not 
improved otherwise, regardless of the germplasm origin and if the seed was a hybrid or an open 
pollinated variety.2 We used a high threshold of 95% to be able to capture the effects of improved 
seed varieties more accurately, due to potential changes in genetic composition and production 
potential when maize is recycled (Morris, Risopoulos and Beck, 1999; Morris et al., 2003; Pixley 
and Banziger, 2004). Appendix table A.1 shows information about the improved maize seed 
varieties used among households in the sample.  

Comparing the self-reported to DNA-fingerprinted adoption status with 95% germplasm 
purity threshold, we were able to identify four mutually exclusive categories of adoption: i) true 
positive (TP): when a household reported using an improved variety and DNA-fingerprinting 
confirmed the seed was an improved variety; ii) true negative (TN): when a household reported 
using a traditional variety that was also confirmed through DNA-fingerprinting; iii) false positive 
(FP): when a household reported planting an improved variety but DNA-fingerprinting showed 
the seed used was not an improved variety; and iv) false negative (FN): when a household reported 
using a traditional variety but DNA-fingerprinting showed that the seed was an improved variety. 
With this categorization, approximately 73% of the sample reported correct adoption status (27% 
TP and 46% TN) while 10% and 17% of plots fell into FP and FN categories, respectively (table 
2). The FP and FN categories represent measurement error in adoption of improved maize seed 
varieties.  

Table 2. Self-reported and DNA-fingerprinted improved maize adoption from 419 plots (%) 
  Self-reported 
  Adopter Non-adopter 

DNA-fingerprinted Adopter 26.73 16.95 
Non-adopter 10.26 46.06 

 
True Positive (TP) = Self-reported Adopter + DNA-fingerprinted Adopter  
False Positive (FP) = Self-reported Adopter + DNA-fingerprinted Non-adopter 
False Negative (FN) = Self-reported Non-adopter + DNA-fingerprinted Adopter 
True Negative (TN) = Self-reported Non-adopter + DNA-fingerprinted Non-adopter 

Estimation strategy  

Estimation strategy: DNA-fingerprinted adoption 
The first step of our analysis estimated how different measures of seed adoption correlated with 
yield measurements that contained different levels of measurement error. As discussed in the 
paper, varietal identification using DNA-fingerprinting will produce the most accurate measure of 

 
2 Due to a relatively small sample size, we classify both hybrid and OPV seed varieties as improved and did not 
separately estimate their effects. If grouping hybrid and OPV varieties as improved had any impact on the results, it 
would have been to attenuate the estimated effects of DNA-fingerprinting because hybrid yields are normally higher 
than OPV yields.  
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whether or not a farmer adopted an improved seed variety. As such, we estimated the relationship 
between DNA-fingerprinted adoption of improved maize varieties and our yield variables using 
the following linear model: 

log𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 = 𝛼𝛼0 + 𝛼𝛼1𝐴𝐴𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + 𝜸𝜸′𝑯𝑯 + 𝜷𝜷′𝑬𝑬 + 𝜹𝜹′𝑷𝑷 + 𝝆𝝆′𝑰𝑰 + 𝜽𝜽′𝑳𝑳 + 𝜀𝜀𝑖𝑖           (1) 

where we separately ran each measure of 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌, denoted by 𝑘𝑘 = {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 (𝐶𝐶𝐶𝐶), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑆𝑆𝑆𝑆),𝐺𝐺𝐺𝐺𝐺𝐺}, for household 𝑖𝑖’s plot 𝑝𝑝. The regressor of interest was 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 = 1 if 
household 𝑖𝑖 used an improved maize variety with seed germplasm purity of 95% or above on plot 
𝑝𝑝 according to DNA-fingerprinting, and = 0 otherwise. We used the coefficient estimates of 𝛼𝛼�1 
from the regression of error-free 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝐶𝐶𝐶𝐶 on error-free 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 as benchmark coefficient estimate in 
our analysis of the impacts of adoption of improved maize varieties on yields.3 The vectors 𝑯𝑯, 𝑬𝑬, 
and 𝑷𝑷 included control variables for the household (gender, age of household head, indicator if the 
household head could read and write, marital status, household size, assets index, and ownership 
of livestock), access (access to extension and advisory services), and plot (owned plot, good soil 
quality, plot had steep slope) characteristics, respectively. We also included vectors 𝑰𝑰 and 𝑳𝑳 for 
plot inputs (indicators for the use of chemical and organic fertilizer, indicator if the plot was 
irrigated, indicators for erosion prevention and pure stand, and log GPS land area planted with 
maize) and labor inputs (log planting and log harvest labor days from all sources). We included 
region fixed effects and clustered standard errors at the household level.4 

The DNA-fingerprinted measurement of adoption was the most robust option in our 
analysis with the least amount of measurement error, however the group of DNA-fingerprinted 
adopters (i.e., 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 = 1) was comprised of TP and FN adopters. The FN adopters also represented 
one component of the measurement error as they did not believe that they planted improved 
varieties, but DNA fingerprinting revealed that they did (table 2). As we have already discussed, 
lower yields for improved varieties in studies that relied on farmers-assessed varietal adoption 
could have been the cause and consequence of FN adoption. Therefore, using a linear model we 
looked at the relationship between the two subgroups of DNA adopters and yield outcomes as 
follows: 

log𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 = 𝛼𝛼0 + 𝛼𝛼1𝐴𝐴𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇 + 𝜸𝜸′𝑯𝑯 + 𝜷𝜷′𝑬𝑬 + 𝜹𝜹′𝑷𝑷 + 𝝆𝝆′𝑰𝑰 + 𝜽𝜽′𝑳𝑳 + 𝜀𝜀𝑖𝑖            (2) 

log𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 = 𝛼𝛼0 + 𝛼𝛼1𝐴𝐴𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹 + 𝜸𝜸′𝑯𝑯 + 𝜷𝜷′𝑬𝑬 + 𝜹𝜹′𝑷𝑷 + 𝝆𝝆′𝑰𝑰 + 𝜽𝜽′𝑳𝑳 + 𝜀𝜀𝑖𝑖            (3) 

 
3 Given that most of our regressions from specifications (1)-(7) were of the log-indicator design, we interpreted the 
coefficient estimates as percentages for simplicity. The percentages obtained in this way were accurate for coefficient 
estimates of smaller magnitude, however in very few instances in our paper the coefficient estimates were of greater 
magnitude and our percentages represented underestimation of the effects. The coefficient estimates on dummy 
variables of greater magnitudes could be transformed to exact percentages using the �𝑒𝑒𝛼𝛼� − 1� ∗ 100 calculation 
(Wooldridge, 2015). 
4 We were unable to estimate these models using household fixed effects because only 41 out of 376 households (11%) 
in our dataset planted maize on more than one plot.  
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In these specifications we simply broke down DNA adopters into two groups. First subgroup 
𝐴𝐴𝑇𝑇𝑇𝑇 = 1 for TP adoption and = 0 for DNA-fingerprinted non-adopters, omitting FN adopters from 
the analysis. Second subgroup 𝐴𝐴𝐹𝐹𝐹𝐹 = 1 when FN adoption was reported and = 0 for DNA-
fingerprinted non-adopters, thus excluding TP subgroup from the analysis. As such, in coding 
these variables we did not use the entire sample. The remainder of variables were the same as in 
equation (1). 

Estimation strategy: Self-reported adoption 
To gain additional insights on how misperceptions about variety adoption biased returns to 
improved maize seeds, we estimated several additional linear models that regressed yields on self-
reported adoption of improved seeds: 

log𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 = 𝛼𝛼0 + 𝛼𝛼1𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆 + 𝜸𝜸′𝑯𝑯 + 𝜷𝜷′𝑬𝑬 + 𝜹𝜹′𝑷𝑷 + 𝝆𝝆′𝑰𝑰 + 𝜽𝜽′𝑳𝑳 + 𝜀𝜀𝑖𝑖            (4) 

where the measure of improved seed adoption 𝐴𝐴𝑆𝑆𝑆𝑆 = 1 if household 𝑖𝑖 self-reported planting an 
improved maize variety on plot 𝑝𝑝 and = 0 otherwise. All other variables were the same as in 
equation (1).  

As mentioned above, the estimates in (4) could be biased when self-reported adoption is 
used in the analysis. The bias could be in either direction because the measurement error consisted 
of two different adoption categories: 10% of our sample reported FP and 17% of sample reported 
FN adoption. These measures of adoption can be added to the model and their coefficients can 
indicate the significance of controlling for measurement error in self-reported adoption data. 

log𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 = 𝛼𝛼0 + 𝛼𝛼1𝐴𝐴𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆 + 𝛼𝛼2𝑀𝑀𝑖𝑖𝑖𝑖
𝐹𝐹𝐹𝐹 + 𝛼𝛼3𝑀𝑀𝑖𝑖𝑖𝑖

𝐹𝐹𝐹𝐹 + 𝜸𝜸′𝑯𝑯 + 𝜷𝜷′𝑬𝑬 + 𝜹𝜹′𝑷𝑷 + 𝝆𝝆′𝑰𝑰 + 𝜽𝜽′𝑳𝑳 + 𝜀𝜀𝑖𝑖         (5) 

Here, 𝑀𝑀𝐹𝐹𝐹𝐹 represented false positive component of the measurement error and 𝑀𝑀𝐹𝐹𝐹𝐹 represented 
false negative component of the measurement error. These variables were coded using the entire 
sample, and we modeled 𝑀𝑀𝐹𝐹𝐹𝐹 (𝑀𝑀𝐹𝐹𝐹𝐹) = 1 when a household reported FP (FN) adoption, and 
𝑀𝑀𝐹𝐹𝐹𝐹 (𝑀𝑀𝐹𝐹𝐹𝐹) = 0 otherwise. Note that false negative adoption 𝐴𝐴𝐹𝐹𝐹𝐹 in equation (3) was modeled 
differently from 𝑀𝑀𝐹𝐹𝐹𝐹 in equation (5), as the latter equation used the entire sample while former 
did not. To determine the extent and direction of bias in self-reported adoption we ran the 𝜒𝜒2 test 
for the equality between coefficient estimates 𝛼𝛼�1 from equation (4) that did not account for 
measurement error, and 𝛼𝛼�1 from equation (5) that controlled for measurement error. Similarly, to 
understand if it was possible to correct the measurement error in self-reported adoption by 
including 𝑀𝑀𝐹𝐹𝐹𝐹 and 𝑀𝑀𝐹𝐹𝐹𝐹 in the analysis, we conducted the 𝜒𝜒2 test for the equality between 
coefficient estimates 𝛼𝛼�1 from equation (1) where the regressor of interest was 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 and 𝛼𝛼�1 from 
equation (5) that controlled for measurement error. The coefficient estimates 𝛼𝛼�2 and 𝛼𝛼�3 in equation 
(5) tested for the source of bias (i.e., whether it was driven by FP or FN adopters). All other 
variables remained as explained for equation (1).  

In addition, we ran specifications (1)-(5) with and without vectors of other plot inputs and 
labor (𝑰𝑰 and 𝑳𝑳) since the use of complementary inputs was likely correlated with farmers’ 
perceptions of seed (discussed below). Therefore, we performed 𝜒𝜒2 test for equality of coefficients 
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estimates between specifications with and without vectors 𝑰𝑰 and 𝑳𝑳, for each regressor of interest 
(i.e., 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷, 𝐴𝐴𝑆𝑆𝑆𝑆, 𝑀𝑀𝐹𝐹𝐹𝐹, and 𝑀𝑀𝐹𝐹𝐹𝐹) in equations (1)-(5), as a robustness check on the consistency of 
the coefficient estimates. 

Separating the seed effect from the effort effect of improved varieties.  
The second question we sought to answer in this analysis was, if DNA-fingerprinting and crop cut 
yield estimates revealed that improved maize varieties had higher yields than traditional varieties, 
how much of the yield increase was due to the seed effect and how much was due to the effort 
effect (both observable and unobservable effort) from farmers? Fortunately, comparing yields 
among the four adoption categories, TP, FP, FN, and TN allowed us to answer this question. As 
such, to separate the actual seed effect and effort effect, we had to compare each group of farmers 
(TP, FP, and FN) with TN farmers only, since DNA-fingerprinting matched TN farmers’ 
perceptions that seed was not improved, and therefore TN did not include effort or seed effects. 
We defined the variable 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1 when FP = 1, because this group of farmers used traditional 
seed based on DNA-fingerprinting but perceived their seed as improved. Similarly, we generated 
the variable 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 when FN = 1, as these farmers used improved seed based on DNA-
fingerprinting but perceived it as traditional. And lastly, we defined the variable 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸&𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1 when TP = 1, since these farmers planted improved seed according to DNA-fingerprinting and 
perceived it as such. All three variables were coded as 0 when TN = 1. We ran three separate 
regressions using linear specification, one for each effect variable as discussed above. 

log𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 = 𝛼𝛼0 + 𝛼𝛼1𝑂𝑂𝑖𝑖𝑖𝑖𝑙𝑙 + 𝜸𝜸′𝑯𝑯 + 𝜷𝜷′𝑬𝑬 + 𝜹𝜹′𝑷𝑷 + 𝝆𝝆′𝑰𝑰 + 𝜽𝜽′𝑳𝑳 + 𝜀𝜀𝑖𝑖            (6) 

Here variable 𝑂𝑂 represented the effect 𝑙𝑙 = {𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸&𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆}. The dependent 
variable was log of yields from crop cut, since this measure was the most likely to be correctly 
measured, and all other variables remained the same as in equation (1). We included region fixed 
effects and clustered at the household level.  

In order to estimate and test the seed effect and the effort effect (both observable effort and 
unobservable effort) we ran the three models in equation (6) with and without the vector of other 
plot inputs and labor (I and L). Doing so controlled for the observable effort effect that could be 
attributed to changes in complementary labor and other input use. We ran 𝜒𝜒2 tests for equality of 
coefficient estimates from equation (6) with and without these vectors, for each regressor of 
interest (i.e., 𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸&𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). In addition, we used the 𝜒𝜒2 test to estimate the 
difference between two different regressors of interest from different specifications.  

Understanding behavioral changes that create the effort effect 
Finally, if our analysis were to find evidence of an effort effect, we wanted to understand how 
farmers adjusted production intensity to their perception of seed, that is what, if any, components 
observable in our data were captured through the effort effects from equation (6). To do so we 
estimated the following function at the plot level: 
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𝐼𝐼𝑖𝑖𝑖𝑖
𝑗𝑗 = 𝛼𝛼0 + 𝛼𝛼1𝑇𝑇𝑇𝑇 + 𝛼𝛼2𝐹𝐹𝐹𝐹 + 𝛼𝛼3𝐹𝐹𝐹𝐹 + 𝜸𝜸′𝑯𝑯 + 𝜷𝜷′𝑬𝑬 + 𝜹𝜹′𝑷𝑷 + 𝑢𝑢𝑖𝑖            (7) 

where 𝐼𝐼 was production input 𝑗𝑗 used on household 𝑖𝑖’s plot 𝑝𝑝, and 𝑇𝑇𝑇𝑇, 𝐹𝐹𝐹𝐹, and 𝐹𝐹𝐹𝐹 were indicator 
variables for the categories of improved maize seed adoption identified for plot 𝑝𝑝. The 𝑇𝑇𝑇𝑇 was 
used as base category. We ran this model separately for each production input 𝑗𝑗 which use may 
have been affected by farmers’ perception of maize seed. These inputs included i) use of chemical 
fertilizer (yes = 1), ii) use of organic fertilizer (yes = 1), iii) log GPS land planted with maize, iv) 
log planting labor days from all sources of labor (household, hired, and exchange labor), and v) 
log harvest labor days from all sources of labor. For each specification, we ran multiple F-tests for 
equality of coefficient estimates 𝛼𝛼�1, 𝛼𝛼�2, and 𝛼𝛼�3, to uncover potential differences in the use of inputs 
by the 𝑇𝑇𝑇𝑇, 𝐹𝐹𝐹𝐹, and 𝐹𝐹𝐹𝐹 groups of farmers. The vectors 𝑯𝑯, 𝑬𝑬, and 𝑷𝑷 remained as described 
previously for equation (1). We included region fixed effects and clustered standard errors at the 
household level. We address the issues of potential endogeneity in Appendix B.  

Results 

The effect of measurement errors in yields 
Table 3a presents the results from the estimation of equation (1), showing results of crop cut yields 
(𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑑𝑑𝐶𝐶𝐶𝐶) on DNA adoption. In table 3a and in subsequent tables, the coefficient estimates became 
increasingly robust moving from column 1 to column 5 as additional controls were added. 
Estimates of column 5 were the most robust and they indicated that on average DNA-fingerprinted 
adoption of improved maize varieties was associated with 22% increase in yields compared to 
DNA-fingerprinted non-adopters on average. The 𝜒𝜒2 tests at the bottom of table 3a showed that 
coefficient estimates were very consistent as additional controls were added to the model. The only 
significant difference in coefficient estimates was between column 5 and column 1, when other 
plot inputs and labor were controlled for and when they were not. This lends some initial evidence 
to the role that observable effort may have played in affecting improved seed adoption, which is 
discussed in detail below.  

The results in table 3a can be compared to the first row of results in appendix tables A.2 
and A.3 where self-reported and GPS yields were regressed on DNA-fingerprinted adoption, 
respectively. The results from these appendix tables showed that improved maize adoption through 
DNA-fingerprinting did not have a statistically significant effect on self-reported and GPS yields. 
This was likely due to insufficient correction of measurement error in these two outcome variables, 
since correcting the measurement error in the denominator of yields (i.e., using GPS land area 
instead of self-reported land area) was not enough to generate unbiased estimates of adoption of 
improved seed varieties. Our results suggest that using self-reported and GPS yields led to 
underestimation of the effects of improved seed adoption, since the coefficient estimates were not 
statistically different from zero. None of the other coefficient estimates for different adoption 
categories were statistically different from zero in appendix tables A.2 and A.3, that used self-
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reported yields and GPS yields as dependent variables, respectively. Therefore, we focus the rest 
of the results discussion on the models where crop cut yield was the dependent variable.  

The effect of improved seed adoption on yields: DNA-fingerprinting versus self-reporting 
Tables 3b and 3c present the estimated effects of other categories of improved seed adoption on 
crop cut yields, as modelled in equations (2) and (3). The columns 1-10 represent the results with 
and without vectors of household, access, plot, other plot inputs, and labor variables. 

When we disaggregated DNA-fingerprinted adopters in two subgroups in table 3b (true 
positive TP and false negative FN adopters), the most robust results for 𝐴𝐴𝑇𝑇𝑇𝑇 in column 5 and 𝐴𝐴𝐹𝐹𝐹𝐹 
in column 10 indicated that the positive association between the two subgroups and crop cut yields 
remained almost unchanged. The 𝐴𝐴𝑇𝑇𝑇𝑇 subgroup of DNA-fingerprinted adopters was associated 
with approximately 22% increase in yields and the 𝐴𝐴𝐹𝐹𝐹𝐹 subgroup was associated with an increase 
in yields of around 21% on average, compared to DNA-fingerprinted non-adopters. Therefore, 
𝐴𝐴𝑇𝑇𝑇𝑇 and 𝐴𝐴𝐹𝐹𝐹𝐹 both carried the effect of adoption that was consistent with the most robust estimation 
for 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 in table 3a column 5. All coefficient estimates across table 3b were very stable and 
consistent as seen by the lack of statistical significance in seven out of the eight 𝜒𝜒2 tests at the 
bottom of table 3b. In fact, as in table 3a, the only statistically different coefficient estimates came 
from comparisons between column 5 and column 1 for 𝐴𝐴𝑇𝑇𝑇𝑇, when labor and other plot inputs were 
controlled for and when they were not. 

Table 3c shows the estimates of self-reported adoption of improved maize seeds, 𝐴𝐴𝑆𝑆𝑆𝑆, on 
crop cut maize yields, corresponding to equations (4) and (5). It is interesting to note that the most 
robust specification presented in column 5, that included the full set of controls, showed that 
adoption of improved maize varieties based on farmers’ self-reporting did not have a statistically 
significant impact on yields. However, when we used the DNA-fingerprinted adoption data in 
combination with the self-reported adoption data to identify and control for two components of 
measurement error in column 10 (false-positive error 𝑀𝑀𝐹𝐹𝐹𝐹 and false negative error 𝑀𝑀𝐹𝐹𝐹𝐹), the 
coefficient estimate on self-reported adoption 𝐴𝐴𝑆𝑆𝑆𝑆 became associated with approximately 26% 
increase in crop cut yields. Thus, not controlling for measurement error in farmers’ self-reported 
adoption status led to underestimating the effects of adoption, even when using crop-cut yield 
estimates. In our results, the false negative component of measurement error 𝑀𝑀𝐹𝐹𝐹𝐹 was correlated 
with around 28% increase in yields, while false positive component of measurement error 𝑀𝑀𝐹𝐹𝐹𝐹 
remained non-significant in column 10.  

The difference between coefficient estimates of self-reported adoption 𝐴𝐴𝑆𝑆𝑆𝑆 from table 3c 
in columns 5 and 10 represented the bias in self-reported adoption when measurement error was 
not accounted for in the analysis. The false negative measurement error 𝑀𝑀𝐹𝐹𝐹𝐹 was the source of 
statistically significant downward bias of approximately 12 percentage points, as indicated by the 
𝜒𝜒2 test in row 5) of column 10 at the bottom of table 3c. The false negative measurement error 
𝑀𝑀𝐹𝐹𝐹𝐹 in column 10 picked up the effect of a farmer unknowingly planting an improved maize seed 
variety with germplasm purity of 95% or above. This form of measurement error seemed to have 
been the main factor biasing the estimates of self-reported adoption in column 5.  
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The difference of 3 percentage points between the coefficient estimates of DNA-
fingerprinted adoption 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷 in column 5 in table 3a and self-reported adoption 𝐴𝐴𝑆𝑆𝑆𝑆 with 
measurement error added to the analysis in table 3c column 10 was not statistically significant, as 
seen in row 6) of column 10 at the bottom of table 3c. This result suggests that the measurement 
error in self-reported adoption was the reason that coefficient estimates in column 5 of table 3c 
were biased compared to DNA-fingerprinted adoption.  

 
Table 3a. Yield function for 𝐥𝐥𝐥𝐥𝐥𝐥𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐝𝐝𝐂𝐂𝐂𝐂 with 𝐀𝐀𝐃𝐃𝐃𝐃𝐃𝐃 improved seed adoption 

 (1) (2) (3) (4) (5) 
Variables log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC 
ADNA  0.290*** 0.244*** 0.232*** 0.218*** 0.222*** 
 (0.080) (0.078) (0.080) (0.081) (0.081) 
Household (H) Yes – Yes Yes Yes 
Access (E) Yes – – Yes Yes 
Plot (P) Yes – – – Yes 
Inputs (I) – Yes Yes Yes Yes 
Labor (L) – Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Constant 5.875*** 5.214*** 5.182*** 5.151*** 5.112*** 
 (0.277) (0.213) (0.316) (0.320) (0.335) 
Observations 419 419 419 419 419 
R-squared 0.156 0.240 0.249 0.256 0.258 
      
χ2test for equality of coefficient estimates  
α�A(5)

DNA −  α�A(𝑖𝑖)
DNA = 0 –0.068** –0.022 –0.01 0.004 – 

Columns 1-5 = Equation (1). Robust standard errors in parentheses. Clustered at household level. *** p<0.01, ** 
p<0.05, * p<0.1.  
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Table 3b. Yield function for 𝐥𝐥𝐥𝐥𝐥𝐥𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐝𝐝𝐂𝐂𝐂𝐂 with true positive adoption (𝐀𝐀𝐓𝐓𝐓𝐓) and false negative adoption (𝐀𝐀𝐅𝐅𝐅𝐅) 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Variables log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC 
ATP  0.338*** 0.257** 0.230** 0.213* 0.221*      
 (0.107) (0.105) (0.110) (0.115) (0.115)      
AFN       0.197* 0.214** 0.216** 0.217** 0.207** 
      (0.103) (0.099) (0.099) (0.098) (0.099) 
Household (H) Yes – Yes Yes Yes Yes – Yes Yes Yes 
Access (E) Yes – – Yes Yes Yes – – Yes Yes 
Plot (P) Yes – – – Yes Yes – – – Yes 
Inputs (I) – Yes Yes Yes Yes – Yes Yes Yes Yes 
Labor (L) – Yes Yes Yes Yes – Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Constant 6.090*** 5.247*** 5.375*** 5.333*** 5.306*** 6.049*** 5.353*** 5.520*** 5.510*** 5.430*** 
 (0.330) (0.264) (0.390) (0.404) (0.422) (0.278) (0.235) (0.332) (0.334) (0.343) 
Observations 348 348 348 348 348 307 307 307 307 307 
R-squared 0.161 0.264 0.274 0.277 0.278 0.136 0.192 0.212 0.227 0.230 
χ2test for equality of coefficient estimates 
      {row 1) = column (5) – column (i)}  
      {row 2) = column (10) – column (i)} 

     

1) α�A(5)
TP −  α�A(i)

TP = 0  –0.117** –0.036 –0.009 0.008 –      
2) α�A(10)

FN −  α�A(i)
FN = 0      0.01 –0.007 –0.009 –0.01 – 

Columns 1-5 = Equation (2); Columns 6-10 = Equation (3). Robust standard errors in parentheses. Clustered at household level. *** p<0.01, ** p<0.05, * p<0.1. 
True Positive (TP) = Self-reported Adopter + DNA-fingerprinted Adopter; False Negative (FN) = Self-reported Non-adopter + DNA-fingerprinted Adopter. 
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Table 3c. Yield function for 𝐥𝐥𝐥𝐥𝐥𝐥𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐝𝐝𝐂𝐂𝐂𝐂 with self-reported adoption (𝐀𝐀𝐒𝐒𝐒𝐒) without and with measurement errors 𝐌𝐌𝐅𝐅𝐅𝐅 and 𝐌𝐌𝐅𝐅𝐅𝐅 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Variables log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC log YieldCC 
ASR  0.294*** 0.167* 0.156* 0.126 0.134 0.408*** 0.300*** 0.282** 0.245** 0.255** 
 (0.088) (0.092) (0.093) (0.097) (0.098) (0.106) (0.108) (0.112) (0.117) (0.118) 
MFP        –0.053 –0.111 –0.098 –0.076 –0.084 
      (0.134) (0.125) (0.130) (0.130) (0.129) 
MFN       0.317*** 0.283*** 0.275*** 0.278*** 0.276*** 
      (0.103) (0.101) (0.101) (0.101) (0.101) 
Household (H) Yes – Yes Yes Yes Yes – Yes Yes Yes 
Access (E) Yes – – Yes Yes Yes – – Yes Yes 
Plot (P) Yes – – – Yes Yes – – – Yes 
Inputs (I) – Yes Yes Yes Yes – Yes Yes Yes Yes 
Labor (L) – Yes Yes Yes Yes – Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Constant 5.793*** 5.291*** 5.185*** 5.155*** 5.112*** 5.800*** 5.242*** 5.188*** 5.149*** 5.114*** 
 (0.274) (0.222) (0.324) (0.329) (0.342) (0.278) (0.220) (0.318) (0.323) (0.336) 
Observations 419 419 419 419 419 419 419 419 419 419 
R-squared 0.155 0.228 0.238 0.245 0.247 0.174 0.245 0.253 0.260 0.262 
χ2test for equality of coefficient estimates 
      {row 1) = column (5) – column (i)}  
      {rows 2), 3), 4) = column (10) – column (i)} 
      {row 5) = column (10) – column (5)} 
      {row 6) = column (10) – column (5) in table 3a} 

     

1) α�A(5)
SR −  α�A(i)

SR = 0  –0.16 –0.033 –0.022 0.008 –      
2) α�A(10)

SR −  α�A(i)
SR = 0       –0.153*** –0.045 –0.027 0.01 – 

3) α�M(10)
FP −  α�M(i)

FP = 0       0.137 0.195 0.182 0.16 – 
4) α�M(10)

FN −  α�M(i)
FN = 0       –0.041 –0.007 0.001 –0.002 – 

5) α�A(10)
SR −  α�A(5)

SR = 0          0.121** 
6) α�A(10)

SR −  α�A(5)
DNA = 0          0.033 

Columns 1-5 = Equation (4); Columns 6-10 = Equation (5). Robust standard errors in parentheses. Clustered at household level. *** p<0.01, ** p<0.05, * p<0.1. 
False Positive (FP) = Self-reported Adopter + DNA-fingerprinted Non-adopter; False Negative (FN) = Self-reported Non-adopter + DNA-fingerprinted Adopter. 
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The effects of seed and effort on yields 
The results in tables 3a, 3b, and 3c hinted at the seed effect and effort effect influencing the returns 
to improved maize adoption. For example, the coefficient estimates on the returns to DNA-finger-
printed improved maize seed adoption decreased significantly across columns in table 3a, when 
labor and other plot inputs were included in the model. This was likely due to the relationship 
between the use of improved seeds and other complementary production inputs, as farmers who 
thought they had adopted improved seed may have also used more labor and fertilizer, which 
contributed to higher yields.  

The results in table 4 show the estimates from model presented in equation (6) that 
estimated the seed effect and the effort effect associated with farmers’ beliefs about the varieties 
they adopted. Column 1 of table 4 shows the magnitude of the total effort effect (observable + 
unobservable) for traditional varieties. This was captured by comparing FP to TN groups of 
farmers. Results indicated that the extra effort exerted by FP farmers who thought they were 
adopting an improved variety but were not according to DNA-fingerprinting had a 26% increase 
in yields on average. This effect disappeared when we included vectors of labor and other plot 
input variables in column 2, indicating that we were able to (mostly) control for the observable 
effort effect with our set of complementary input variables on the right side of the regression. 
Column 2 also tells us that the seed used by FP farmers was not significantly different from the 
seed used by TN farmers in terms of yield gains, on average. Moreover, when traditional varieties 
were planted, the observable effort effect can be verified through the 𝜒𝜒2 test of the difference in 
coefficient estimates between columns 1 and 2 in row 1) at the bottom of table 4. These coefficients 
were not different indicating that there was no statistically significant benefit to increased use of 
complementary inputs when farmers planted traditional varieties.  

The seed effect captured through comparing FN with TN in columns 3 and 4 showed that 
the enhanced seed genetics of improved varieties boosted average yields by 22-23% on average. 
The coefficient estimates between columns 3 and 4 did not change when labor and other plot input 
controls were added to the model, as seen in the insignificant 𝜒𝜒2 test in row 2) at the bottom of 
table 4. These results show that farmers in this sample were able to achieve higher yields by using 
improved seeds as opposed to traditional varieties, regardless of whether or not they used 
complementary inputs.  

Column 5 of table 4 shows the joint effect of effort and seed on yields by comparing TP 
adoption to TN adoption. The combined effect was greater in magnitude than the effect of effort 
or the effect of seed individually. The combined effect was associated with 48% increase in yields 
compared to farmers who did not use improved seeds and additional inputs on average. Testing 
the difference between the joint effect of seed and effort in column 5 and individual seed effect 
from column 4 using the 𝜒𝜒2 test in row 3) at the bottom of table 4 provided the total effort effect 
(observable + unobservable) for improved varieties. The test results were statistically significant 
and indicated that there was a 26 percentage point increase in total effort on average from planting 
improved varieties over traditional varieties.  
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The coefficient estimate from column 5 attenuated significantly from 48% to 33% after we 
added labor and other plot inputs as control variables to regression seen in column 6 of table 4. 
This change indicated that farmers’ observable effort, as measured by labor and other plot input 
use, was essential for achieving higher yields when using improved maize varieties. The significant 
difference of 15 percentage points between coefficient estimates from columns 5 and 6 represented 
the observable effort effect from labor and input reallocation when using improved varieties. The 
significance of the 𝜒𝜒2 test can be seen in row 4) at the bottom of table 4. 

Finally, the difference of 11 percentage points between coefficient estimates in column 6 
and column 4 represented the unobservable effort effect. This effect was not significant according 
to the 𝜒𝜒2 test in row 5) at the bottom of table 4.   
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Table 4. Effort and seed effects 
 (1) (2) (3) (4) (5) (6) 
Variables log yieldCC log yieldCC log yieldCC log yieldCC log yieldCC log yieldCC 
OEffort (FP vs. TN) 0.257** 0.179     
 (0.127) (0.136)     
OSeed (FN vs. TN)   0.233** 0.219**   
   (0.108) (0.104)   
OEffort&Seed (TP vs. TN)     0.479*** 0.334** 
     (0.116) (0.138) 
Household (H) Yes Yes Yes Yes Yes Yes 
Access (E) Yes Yes Yes Yes Yes Yes 
Plot (P) Yes Yes Yes Yes Yes Yes 
Inputs (I) – Yes – Yes – Yes 
Labor (L) – Yes – Yes – Yes 
Region FE Yes Yes Yes Yes Yes Yes 
Constant 6.266*** 5.889*** 5.913*** 5.495*** 6.007*** 5.381*** 
 (0.324) (0.407) (0.287) (0.339) (0.347) (0.449) 
Observations 236 236 264 264 305 305 
R-squared 0.178 0.271 0.127 0.221 0.179 0.282 
χ2test for equality of coefficient estimates, between columns 
      {row 1) tests observable effort effect for traditional varieties} 

{row 2) tests if the seed effect of improved varieties is affected by observable input use}  
{row 3) tests total effort effect for improved varieties} 
{row 4) tests observable effort effect for improved varieties} 
{row 5) tests unobservable effort effect for improved varieties}  

1) α�O(2)
l − α�O(1)

l = 0  –0.078   
2) α�O(4)

l − α�O(3)
l = 0  –0.014  

3) 𝛼𝛼�O(5) − 𝛼𝛼�O(4) = 0   0.26** 
4) α�O(6)

l − α�O(5)
l = 0               –0.145** 

5) 𝛼𝛼�O(6) − 𝛼𝛼�O(4) = 0                              0.115 
Results from Equation (6). Robust standard errors in parentheses. Clustered at household level. *** p<0.01, ** p<0.05, 
* p<0.1. Note: True Positive (TP) = Self-reported Adopter + DNA-fingerprinted Adopter; False Positive (FP) = Self-
reported Adopter + DNA-fingerprinted Non-adopter; False Negative (FN) = Self-reported Non-adopter + DNA-
fingerprinted Adopter; True Negative (TN) = Self-reported Non-adopter + DNA-fingerprinted Non-adopter. 
l = {Effort, Seed, Effort & Seed}; Effort = 1 if FP = 1; Effort = 0 if TN = 1, Seed = 1 if FN = 1; Seed = 0 if TN = 1, 
Effort & Seed = 1 if TP = 1; Effort & Seed = 0 if TN = 1.  
 

Correlates of input use 
In previous results we found evidence that the yields of improved seed varieties were enhanced by 
improved seed genetics and by farmers’ increasing their observable effort (through changes in 
inputs) when they believed their seeds were improved. Therefore, we estimated equation (7) to 
understand what inputs were used differently based on their beliefs. These results are reported in 
table 5. We found that farmers’ perceptions of seed variety were indeed reflected through the 
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complementary inputs that they invested in maize production. Results indicated that compared to 
the base group of TN adopters who were correct in their belief that they were using traditional 
seed, TP adopters, who were correct in their belief about planting improved maize varieties, 
planted approximately 10% more land with maize on average. The TP farmers were also 50 
percentage points more likely to use chemical fertilizer, and 15 percentage points less likely to use 
organic fertilizer compared to TN farmers on average. This suggested that farmers may have 
believed that there was a positive benefit to increasing complementary inputs like land and 
inorganic fertilizer along with improved seed use.  

We found similar behavioral response to farmers’ perception of seed in the FP group who 
incorrectly believed that they were using improved varieties. Farmers in this group were 46 
percentage points more likely to use chemical fertilizer compared to the base group of TN adopters 
on average. They also spent 36% more labor days at planting and 50% more labor days at harvest 
compared to TN adopters on average.  

Finally, it is important to point out that FN adopters, who believed they were using 
traditional seed but were actually using improved seed according to DNA-fingerprinting, were not 
significantly different across all 5 production inputs on average from TN adopters, who knew that 
they were using traditional varieties. This speaks to the importance of variety perception in 
farmers’ decisions regarding the use of complementary inputs, and is consistent with the F-tests at 
the bottom of table 5 that compared coefficients on adoption status for each model of input use. 
For example, TP adopters planted significantly more land, were more likely to use chemical 
fertilizer and spent more labor days at planting than did FN adopters on average. Recall that the 
only difference between these two groups was in their perception about whether or not they planted 
improved seed. Furthermore, FP farmers who incorrectly believed they planted improved seeds 
were significantly more likely to use chemical fertilizer and spent more labor days during both 
planting and harvest seasons than did FN farmers who believed they were using traditional seeds 
but were actually using improved seeds.  
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Table 5. Correlates of input use with TN adoption as base category 
 (1) (2) (3) (4) (5) 

Variables log land GPS 
Used chemical 
fertilizer (=1) 

Used organic 
fertilizer (=1) 

log planting 
labor days 

log harvest 
labor days 

TP 0.099*** 0.495*** –0.151** 0.226 0.158 
 (0.030) (0.059) (0.064) (0.141) (0.146) 
FN 0.008 0.106 –0.089 –0.068 0.088 
 (0.025) (0.068) (0.070) (0.158) (0.135) 
FP 0.061 0.458*** 0.042 0.362** 0.501*** 
 (0.037) (0.073) (0.084) (0.152) (0.149) 
Household (H)  Yes Yes Yes Yes Yes 
Access (E) Yes Yes Yes Yes Yes 
Plot (P) Yes Yes Yes Yes Yes 
Region FE Yes Yes Yes Yes Yes 
Constant 0.124* 0.011 0.393** 2.140*** 2.827*** 
 (0.068) (0.151) (0.189) (0.384) (0.376) 
Observations 419 419 419 419 419 
R-squared 0.158 0.404 0.150 0.176 0.102 
F-test for equality of coefficient estimates 

      Compares coefficient estimates in same specification / column 
  

1) 𝛼𝛼�TP − 𝛼𝛼�FN = 0 0.091*** 0.389*** –0.062 0.294* 0.07 
2) 𝛼𝛼�FP − 𝛼𝛼�FN = 0 0.053 0.352*** 0.131 0.43** 0.413** 

Results from Equation (7). Robust standard errors in parentheses. Clustered at household level. *** p<0.01, ** p<0.05, 
* p<0.1. Note: True Positive (TP) = Self-reported Adopter + DNA-fingerprinted Adopter; False Positive (FP) = Self-
reported Adopter + DNA-fingerprinted Non-adopter; False Negative (FN) = Self-reported Non-adopter + DNA-
fingerprinted Adopter; True Negative (TN) = Self-reported Non-adopter + DNA-fingerprinted Non-adopter. TN is 
comparison group. 

Discussion and conclusion 
We found that positive and statistically significant relationship between the seed adoption 
variables and yields existed only when we used yields generated from crop cuts as the outcome 
variable. Our descriptive analysis revealed that using GPS measures instead of self-reported land 
area could correct some error in the yield measurements, since GPS yields and crop cut yields were 
not different from each other on average. But the regressions analysis showed that self-reported 
and GPS yields in fact contained enough measurement error that we were not able to detect any 
effect of improved seed adoption on these two yield measurements. Therefore, in the absence of 
better measurements of harvest, both self-reported and GPS yields could provide biased estimates 
when used in the analysis of productivity. Our results are consistent with findings in Desiere and 
Jolliffe (2018) and Yacoubou, Djima and Kilic (2021), by showing how the measurement error in 
quantities harvested can substantially change results.  

 Comparing the estimates of how adoption of improved maize varieties affected maize 
yields with both self-reported and DNA-fingerprinted adoption allowed us to estimate the extent 
of measurement error in self-reported adoption data. We found that most of the bias in self-reported 
adoption was due to the presence of false negative adopters (those who self-reported not adopting 
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an improved maize variety, but DNA-fingerprinting showed otherwise). The magnitude of the bias 
in yields was 12 percentage points on average, with self-reported estimates attenuating the impact 
of improved seed adoption compared to DNA-fingerprinting estimates. This attenuation bias may 
help explain why some studies that measured the impact of improved seed adoption in farmer 
survey data did not find that these varieties had a significant impact on yields.  

We also found that when we controlled for measurement error in self-reported adoption of 
improved seeds by including control variables for false positive adopters (who incorrectly believed 
they were adopting improved varieties) and false negative adopters, the relationship between self-
reported adoption and crop cut yields became statistically significant and positive. In addition, 
with these controls, the coefficient estimates of self-reported adoption became statistically 
equivalent to the coefficient estimates in the model of DNA-fingerprinted adoption on average. 
The false negative group of farmers introduced a downward bias in the estimates of self-reported 
adoption because they were identified as non-adopters based on their own reporting. However, 
false negative adoption reflected yield gains from planting improved maize seeds with germplasm 
purity of 95% or more.  

The analysis that complements DNA-fingerprinted adoption with self-reported adoption 
allowed us to also attribute how much gain in yields from improved seed adoption was due to the 
genetic seed effect of improved varieties and how much was due to the effort effect, that could be 
both observable through reallocation of complementary inputs like labor and unobservable effort 
through motivation and other factors. Our analysis revealed that 22% of the yield increase for 
improved maize seed was due to seed effect of the improved varieties compared to traditional 
varieties on average. In addition, 15 percentage points of the average gain for improved seeds was 
due to observable effort in the form of additional input use when farmers planted improved seeds 
on average. We did not find a statistically significant observable effort effect in the returns to 
adoption of traditional seeds. This suggests that the payoff for extra complementary inputs like 
labor and inorganic fertilizer were higher for improved seeds than they are for traditional seeds. 
Overall, these findings imply that farmers’ perceptions of varietal adoption should be taken into 
consideration in the analysis of improved seed varieties because they influence their use of 
complementary inputs that affect yields.   

Results from our study showed that returns to improved seed varieties were higher than 
those of traditional varieties, while highlighting the need for information campaigns since farmers’ 
knowledge and perceptions play a key role in achieving higher benefits of adoption. Dissemination 
of improved varieties should be coupled with efforts to educate farmers how to determine the land 
area and quantify harvest. Ultimately, our study results provide strong evidence that performing 
both DNA-fingerprinting and crop cuts was important to measure accurately the impacts of 
adoption of improved crop varieties on yields. 
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Appendix A 
Table A.1. Improved maize seed variety information 

Variety name Year released Type Germplasm origin Characteristics 
BH-140 1988 OPV EIAR Early- to intermediate-maturing for mid- and lower altitudes. 
BH-660 1993 Hybrid CIMMYT/EIAR Late-maturing for traditional growing areas with adequate rainfall. 
BH-540 1995 Hybrid EIAR Medium-maturing for mid-altitudes. 
Jabi 1995 Hybrid Crossing by Pioneer Hi-Bred Early-maturing. 
Kuleni 1995 OPV CIMMYT/EIAR For highland transition areas. 
Melkassa-1 2001 OPV CIMMYT/EIAR Extra early-maturing for low- to mid-altitude drought prone areas. 
Gibe-1 2001 OPV EIAR For mid-altitude areas. 
BH-670 2002 Hybrid EIAR For highland transition areas with adequate rainfall.  
Melkassa-2 2004 OPV CIMMYT/EIAR Medium-maturing for mid-altitude drought prone areas.  
Shone 2006 Hybrid Crossing by Pioneer Hi-Bred Drought tolerant, medium-maturing. 
AMH-850 2008 Hybrid EIAR Early-maturing. 
BH-661 2011 Hybrid CIMMYT/EIAR Drought-tolerant for dry and normal areas.  
Limu 2012 Hybrid Crossing by Pioneer Hi-Bred Disease tolerant, medium-maturing, for mid-altitude with high rainfall. 
Melkassa-1Q 2013 OPV CIMMYT/EIAR Extra early-maturing for dry and marginal areas. Quality protein maize. 
Damote 2015 Hybrid Crossing by Pioneer Hi-Bred  
AMH-852Q 2016 Hybrid CIMMYT/EIAR Quality protein maize.  

Source: by the author with reference to (Kosmowski et al., 2020). 
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Table A.2. Yield function for 𝐥𝐥𝐥𝐥𝐥𝐥 𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐝𝐝𝐒𝐒𝐒𝐒 with improved seed adoption: least and most robust estimations 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Variables log YieldSR log YieldSR log YieldSR log YieldSR log YieldSR log YieldSR log YieldSR log YieldSR log YieldSR log YieldSR 
ADNA  0.158 0.059         
 (0.175) (0.191)         
ATP    0.260 0.058       
   (0.221) (0.266)       
AFN      0.100 0.141     
     (0.204) (0.199)     
ASR        0.242 –0.006 0.277 0.024 
       (0.161) (0.203) (0.215) (0.269) 
MFP           0.053 0.041 
         (0.307) (0.309) 
MFN          0.172 0.129 
         (0.207) (0.205) 
Household (H) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Access Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Plot  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Inputs (I) – Yes – Yes – Yes – Yes – Yes 
Labor (L) – Yes – Yes – Yes – Yes – Yes 
Region FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Constant 5.738*** 5.238*** 6.362*** 5.797*** 5.805*** 5.383*** 5.684*** 5.231*** 5.669*** 5.226*** 
 (0.452) (0.511) (0.521) (0.582) (0.485) (0.573) (0.442) (0.507) (0.452) (0.512) 
Observations 419 419 348 348 307 307 419 419 419 419 
R-squared 0.046 0.109 0.053 0.117 0.044 0.147 0.049 0.109 0.051 0.110 
α�AIL

j −  α�Afull
j = 0  0.099* – 0.202** – –0.041 – 0.248** – 0.253** – 

α�MIL
FP −  α�Mfull

FP = 0          0.012 – 
α�MIL

FN −  α�Mfull
FN = 0          0.043 – 

Columns 1 & 2 = Equation (1); Columns 3 & 4 = Equation (2); Columns 5 & 6 = Equation (3); Columns 7 & 8 = Equation (4); Columns 9 & 10 = Equation (5). 
j = {DNA, TP, FN, SR}. Robust standard errors in parentheses. Clustered at household level. *** p<0.01, ** p<0.05, * p<0.1.  
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Table A.3. Yield function for 𝐥𝐥𝐥𝐥𝐥𝐥 𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐲𝐝𝐝𝐆𝐆𝐆𝐆𝐆𝐆 with improved seed adoption: least and most robust estimations 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Variables log YieldGPS log YieldGPS log YieldGPS log YieldGPS log YieldGPS log YieldGPS log YieldGPS log YieldGPS log YieldGPS log YieldGPS 
ADNA  0.056 0.037         
 (0.150) (0.172)         
ATP    0.048 –0.002       
   (0.195) (0.253)       
AFN      0.115 0.137     
     (0.175) (0.172)     
ASR        0.062 –0.037 0.056 –0.025 
       (0.143) (0.196) (0.189) (0.254) 
MFP           0.168 0.111 
         (0.272) (0.289) 
MFN          0.166 0.146 
         (0.178) (0.176) 
Household (H) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Access Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Plot  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Inputs (I) – Yes – Yes – Yes – Yes – Yes 
Labor (L) – Yes – Yes – Yes – Yes – Yes 
Region FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Constant 5.992*** 5.650*** 6.321*** 5.939*** 5.940*** 5.812*** 5.976*** 5.640*** 5.935*** 5.631*** 
 (0.415) (0.479) (0.474) (0.562) (0.436) (0.534) (0.411) (0.477) (0.420) (0.481) 
Observations 419 419 348 348 307 307 419 419 419 419 
R-squared 0.046 0.099 0.050 0.104 0.049 0.135 0.046 0.099 0.049 0.101 
α�AIL

j −  α�Afull
j = 0  0.019 – 0.070 – –0.022 – 0.099 – 0.081 – 

α�MIL
FP −  α�Mfull

FP = 0          0.057 – 
α�MIL

FN −  α�Mfull
FN = 0          0.020 – 

Columns 1 & 2 = Equation (1); Columns 3 & 4 = Equation (2); Columns 5 & 6 = Equation (3); Columns 7 & 8 = Equation (4); Columns 9 & 10 = Equation (5). 
j = {DNA, TP, FN, SR}. Robust standard errors in parentheses. Clustered at household level. *** p<0.01, ** p<0.05, * p<0.1. 
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Figure A.1. Germplasm purity % distribution 
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Appendix B 

Addressing potential endogeneity 
This study focuses on potential measurement error in yield and improved seed adoption data. 
However, there are three other potential sources of bias that we need to address in this study. First, 
bias in yield estimates may stem from the standard problem of omitted variables. The decision to 
adopt an improved seed variety may be endogenous due to absence of random assignment of 
adoption status. This can occur at the household level or at the plot level. For example, at the 
household level if more able farmers were more likely to adopt improved seed varieties and were 
more likely to get higher yields, then there would be overestimation bias due to omitted household 
variables. Similarly, at the plot level, if farmers planted improved seeds on their most fertile plots, 
then we would also expect overestimation bias due to omitted plot-level variables. One potential 
way to deal with this type of endogeneity is to find instrumental variable (IV). However, finding 
a suitable IV that is exogenous itself is challenging in an observational dataset. Most IVs will likely 
be endogenous themselves, and an endogenous IV can bias coefficient estimates more than having 
no IV (Wooldridge, 2011). Fortunately, we had a rich set of controls in this dataset, so the most 
straightforward way to deal with this type of endogeneity was to include household, access, and 
plot characteristics in the vectors 𝑯𝑯, 𝑬𝑬, and 𝑷𝑷 as described above. The variables such as assets, 
age, and education of the household head proxy for ability, access to extension services proxy for 
informational connections, and plot quality and slope proxy for soil fertility. Thus, bringing these 
factors out of the error term and into the model can reduce the overestimation bias we might expect 
in improved seed adoption.   

We ran specifications (1)-(5) in our main results shown in tables 3a, 3b, and 3c with and 
without 𝑯𝑯, 𝑬𝑬, and 𝑷𝑷. The results of all specifications were very consistent and as hypothesized the 
coefficient estimates on the different improved adoption variables attenuated as additional controls 
were added. This suggests that we were able to reduce omitted variable bias by adding these 
controls.   

The second potential endogeneity issue is that correct identification of seed variety could 
also be endogenous, since smarter and more experienced farmers may have been more likely to 
correctly identify, or perceive, their seeds as of improved or traditional variety. To infer if this was 
the case, we ran the following linear regression: 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜏𝜏0 + 𝜸𝜸′𝑯𝑯 + 𝜔𝜔𝑖𝑖               (B1) 

In this equation, 𝐶𝐶 = 1 if a household 𝑖𝑖 correctly identified seed variety on its plot 𝑝𝑝 and = 0 
otherwise. That is, variable 𝐶𝐶 was assigned a value of 1 for TP and TN adoption categories, and a 
value of 0 in the case of FP and FN adoption. Vector 𝑯𝑯 included household characteristics that 
may have been endogenous to proper or false identification of maize seed variety, the variables in 
the vector 𝑯𝑯 were outlined previously for equation (1). We included region fixed effects and 
clustered standard errors at the household level. We found no effect of household characteristics 
on the correct reporting of adoption status as per appendix table B.1.  
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Third, less experienced farmers may have also been less accurate in their reporting of 
production inputs and outcomes. That is, they may have been more likely to underestimate or 
overestimate the land area planted with maize and quantities harvested, that could have ultimately 
led to underestimation or overestimation of yields. We checked for this by running three separate 
linear regressions as outlined in equation (B1), but with 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 on the left-hand side. The 

variable 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 was generated as a difference between yield measures. Namely, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = {𝑆𝑆𝑆𝑆 −

𝐶𝐶𝐶𝐶, 𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐶𝐶𝐶𝐶, 𝑆𝑆𝑆𝑆 − 𝐺𝐺𝐺𝐺𝐺𝐺}. Like in the previous estimation, we found no effect of household 
characteristics on underestimation and overestimation of yields according to appendix table B.2. 
All things considered, it seemed that household and household head characteristics did not have a 
major detectable effect on our main results. 

Finally, despite our efforts to control for endogeneity there may have still been effects that 
we were not able to capture. We do not claim that our results produced from above regressions 
were fully causal. That being said, we had the data and models necessary to provide important new 
information on the main focus of the study, namely the impact of measurement error on yields and 
improved seed adoption in smallholder datasets.  
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Table B.1. Correlates of correct reporting of adoption status 
Variables Correct reporting (= 1) 
HH Head is male (yes = 1) –0.023 
 (0.075) 
HH Head age (years) –0.001 
 (0.002) 
HH Head can read and write (yes = 1) 0.046 
 (0.048) 
HH Head is married (yes = 1) –0.102 
 (0.079) 
HH size 0.011 
 (0.013) 
Assets index –0.005 
 (0.012) 
Livestock (TLU) 0.003 
 (0.005) 
Region FE Yes 
Constant 0.800*** 
 (0.155) 
Observations 419 
R-squared 0.058 

Results from Equation (8). Robust standard errors in parentheses. Clustered at household level. *** p<0.01, ** p<0.05, 
* p<0.1 
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Table B.2. Correlates of overestimation and underestimation of yields (kg/acre) 
 (1) (2) (3) 
Variables YieldSR−CC YieldGPS−CC YieldSR−GPS 
HH Head is male (yes = 1) –30.579 33.717 –64.297 
 (127.571) (133.986) (86.279) 
HH Head age (years) 1.878 3.397 –1.519 
 (3.074) (3.275) (2.337) 
HH Head can read and write (yes = 1) –58.984 13.307 –72.291 
 (101.990) (92.451) (79.847) 
HH Head is married (yes = 1) –21.749 –80.561 58.812 
 (142.654) (156.219) (94.177) 
HH size 17.668 7.054 10.614 
 (22.415) (21.218) (15.373) 
Assets index –30.625 –14.798 –15.827 
 (28.750) (25.758) (17.371) 
Livestock (TLU) –9.442 –15.817 6.374 
 (9.629) (9.747) (7.618) 
Region FE Yes Yes Yes 
Constant 154.628 71.438 83.190 
 (259.595) (282.735) (222.773) 
Observations 419 419 419 
R-squared 0.048 0.045 0.030 

Results from Equation (8). Robust standard errors in parentheses. Clustered at household level. *** p<0.01, ** p<0.05, 
* p<0.1 
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