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ABSTRACT 
Declining soil fertility is one of the major agricultural problems in Republic of Benin. It leads 
to low yields and high production costs of crops. To improve soil fertility and alleviate its 
consequences, ISFMT are continuously promoted in the country. This paper makes an empirical 
contribution in addressing the paucity of evidence regarding the heterogeneous effect of ISFMT 
adoption on Allocative Inefficiency (AI) of maize farms. A correlated random coefficient model 
assuming a factor-structure for the unobserved covariates combined with instrumental variables 
(IV) was specified. The multinomial endogenous treatment and mixed discrete-continuous 
outcome were jointly estimated using the Generalized Structural Equation Model (GSEM) 
package. The model is estimated for a sample of 431 maize producers located in 19 villages in 
north-East of Republic of Benin with four ISFMT (Mucuna pruriens (MP), Crop Residue (CR), 
Cattle Manure (CM), and Pigeon Pea (PP)), The results consistently suggest that adopting any 
of the four ISFMT, significantly decreases the AI scores of the maize farms. On average, the 
largest decrease of maize farm AI stems from adopting PP, followed by CM and CR. Moreover, 
we find that the effects of adopting ISFMT vary depending on the gender of farmer, the use of 
mineral fertilizer and whether the maize farm is located in cotton area of the north of Republic 
of Benin. To reduce the AI of maize farm, policy makers should put more emphasis in ISFMT 
promotion for wider adoption by Beninese maize farmers 
  
JEL classification : H21 ; Q16 ; Q18 ; O33 ; Q12 ; Q15 
 
KEY WORDS: Maize producers, ISFMT, heterogeneous impact, Allocative Efficiency, 
correlated random coefficient model, Republic of Benin 

 

1. INTRODUCTION  
Sustainability has been a widely discussed and topical concept in the scientific community in 
recent years, since the Rio de Janeiro Earth Summit in 1992. At the heart of these debates, the 
issue of the preservation of natural resources in the image of the soil, which as a base and 
support for food production, is seriously threatened. Indeed, land pressure as a consequence of 
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demographic pressure generates an abusive and irrational exploitation of natural resources 
(PSI/GDT). This results in soil degradation which has been widely addressed in soil socio-
economics (Adjolohoun et al., 2013; Avakoudjo et al., 2013). This results in a decline in soil 
fertility (Azontondé et al., 2009) marked by the decline in soil nutrients such as nitrogen, 
phosphorus and potassium which regress (Azocli et al., 2015; Kombienou et al., 2015a). 
Faced with this land degradation, several strategies or technologies have been developed 
through the joint action of farmers as well as through research. We have Sustainable Land 
Management Technologies (SLMT). These technologies are recognized around the world as an 
instrument for combating land degradation and, in turn, a mechanism for increasing land 
productivity (Martey et al., 2021) guaranteeing improved incomes (Martey et al., 2021) and a 
way to ensure food (Nkomoki et al., 2018; Sileshi et al., 2019) and nutrition (Kim et al., 2019; 
Manda et al., 2016; Zeng et al., 2017) of households. Although it should not be a panacea, they 
represent a way out for many producers faced with this problem. However, in view of this, these 
SLMT are poorly adopted (Mugwe et al., 2009; Ngwira et al., 2014; Vidogbéna et al., 2016). 
While several studies have highlighted the role of certain key factors in explaining this low 
adoption rate (Etsay et al., 2019; Nigussie et al., 2017), others have highlighted economic 
parameters such as profitability of these technologies as an important aspect of their adoption 
(Giger et al., 2018; Tanto and Laekemariam, 2019). However, the poor combination of 
production factors could also be an obstacle to their adoption. Thus, in a recent study on mineral 
fertilizer, Legesse et al., (2019) showed that technical inefficiency reduces profitability, which 
discourages adoption. Also, results from a study in Zambia showed that the use of ISFMT 
improves the technical efficiency of hybrid maize production among smallholder farmers 
(Tchale et al., 2005). These studies have the merit of highlighting the role of efficiency in the 
literature on the adoption of ISFMT. This is all the more so as the agricultural policies that have 
developed and popularized these technologies ultimately expect an increase in yields and 
therefore producers who maximize their production. However, Nisrane et al., (2011) estimated 
the average level of agricultural efficiency of smallholder farmers in Ethiopia at 0.46 between 
1994 and 2009, indicating that an average farmer produces less than half of the value of 
production produced by the most efficient farmer using the same technology and the same 
inputs. These results indicate that it is indeed possible to increase agricultural production at a 
certain level of input use. It is therefore imperative to provide empirical evidence on the 
effectiveness of the use of these technologies. 
This article adds to the existing literature on technology efficiency impact analysis in the 
following ways. First, we investigate (for the first time, to our knowledge) the economic 
efficiency of adopting multiple ISFMT. Most studies have focused on technical (Issahaku and 
Abdulai, 2020a; Ndlovu et al., 2014; Selejio et al., 2018) and environmental (Abdulai and 
Abdulai, 2016; Issahaku and Abdulai, 2020) efficiency. Only the study conducted in Zimbabwe 
by Musara et al., (2012) mentioned the economic efficiency of mineral fertilizer. Generally, 
recent work on efficiency has paid little attention to SLMT (Gebregziabher et al., 2012; 
Sherlund et al., 2002). Second, we contribute to the literature on the impact of the adoption of 
SLMT by the analytical approach employed in this study, in addition to the use of the control 
function to control for possible selection bias and endogeneity bias. These two biases are those 
commonly encountered in adoption studies. Issahaku and Abdulai, (2020) used the stochastic 
production frontier corrected for selectivity bias to account for the potential bias of both 
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observed and unobserved factors. However, this approach is limited because it does not take 
into account the truncated nature of our independent variable (efficiency score) which is more 
appropriately expressed as a nonlinear corner solution. Moreover, given the categorical nature 
of our dependent variable, the pioneering work of Deb and Trivedi (2006) provided the basis 
for estimating these general linearized models based on two treatments. In this extension 
Mújica‐Mota et al., (2020) proposed another model based on the work of Deb and Trivedi, 
(2006) but with three treatments in their equation. This work is a first since it is based on 5 
treatments. Third, we contribute to the limited empirical evidence on the effectiveness impacts 
of gender in ISFMT adoption. 
The rest of the paper is organized as follows. Section 2 presents the background. Section 3 
relates the theoretical and empirical framework. Section 4 presents the econometric framework 
for a control function model and an estimate of average treatment effects. Next comes a 
presentation of the empirical specifications of our estimation model. In Section 5, we discuss 
our estimation results and discussion. The last section concludes and draws the main findings 
and policy implications. 
 

2. BACKGROUND 
Benin's agricultural productive sector is characterized by the predominance of small farms and 
by its vulnerability to climate variability and extreme weather events. This sector suffers from 
the still low level of productivity and production of agricultural, pastoral and fisheries priority 
agricultural sectors (PSDSA, 2017). Incomes and productivity are low and the labor force is 
only partially valued, which makes agricultural products very uncompetitive. Most farmers 
make very little use of improved inputs and engage in mining practices that accentuate the 
degradation of natural resources. Crop production is affected by the characterized degradation 
of cultivated areas (Amonmide et al., 2019; Kombienou et al., 2015). This has as a corollary 
the decline in soil fertility which negatively influences the yields of food crops, mainly maize, 
which fell from 1422 kg.ha-1  in 2011 to 1281 kg.ha-1 in 2015, with an average of 1347 kg.ha-1 
over the same period, in particular because of bad weather conditions. In Benin, sustainable 
land management is advocated for smallholder farmers to combat declining soil fertility. SLMT 
typically incorporate practices of integrated soil fertility management (ISFM), conservation 
agriculture (CA), soil and water conservation (SWC), agroforestry (AF) and the integrated 
agriculture and livestock (IAE). There is a compendium on the subject which details the 
specificities of each family of SLM. If it is not easy to situate in time the endogenous 
technologies which have been practiced for several centuries by the populations in order to deal 
with the problems of declining soil fertility, it is more or less easy to situate in time the 
beginning of the use of new soil fertility management technologies (Adégbola et al., 2002). 
Studies of SLM technologies in the social sciences have focused exclusively on the socio-
economic determinants and rate of adoption of SLMT (Adebiyi et al., 2019; Adekambi et al., 
2021; Riemer, 2018), on the economic impact and profitability of SLM technologies (Adégbola 
and Adékambi, 2006; Adjiba et al., 2019; Tovihoudji et al., 2021) and on peasant perception, 
research and popularization of SLMT (Egah et al., 2014). These studies help to understand the 
factors that motivate or demotivate the adoption of these SLM technologies and their impact on 
the well-being of producers. However, adoption can only be explained by these factors. The 
allocation of these resources for obtaining maximum output (TE) or the combination of these 
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inputs in order to minimize costs with the aim of obtaining maximum output (Allocative 
Efficiency = EA) is not suggested in the Beninese literature on the SLM, however, is an 
important element that can enhance the low adoption rates obtained. However, as reported 
elsewhere, SLM technologies have the capacity to improve the efficiency of producers (Legesse 
et al., 2019b; Selejio et al., 2018; Tchale et al., 2005). In Benin, there is no empirical evidence 
that has produced confirmation of these results obtained elsewhere. This study focuses on 4 
selected technologies, the maize of which is the supply of complementary nutrients compared 
to a technology taken individually. Pigeon pea and Mucuna pruriens as a cover crop enhance 
biomass and enrich the soil with organic plant matter and fight soil erosion. The cow house is 
a strong means of supplying organic matter of animal origin to the soil. Finally, the management 
of harvest residues makes it possible to preserve agro-biodiversity at soil level in order to allow 
the microbiological activity essential for soil fertilization. Do the producers effectively combine 
the different inputs necessary for their implementation? 

 
3. THEORITHICAL FRAMEWORK 

3.1 Modeling the heterogeneous effect of ISFMT adoption on allocative inefficiency 
The theoretical framework underlying this study combines both the production theory and the 
latent variable model. The production theory provides the analytical framework for maize 
farms’ AI analysis and for making assumptions about the behavior of these farms when their 
environment changes (Debertin, 1986). Furthermore, evaluation of ISFM practices adoption 
effects on maize farms AI scores is grounded in this study on the latent variable (index function) 
models. They provide a framework for combining economic theory and “structural econometric 
analysis” in causal treatment effects evaluation (Heckman and Vytlacil, 2007, pp. 4782–4783). 
Accordingly, the AI outcome is modelled in terms of its determinants as specified by production 
theory. In addition, the framework models both the adoption of ISFMT and its dependence with 
the AI outcome as produced by the variables common to the two equations. 

To outline the latent variable models, we assume that each maize farm seeks to minimize 
their level of AI. We are interested in assessing the causal impact of the adoption of ISFMT on 
AI of maize farms. The set of ISFMT studied is T {t = 0,⋯ ,4}, with 𝑡𝑡 = 0 corresponding to 
the status of non-adoption. Following Carneiro et al., (2003) and Heckman et al. (2007, P.4792), 
we define for each maize farm, a score AI associated with and without adoption of ISFMT 𝑡𝑡 as 
𝑌𝑌𝑡𝑡 and 𝑌𝑌0, respectively. The 𝑌𝑌𝑡𝑡 and 𝑌𝑌0 are outcomes realized after adoption or no adoption of 
the ISFMT t  by the maize farm. The outcomes 𝑌𝑌𝑡𝑡  may be discrete, continuous or mixed 
discrete-continuous random variables (Heckman et al. 2007, P.4792). Furthermore, let 𝐴𝐴𝑡𝑡 = 1 
denotes the adoption of an ISFMT 𝑡𝑡 ; 𝐴𝐴0 = 0  𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ≠ 0  denotes the non-adoption of an 
ISFMT 𝑡𝑡. The measured AI score, 𝑌𝑌𝑡𝑡 associated with adoption of an ISFMT 𝑡𝑡 can be written as 
follows:  
𝑌𝑌𝑡𝑡 = 𝑌𝑌0 + (𝑌𝑌1 − 𝑌𝑌0)𝑡𝑡1 + (𝑌𝑌2 − 𝑌𝑌0)𝑡𝑡2 + (𝑌𝑌3 − 𝑌𝑌0)𝑡𝑡3 + (𝑌𝑌4 − 𝑌𝑌0)𝑡𝑡4    (1) 
where the subscripts indicate the adoption and non-adoption status of ISFMT 𝑡𝑡 (MP =4, CR =3, 
CM =2, PP =1 and non-adoption=0), and we omit the individual subscripts to simplify notation. 
The equation (1) is an example of Potential outcomes Model, where a maize farm is observed 
to have one of five of potential outcomes, depending on which ISFMT is adopted. This model 
can be used to estimate structural econometric models  (Aakvik et al., 2002). In this study we 
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consider a generalized Roy model which is a variant of the Potential outcomes Model (Heckman 
et al. 2007, P.4811). Following Carneiro et al., (2003) and Heckman and Vytlacil (2007; P: 
4811), we model the potential farms AI scores conditioning to variables 𝑋𝑋 as follows: 
𝑌𝑌0 = 𝑋𝑋0𝛽𝛽0 + 𝑈𝑈0          (2) 
𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡𝛽𝛽𝑡𝑡 + 𝑈𝑈𝑡𝑡          (3) 
where in each potential outcome of adoption and non-adoption of a ISFMT 𝑡𝑡; 𝑋𝑋(0,𝑡𝑡) is the 
observed characteristics of various farms and farmers, such as the management practices of 
farmer including managerial characteristics such as adoption status of ISFMT 𝑡𝑡 (Solis et al., 
2007), socio-economic and demographic characteristics and the characteristics of the maize 
production environment; 𝛽𝛽(0,𝑡𝑡) are coefficients to be estimated and 𝑈𝑈(0,𝑡𝑡) is the stochastic term 
which captures the unobserved characteristics. It fulfilled the condition 𝐸𝐸�𝑈𝑈(0,𝑡𝑡)|𝑋𝑋𝑖𝑖� = 0. The 
application of the “structural” approach in this study derives 𝑋𝑋(0,𝑡𝑡)𝛽𝛽(0,𝑡𝑡) from the production 
theory. The expected score of AI resulting from adoption and non-adoption of a ISFMT 𝑡𝑡 are 
not observed when the farmer becomes aware of the ISFMT. However, to link the “potential 
outcomes framework to the literature on structural econometrics, we assume that they can be 
inferred by a latent variable 𝐴𝐴𝑡𝑡∗ . Furthermore, assume that the maize farms are profit-
maximizers. Accordingly, 𝐴𝐴𝑡𝑡∗  represents the expected net differential profit �𝐸𝐸(𝜋𝜋𝑡𝑡 − 𝜋𝜋0)� , 
deriving from the adoption or non-adoption decisions of an ISFMT 𝑡𝑡 (Adegbola, 2010; Dimara 
and Skuras, 2003). The adoption decisions process is expressed as follows: 
𝐴𝐴𝑡𝑡∗ = μA(t, 0, X, Z) − 𝑉𝑉𝑡𝑡,          (4) 

with 

𝐴𝐴𝑡𝑡 = �𝑡𝑡 𝑖𝑖𝑖𝑖 𝐴𝐴𝑡𝑡∗ > 0  
0 𝑖𝑖𝑖𝑖 𝐴𝐴𝑡𝑡∗ ≤ 0  

Since there are five mutually exclusive ISFMT including the non-adoption, ∑ 𝐴𝐴𝑡𝑡4
𝑡𝑡=0 = 1 

(Carneiro et al., 2003). The observed (by the econometrician) variables 𝑋𝑋 and  𝑍𝑍 affect the 
adoption of the ISFMT. The covariates 𝑋𝑋 are common with the outcome equations (2) and (3), 
while one or more variables  𝑍𝑍 are excluded from the latter; μA(t, 0, X, Z) is the deterministic 
component and 𝑉𝑉𝑡𝑡 is an i.i.d. error term indicating unobserved heterogeneity in the propensity 
for treatment. �𝑈𝑈(0,𝑡𝑡),𝑉𝑉𝑡𝑡� is unobserved. The random variable 𝑉𝑉𝑡𝑡 may be a function of 𝑈𝑈(0,𝑡𝑡). 𝐴𝐴𝑡𝑡∗ 
is interpretable as the net gain from adoption decision (because individuals adopt an ISFM 
technology if 𝐴𝐴𝑡𝑡∗ > 0). The latent variable model presented in Eq. (4) underlies the large 
majority of discrete choice models uncounted in the econometric literature (Maddala, 1983; 
McFadden, 1981). Following Amemiya, (1985, p. 286), Cameron and Trivedi, (2005, p. 496), 
the probability that a maize farm adopts an ISFMT 𝑡𝑡 is a function of the independent variables 
and parameters and written as follows: 
𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡∗ = 𝑡𝑡) = 𝐹𝐹𝑡𝑡(𝑋𝑋𝛿𝛿𝑡𝑡),     𝑡𝑡 = 0,⋯ , 4.       (5) 
where 𝐹𝐹𝑡𝑡(∙) is the cumulative distribution function of the error term 𝑉𝑉𝑡𝑡  in Eq. (4). Different 
functional specifications for 𝐹𝐹𝑡𝑡  correspond to specific models, notably multinomial logit; 
nested logit, multinomial probit, ordered, sequential, and multivariate models (Cameron and 
Trivedi, 2005, p. 496). 
The individual level causal effect of adoption on maize farm scores AI, is the differential AI 
scores between the adoption and non-adoption decisions of the ISFMT 𝑡𝑡 and is given by ∆𝑡𝑡=
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𝑌𝑌t − 𝑌𝑌0   𝒕𝒕 ≠ 𝟎𝟎 (Carneiro et al., 2003; Heckman and Vytlacil, 2007, p. 4793). However, at a 
given time, we observe any farmer in one of the five possible adoption status. We do not know 
the AI score of the farm in other status and hence cannot directly estimate the individual level 
treatment effects (Heckman, 2007; p. 4814). Therefore, the population level effects parameters 
are mostly evaluated. Both Average Treatment Effect (𝐴𝐴𝐴𝐴𝐴𝐴)  and conditional Average 
Treatment Effect (𝐴𝐴𝐴𝐴𝐴𝐴| x) have been the focus of many economic impact evaluation studies. 
The former estimates for a farmer selected in the population, its mean gain for moving from 
non-adoption status of ISFMT 𝑡𝑡 = 0, to adoption of ISFMT 𝑡𝑡 status. The latter is evaluated for 
subpopulation with given observed characteristics 𝑋𝑋𝑖𝑖  =  𝑥𝑥. Both parameters are respectively 
expressed as follows: 
𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡, 0 ) =  𝐸𝐸[𝐴𝐴𝐴𝐴,𝐴𝐴𝑡𝑡 =  1  ] − 𝐸𝐸[𝐴𝐴𝐴𝐴,𝐴𝐴0  = 0]      (6) 
𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡, 0 | x) = 𝐸𝐸 [𝐴𝐴𝐴𝐴 |𝑥𝑥,𝐴𝐴𝑡𝑡 =  1] − 𝐸𝐸 [𝐴𝐴𝐴𝐴 | 𝑥𝑥,𝐴𝐴0  = 0]      (7) 
The Average Treatment Effect on Treated (𝐴𝐴𝐴𝐴𝐴𝐴1 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴) and conditional Average Treatment 
Effect on treated (𝐴𝐴𝐴𝐴𝐴𝐴1| x)  are also widely estimated. The latter estimates how those 
individuals with observed characteristics 𝑋𝑋𝑖𝑖  =  𝑥𝑥 that are currently adopted the ISFMT benefit 
from them on average (Cornelissen et al., 2016, p. 9). 

To define the causal effects in terms of economically interpretable parameters, 
following Heckman (2007, p. 4784) we relate the treatment effect model in Eq. (1) to structural 
econometric model as follows: 
𝑌𝑌𝑡𝑡  = δ +  𝑋𝑋𝑋𝑋 + 𝐴𝐴𝑡𝑡𝑋𝑋�𝜆𝜆 + 𝐴𝐴𝑡𝑡𝜂̅𝜂𝑡𝑡 + 𝑒𝑒𝑡𝑡 ,         (8) 
where 𝑌𝑌𝑡𝑡 is the predicted farm-specific AI scores, δ is the constant of the model, 𝑋𝑋 is the vector 
of explanatory variables that have potential influence on 𝑌𝑌𝑡𝑡; 𝛾𝛾 = 𝛽𝛽0, 𝜆𝜆 = 𝛽𝛽𝑡𝑡 − 𝛽𝛽0, 𝜂𝜂𝑡𝑡 = 𝑈𝑈𝑡𝑡 −
𝑈𝑈0, and 𝜀𝜀𝑡𝑡 = 𝑈𝑈0;  𝜂̅𝜂𝑡𝑡 = 𝐸𝐸[𝜂𝜂𝑡𝑡] is the mean  of 𝜂𝜂𝑡𝑡; 𝜂𝜂𝑡𝑡� = 𝜂𝜂𝑡𝑡 − 𝐸𝐸[𝜂𝜂𝑡𝑡] is the deviation of 𝜂𝜂𝑡𝑡 from its 
mean; 𝑒𝑒𝑡𝑡 = 𝐴𝐴𝑡𝑡𝜂𝜂𝑡𝑡� + 𝜀𝜀𝑡𝑡 is a composite error term comprising the interaction term of deviation 
from ATE, 𝜂𝜂𝑡𝑡�  with 𝐴𝐴𝑡𝑡 and the error term 𝜀𝜀𝑡𝑡; 𝑋𝑋𝑡𝑡� =  𝑋𝑋 − 𝑋𝑋� is demeaned explanatory variables; 
𝑌𝑌𝑡𝑡 is a mixed discrete-continuous random variable (Carneiro et al., 2003). The first coefficient 
on the adoption binary dummy 𝐴𝐴𝑡𝑡 , is the Average Treatment Effect conditional on 𝑋𝑋 = 𝑥𝑥, 
𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋) = 𝑋𝑋�𝜆𝜆 . It estimates the average gain of an ISFMT adoption for a farmer with 
characteristics 𝑋𝑋, randomly selected. By demeaning the covariates 𝑋𝑋 before interacting them 
with 𝐴𝐴𝑡𝑡  we ensure that 𝜂̅𝜂𝑡𝑡  is the average treatment effect at means of 𝑋𝑋 . With this linear 
specification it is also the unconditional ATE. The second coefficient on the adoption binary 
dummy 𝐴𝐴𝑡𝑡 , 𝜂̅𝜂𝑡𝑡  the mean  of 𝜂𝜂𝑡𝑡 = 𝑈𝑈𝑡𝑡𝑡𝑡 − 𝑈𝑈0𝑖𝑖 , is referred to as the idiosyncratic gain for a 
particular ISFMT adoption (Heckman, 1997). It constitutes the unobserved heterogeneity which 
implies that the effect of ISFMT adoption may vary across maize farmers even after controlling 
for observable heterogeneity using covariates 𝑋𝑋 . The sum of the two coefficients on the 
adoption binary dummy 𝐴𝐴𝑡𝑡 gives the individual adoption effect 𝛥𝛥𝑖𝑖 on individual farm AI scores 
associated with adoption of ISFMT. 

To outline the heterogeneous response model, in more formal terms, let’s assume that 
both unobserved components in the error term 𝑒𝑒𝑡𝑡 are linearly related to the error term 𝑉𝑉𝑡𝑡 in the 
ISFMT adoption equation, Eq. (4). From this assumption two important sub-cases of the 
heterogeneous response model are derived. First, we hypothesize that 𝐴𝐴𝑡𝑡  is statistically 
independent of  𝜂𝜂𝑡𝑡�  that’s to say (𝑈𝑈t − 𝑈𝑈0), given 𝑋𝑋 and hence are uncorrelated as would occur 
when treatment is randomized across farmers. But 𝐴𝐴𝑡𝑡  is related to 𝜀𝜀𝑡𝑡  only. This means that 
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farmers who are more likely due to unobserved characteristics adopt ISFMT differ in their pre-
treatment characteristics from farms who are less likely to adopt. These characteristics may 
include the farmer’s motivation, level of knowledge and innate managerial and technical 
abilities in understanding and using the ISFMT (Abdulai and Huffman, 2014). We conclude 
that, after controlling for the observables X, adoption of ISFMT by farmers is not based on the 
idiosyncratic gains associated with them (Cornelissen; et al. 2016). Second, we suppose that 
the error term 𝑒𝑒𝑡𝑡 in Eq. (8) depends linearly on the unobservable 𝑉𝑉𝑡𝑡 in Eq. (4). The adoption 
individual level causal effect ∆𝑡𝑡 varies even after accounting for 𝑋𝑋. This case arises because as 
discussed earlier, farmers adopt the ISFMT on the basis of partial or full knowledge of their 
idiosyncratic gains resulting from adoption. In consequence 𝜂𝜂𝑡𝑡�  and 𝐴𝐴𝑡𝑡 are positively correlated, 
even conditional on 𝑋𝑋, resulting in 𝐸𝐸[𝐴𝐴𝑡𝑡𝜂𝜂𝑡𝑡� |𝐴𝐴𝑡𝑡 = 1] > 𝐸𝐸[𝐴𝐴𝑡𝑡𝜂𝜂𝑡𝑡� |𝐴𝐴𝑡𝑡 = 0]. This implies that, in 
addition to respond differently to adoption of ISFMT, farmers with the same X are influenced 
by their knowledge of their idiosyncratic gains. This phenomenon is distinct from that of 
selection bias. Eq. (8) is referred as the “CRC” or “heterogeneous treatment effect” or 
“essential heterogeneity” model. This is the model specified in this paper to analyze the 
heterogeneous effect of adoption of ISFMT on maize farm AI. Several econometric models 
were developed to handle the issue of interaction of treatment effect with unobserved 
heterogeneity. 
 

4. STUDY AREA  
The study was carried out in the ProSOL project intervention area located in the north-east of 
Republic of Benin. The area comprises seven counties which form part of the Agricultural 
Development Hub (ADH) 2. The study was conducted in Kandi, Gogounou and Bembérèké 
town. The ADH two is subdivided in three homogenous Agricultural Development Sub-Hubs 
(ADSH) (Adégbola et al. 2018). It lies between latitudes N 10°00’ et N 11°20’; and longitudes 
E 1°20’ et E 4°00’. Rainfall distribution in the ADH 2 is unimodal pattern, allowing for one 
cropping season lasting from July to September and a dry season from October to April. This 
results in a growing period ranging from 180 to 200 days. The average annual rainfall is 1 005 
mm. Temperatures range from a minimum of 22.4 °C, to a maximum of 34.7 °C, with an annual 
average of 28.45 °C. The predominant soil types are ferralitic and ferruginous soils. Raw and 
little evolved mineral soils are also encountered in the area. The soils have good physical 
properties, poor chemical characteristics and therefore of low fertility (Amonmide et al., 2019). 
About 80% of these soils have a level of fertility below the average (Adégbola et al, 2018). Due 
to continuous cropping without adequate replenishment, the soils in this area undergo a very 
strong chemical degradation. This includes deficiencies in organic matter, phosphorus, 
nitrogen, cation exchange capacity and exchangeable bases. The ADH 2 location has a high 
(low) population density of an average of 36 about inhabitants per km2. Population pressure 
has resulted in increased land-use intensity and has shorten the duration of natural fallows. The 
main economic activity undertaken in ADH 2 is rainfed subsistence agriculture. The dominant 
land-use systems are cash crops, annual staple food and livestock. The main cash crop is cotton 
(Gossypium sp) followed by the cashew nuts (Anacardium occidentale). ADH 2 is ranked the 
first cotton producer area in Benin in 2016 with 73% of national cotton production. The most 
important staple food crops are: sorghum (Sorghum bicolor) with 52% of national production 
in 2016; yam (Discoprea esculenta) with 26% of national production in 2016; rice (Oryza 
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sativa) with 24% of national production in 2016 and maize (Zea mays): 23% of national 
production in 2016. They are cultivated from season to season mostly intercropped with cowpea 
(Phaseolus vulgaris) and groundnut (Arachis hypogaea). Livestock production is a major 
enterprise especially dairy cattle. Other livestock in the area include sheep and goats. There is 
a high proportion of use of animal traction by farmers. The ADH 2 recorded the second highest 
value of the presence index of agricultural services, estimated at 0.50 % Farmers in the hub 
have an average access to agricultural services. 

 
5.  A latent factor model for ISFMT adoption effect 

Drawing from the theoretical framework described in the previous section, maize farms adopt 
ISFMT 𝑡𝑡 on the basis of partial or full knowledge of derived idiosyncratic net gains. This article 
therefore chose the CRC model to analyze the heterogeneous effect of adoption of ISFMT on 
scores AI of maize (Aakvik et al., 2005). Furthermore, we use a model of four latent factors (𝑙𝑙) 
to address the estimates bias issue often uncounted in empirical analysis due to moderate/severe 
contamination or association of selected IV with outcomes independent of adoption of ISFMT 
(Aakvik et al., 2002; Banerjee and Basu, 2021; Carneiro et al., 2003). The latent factor models 
have the potential to identify treatment effects even in the absence of instrumental variables. 
However, Banerjee and Basu, (2021) argue that a latent factor model combined with the IV 
approach is more robust than the latter. It reduces substantially the bias in estimating the causal 
effects of endogenous treatments. We apply in this paper a latent factor (𝑙𝑙) model combined 
with Instrumental variables (𝐼𝐼𝐼𝐼) (Banerjee and Basu, 2021; Mújica-Mota et al., 2020). To build 
the latent factor model, and following  Aakvik et al., (2002), Carneiro et al., (2003) and Banerjee 
and Basu, (2021), we assume the factor structure of the errors 𝑉𝑉𝑡𝑡 and 𝑒𝑒𝑡𝑡 in Eq. (4) and Eq. (8), 
respectively to be written as follows: 
𝑉𝑉𝑡𝑡 = 𝛿𝛿𝑡𝑡𝑙𝑙𝑡𝑡 + 𝜖𝜖𝑡𝑡           (8) 
𝑒𝑒𝑡𝑡 = 𝜆𝜆𝑡𝑡𝑙𝑙𝑡𝑡 + 𝑢𝑢𝑡𝑡           (9) 
where 𝑙𝑙𝑡𝑡 are the latent factors (scalar), 𝜖𝜖𝑡𝑡 and 𝑢𝑢𝑡𝑡 are stochastic error terms; 𝑙𝑙𝑡𝑡 𝜖𝜖𝑡𝑡 and 𝑢𝑢𝑡𝑡 have 
mean zero, for every 𝑡𝑡 ≠ 𝑡𝑡′ , they are mutually independent, and are independent of the 
exogenous variables in the both selection and outcome equations. The parameters to be 
estimated 𝛿𝛿𝑡𝑡  and 𝜆𝜆𝑡𝑡  are the factors loading for the selection and outcome equations, 
respectively. 

A two-stage approach was used to estimate the parameters. In the first stage, the 
stochastic cost frontier was specified to estimate the AE scores. The model returns AI scores of 
farms, bounded between 0 and 1. Then in the second stage, both the predicted AI scores function 
and the adoption of ISFMT model are jointly estimated to analyze the effects of adoption. 
Following Debb and Trivedi (2006) and Mújica-Mota et al., (2020), the system of Eqs. (5) and 
(8) was specified as a joint distribution of endogenous treatment and outcome using a latent 
factor structure. In this framework, a CRC model for a multinomial choice of ISFMT and a 
mixed discrete-continuous outcome is specified (Carneiro et al., 2003). Let 𝐴𝐴𝑡𝑡 =
�𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐴𝐴4� be four binary dummy variables that equal 1 for adopters of ISFMT 𝑡𝑡 and 0 
otherwise. In addition, we assume that the distribution function of 𝑉𝑉𝑡𝑡, 𝐹𝐹𝑡𝑡 in Eq. (5) is a Weibul 
(or Type I extreme value) probability distribution. Thus, following Deb and Trivedi, (2006b) 
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the probability of adoption can be written as a mixed multinomial logit (MMNL) structure as 
follows: 
𝑃𝑃𝑃𝑃(𝐴𝐴𝑡𝑡|x, z, l𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒( 𝑥𝑥𝛽𝛽𝑡𝑡+𝑧𝑧𝛼𝛼𝑡𝑡+𝛿𝛿𝑡𝑡𝑙𝑙𝑡𝑡)

1+∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝛽𝛽𝑘𝑘+ 𝑧𝑧𝛼𝛼𝑘𝑘+𝑙𝑙𝑘𝑘)4
𝑘𝑘=0

. 𝑗𝑗 = 0,⋯ , 4.     (10) 

where 𝑥𝑥 and 𝑧𝑧 are defined as in the Eq. (4), 𝛽𝛽, 𝛼𝛼 and 𝛿𝛿 are parameters to be estimated; 𝑙𝑙𝑡𝑡 are 
latent factors representing the unobserved covariates (unobserved heterogeneity) such as 
farmers motivation, level of knowledge and innate managerial and technical abilities in 
understanding and using the ISFMT (Abdulai and Huffman, 2014). They are included in both 
treatment and outcome equations to allow for unobserved influencing adoption of ISFMT to 
affect their impact on AI scores (Banerjee and Basu, 2021; Deb and Trivedi, 2006b; Nkegbe et 
al., 2018). Thus, we can distinguish the selection on unobservable from that on observables. In 
addition, they allow for the control of unobserved covariates in the same manner as is done with 
observed confounders and therefore solve for the endogeneity issue (Banerjee and Basu, 2021). 
The factor loadings are interpreted in much the same way as coefficients on observed covariates 
can (Deb and Trivedi, 2006b). In addition to the latent factors, we include identifying exclusion 
restriction 𝑧𝑧. To fulfil the rank condition, four were chosen (Wooldridge, 2002). The four 
following available instruments access to information (Asfaw et al., 2012; Khonje et al., 2015; 
Tufa et al., 2019); contact with project (Hörner and Wollni, 2022; Pender and Gebremedhin, 
2007); contact with extension agents (Owusu and Abdulai, 2019; Sileshi et al., 2019) and 
distance to market (Kalinda et al., 2017; Wale, 2022) were selected based on the literature.  

In the second stage, the CRC model is specified. More specifically, this consisted in 
interacting the latent factors 𝑙𝑙𝑡𝑡 , with the adoption 𝐴𝐴𝑡𝑡  dummies (Mújica-Mota et al., 2020). 
Consequently, the model of AI scores is specified following Eq. (7). Furthermore, since the AI 
scores are bounded between 0 and 1, the two-limit Tobit (TLT) regression model is specified 
as in Eq. (7) (Mamam et al., 2018; Musa et al., 2015; Okello et al., 2019; Sapkota and Joshi, 
2021)  : 
ln𝐴𝐴𝐴𝐴∗ =  𝑋𝑋𝛽𝛽 + ∑ 𝐴𝐴𝑡𝑡𝑋𝑋(𝛽𝛽𝑡𝑡 − 𝛽𝛽0)4

𝑡𝑡=1 + 𝑨𝑨𝟏𝟏 ∑ 𝜆𝜆𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡𝟒𝟒
𝑡𝑡=1,𝑘𝑘=1 + 𝑨𝑨𝟐𝟐 ∑ 𝜆𝜆𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡 +𝟒𝟒

𝑡𝑡=1,𝑘𝑘=1

𝑨𝑨𝟑𝟑 ∑ 𝜆𝜆𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡𝟒𝟒
𝑡𝑡=1,𝑘𝑘=1 + 𝑨𝑨𝟒𝟒 ∑ 𝜆𝜆𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡𝟒𝟒

𝑡𝑡=1,𝑘𝑘=1 + ∑ 𝜆𝜆𝑡𝑡4
𝑡𝑡=1 𝑙𝑙𝑡𝑡 + 𝑢𝑢𝑡𝑡     (11) 

where ln𝐴𝐴𝐴𝐴∗ is a latent variable representing the natural logarithm of AI scores of maize farms; 
𝑋𝑋 is a set of exogenous covariates common to both two equations with associated parameter 
vector 𝛽𝛽; 𝐴𝐴𝑡𝑡 are four binary dummy variables as defined earlier; four latent factors 𝑙𝑙𝑡𝑡, each for 
the binary dummy variables; 24 interaction terms of the latent factors 𝑙𝑙𝑡𝑡  with the adoption 
dummies 𝐴𝐴𝑡𝑡; The latent factors are included in Eq. 11 to control for the endogeneity of each 
binary dummy variables 𝐴𝐴𝑡𝑡 ; (𝛽𝛽𝑡𝑡 − 𝛽𝛽0)  are coefficients to be estimated. They denote the 
adoption effects of each of the four ISFMT 𝑡𝑡 relative to their non-adoption; 𝜆𝜆𝑡𝑡  and 𝜆𝜆𝑡𝑡𝑡𝑡  are 
factor loadings to be estimated, which are assumed to be different from zero if they control for 
endogeneity of 𝐴𝐴𝑡𝑡 (Mújica-Mota et al., 2020), 𝑢𝑢𝑡𝑡 is the same error term as in Eq.12. Denoting 
ln𝐴𝐴𝐴𝐴 as the observed variables, the TLT model is specified as follows: 

ln𝐴𝐴𝐴𝐴 = �
1   𝑖𝑖𝑖𝑖 ln𝐴𝐴𝐴𝐴∗ ≥ 1

ln𝐴𝐴𝐴𝐴∗   𝑖𝑖𝑖𝑖 0 < ln𝐴𝐴𝐴𝐴∗ < 1
0   𝑖𝑖𝑖𝑖 ln𝐴𝐴𝐴𝐴∗ ≤ 0

       (12) 

For identification of the parameters in model estimation, a set of restrictions are imposed. First, 
the number of outcomes must be ≥ 4  (Banerjee and Basu, 2021). Second, we impose 𝜆𝜆𝑡𝑡𝑡𝑡′ = 0 
∀ 𝑡𝑡 ≠ 𝑡𝑡′, i.e. each adoption decision of ISFMT is affected by a unique latent factor. Third, one 
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requires that one of the factor loadings 𝜆𝜆𝑡𝑡𝑡𝑡 in Equations (10) or (11) be normalized to a constant 
value. We set the factor loadings in Equation (10), 𝜆𝜆𝑡𝑡𝑡𝑡 = 1  ∀ 𝑡𝑡. This implies that the scale of 
effects of unobserved factor is normalized and equal to 1 in the adoption equation (Aakvik et 
al., 2002; Banerjee and Basu, 2021; Deb and Trivedi, 2006b, 2006a). 
The variance of the latent variable was set at one in both equations.  
We use the GSEM software package in STATA 14 to jointly estimate the Eq. (11) and Eq. (12) 
by maximising the (simulated) likelihood of the sample of data with multiple values of 𝒍𝒍𝒕𝒕 
sampled from k using Halton sequences (Bhat 2001, Debb and Trivedi 2006).  

In our study, 200 simulation draws were generated. Deb and Trivedi, (2006) suggest 
using a greater number of simulations draws than the square root of the number of observations. 
As the sample was composed of 4236 observations, the number of simulations draws obtained 
was more than sufficient. 
In order to validly estimate this model, the instruments must satisfy the condition 

𝐸𝐸(𝜺𝜺|𝑆𝑆𝑆𝑆𝑆𝑆, 𝐿𝐿𝐿𝐿𝐿𝐿, 𝑧𝑧𝑆𝑆𝑆𝑆 , 𝑧𝑧𝐿𝐿𝐿𝐿, 𝑧𝑧𝐼𝐼𝐼𝐼  ) = 𝐸𝐸(𝜺𝜺|𝑧𝑧𝑆𝑆𝑆𝑆𝑆𝑆 , 𝑧𝑧𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑧𝑧𝐼𝐼𝐼𝐼𝐼𝐼  ) = 𝟎𝟎 
A Wald test for H0: λ11=0, λ12=0, λ21 = 0, λ22 = 0 is a test of the null of exogeneity of 
treatment effects (i.e. no selection by returns). 

From the model consistent parameters estimates we can formulate several interesting 
ISFMT adoption effects parameters by comparing ISFMT 𝑡𝑡  to ISFMT 𝑡𝑡′ . First, following 
Cornelissen et al., (2016, p. 5), Deb and Trivedi, (2006) and Heckman (2007; p. 4802), we 
consistently estimate the unconditional 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡, 𝑡𝑡′ ) and conditional �𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥)� to x, average 
treatment effects, respectively as follows: 
𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡, 𝑡𝑡′ ) =  𝐸𝐸[𝐴𝐴𝐴𝐴,𝐴𝐴𝑡𝑡 =  1  ] − 𝐸𝐸[𝐴𝐴𝐴𝐴,𝐴𝐴𝑡𝑡′  = 0]      (14) 
This corresponds to the four coefficients of the binary dummy variables 𝐴𝐴𝑡𝑡 in Eq. (11). 
𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡, 𝑡𝑡′ | x) = 𝐸𝐸 [𝐴𝐴𝐴𝐴 |𝑥𝑥,𝐴𝐴𝑡𝑡 =  1] − 𝐸𝐸 [𝐴𝐴𝐴𝐴 | 𝑥𝑥,𝐴𝐴𝑡𝑡′  = 0]      (15) 
The hypothetical individuals we consider have the average characteristics of the entire sample. 
Both parameters are the effects of assigning a maize farm to an ISFMT adoption status – taking 
someone from the overall population (14) or a subpopulation conditional on 𝑥𝑥  (15) – and 
determining the mean gain of the move from base state 𝐴𝐴𝑡𝑡′  = 0. To find ATE we average 
𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡, 𝑡𝑡′ | x)  for the full sample. We apply the generalized regression adjustment (GRA) 
model to consistently estimate the average treatment effect (ATE) (Drukker, 2016). A 
consistent GRA estimator for the ATE uses Maximum Simulated log likelihood estimators for 
parameters based on the GSEM model, which accounts for the endogenous sample-selection 
problem. The command margins is used to consistently estimate the means of each predicted 
potential outcomes. Then, we apply nlcom to consistently calculate the differences in the 
predicted potential outcomes means. margins accounts for the two-step estimation problem 
using the standard method discussed by Wooldridge (2010, chaps. 12 and 13) and Cameron and 
Trivedi (2005, chap. 6.6). 

Then, we estimate the total marginal effects of the adoption of ISFMT 𝑡𝑡, following 
Bartus, (2005) using two-steps procedure. The first step was to estimate separately the marginal 
effects of the binary dummy variable 𝐴𝐴𝑡𝑡 and each interaction term with the variable 𝐴𝐴𝑡𝑡, using 
discrete changes in the expected outcomes. The total marginal effect is computed in the second 
step by doing the sum of the marginal effects time their respective derivative with respect to 
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the binary dummy variable 𝐴𝐴𝑡𝑡. Marginal effects are evaluated at sample means of covariates 
and by averaging over the simulated distribution of the latent variables. 

6. DATA SOURCE, SAMPLING PROCEDURE AND DESCRIPTIVE 
STATISTICS 

The data were obtained from surveys carried out between April and May 2021 in 19 villages 
located in ADH 2 in Benin where land degradation is severe. Selected villages were either 
involved in SLM adoption. Yamane, (1967) sample size determination formula was used to 
calculate the minimum sample size of the participating producer households in the ProSOL 
project. A random sample of 431 maize producers was surveyed which contained 287 
participant and 144 non-participant smallholder producers in the ProSOL project intervention 
area and 1550 plots. Detailed plot-level data were collected on cost of input used in ISFMT, 
labor input and crop output for the 2020 cropping season. The estimation model consists of two 
dependent variables: adoption and AI. The adoption variable indicated whether the farmer 
adopted or rejected at least one ISFM technology. 
Descriptive statistics demonstrate that AI score is 18% for non-adopter while is 17% for PP, 
20% for CM, 19% for CR 16% for MP adopter. There are no significant differences between 
non-adopters and adopters of the 4 technologies for AI scores, level of formal education, 
number of agricultural workers, distance to market and farm income. The sample of PP and CM 
adopters is not homogeneous with non-adopters in the cotton zone with more PP producers in 
the cotton zone (85% > 73%) and fewer CM producers than non-adopters (53% < 73%). PP 
adopters use less fertilizer than non-adopters (20% < 54%), have less access to information 
(0.63% < 0.77%) and extension agents (15% < 36%) but have more access to formal credit 
(43% > 24%) and access to projects (88% > 57%), compared to non-adopters. MP adopters 
practice more intercropping (12% > 4%), have more access to projects (88% > 57%) but less 
access to extension agents (13% < 36%) compared to non-adopters. The proportion of men who 
adopted CR is below the non-adopting men (55% < 70%). Also, CR adopters have the least 
space allocated to production (7.74 ha < 11.03 ha), the least access to projects (43% < 57%), 
the least experienced in SLM (4. 6 years < 5.7 years) compared to the non-adopter. CM adopters 
belong more to a group (56% > 42%), have more access to projects (85% > 57%) but are 
younger (40 years < 44 years) and less access to extension agents (19 % < 36%) compared to 
non-adopters. Only CR (99% > 88%) and MP (100% > 88%) adopters perceive their land as 
fertile compared to non-adopters. 
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Table 2: Descriptive statistics of AI model 

Inefficiency model Non adoption PP CM CR MP  
Mean (sd) Mean (sd) Test Mean (sd) Test Mean (sd) Test Mean (sd) Test 

AI score 0.176 (0.089) 0.169(0.080) 0.010 0.197(0.082) -0.020 0.189(0.111) -0.012 0.159 (0.058 0.020 
Gender of farmer (1=male, 
0=female) 

0.704(0.457) 0.732(0.449) -0.059 0.735(0.447) -0.062 0.547(0.501) 0.155*** 0.562(0.512) 0.119 

Age of farmer (Years) 43.715(10.248) 44.707(9.397) -1.12 40.323(7.301) 3.653** 44.205(11.325) -0.621 45.437(10.770) -1.815 
Farmer experience in ISFMP use 
(year) 

5.726(6.024) 6.488(4.302) -1.064 4.852(3.173) 0.728 4.589(4.630) 1.126* 5.375(6.820) 0.155 

Education level of farmer 
(1=Yes, 0=No) 

0.176(0.381) 0.220(0.419) -0.042 0.235(0.430) -0.058 0.164(0.373) 0.019 0.125(0.341) 0.058 

Use of formal credit for ISFMP 
(1=Yes, 0=No) 

0.236(0.426) 0.425(0.501) -0.153** 0.354(0.486) -0.074 0.342(0.477) -0.068 0.312(0.478) -0.027 

Farmland size (hectare) 11.025(12.485) 12.844(11.749) -2.369 13.25(13.047) -2.753 7.743(9.611) 3.606** 8.968(8.452) 1.807 
Northern cotton area (1=cotton 
zone, 0=non-cotton zone) 

0.734(0.442) 0.854(0.358) -0.120* 0.529(0.506) 0.233*** 0.794(0.406) -0.059 0.875(0.341) -0.135 

Member of an agricultural 
association (1=Yes, 0=No) 

0.423(0.494) 0.439(0.502) -0.0005 0.558(0.503) -0.130* 0.438(0.499) 0.0001 0.437(0.512) 0.001 

Family labor available (adult 
equivalent) 

6.456(3.850) 7.049(5.657) -0.630 6.882(4.005) -0.439 6.136(3.367) 0.410 6.062(3.315) 0.431 

Crop association (intercropping) 
(1=Yes, 0=No) 

0.041(0.199) 0.049(0.218) 0.002 0.058(0.238) -0.008 0.068(0.254) -0.021 0.125(0.341) -0.076* 

Use of inorganic fertilizer 
(1=Yes, 0=No) 

0.539(0.499) 0.195(0.401) 0.345*** 0.529(0.506) -0.023 0.561(0.499) -0.064 0.5(0.516) 0.008 

Instrumental variables          
Access to information (1=Yes, 
0=No) 

0.767(0.423) 0.634(0.488) 0.145** 0.794(0.410) -.030 0.794(0.406) -0.034 0.875(0.341) -0.113 

Contact with project (1=Yes, 
0=No) 

0.573(0.495) 0.878(0.331) -
0.283*** 

0.852(0.359) -
0.250*** 

0.493(0.503) 0.154** 0.875(0.341) -
0.262** 

Contact with extension agent 
(1=Yes, 0=No) 

0.363(0.481) 0.146(0.358) 0.189*** 0.176(0.386) 0.153** 0.356(0.482) -0.046 0.125(0.341) 0.200* 

Distance from market 15.776(10.088) 17.078(10.502) -1.045 16.767(10.317) -0.689 16.143(10.373) -0.013 18.25(9.497) -2.199 
*sd : standard deviation 
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Table 3: Descriptive statistics of the variables in the five equations (non-adoption and four SLM adoption). 

Adoption GDT Non adoption PP CM CR MP pruriens 
Mean(sd) Mean(sd) Test Mean(sd) Test Mean(sd) Test Mean(sd) Test 

AI score 0.704(0.457) 0.732(0.449) -0.059 0.735(0.447) -0.062 0.547(0.501) 0.155*** 0.562(0.512) 0.119 
Gender of farmer (1=male, 
0=female) 

43.715(10.248) 44.707(9.397) -1.12 40.323(7.301) 3.653** 44.205(11.325) -0.621 45.437(10.770) -1.815 

Age of farmer (Years) 5.726(6.024) 6.488(4.302) -1.064 4.852(3.173) 0.728 4.589(4.630) 1.126* 5.375(6.820) 0.155 
Farmer experience in ISFMP 
use (year) 

0.176(0.381) 0.220(0.419) -0.042 0.235(0.430) -0.058 0.164(0.373) 0.019 0.125(0.341) 0.058 

Education level of farmer 
(1=Yes, 0=No) 

0.236(0.426) 0.425(0.501) -0.153** 0.354(0.486) -0.074 0.342(0.477) -0.068 0.312(0.478) -0.027 

Use of formal credit for 
ISFMP (1=Yes, 0=No) 

11.025 
(12.485) 

12.844(11.749) -2.369 13.25(13.047) -2.753 7.743(9.611) 3.606** 8.968(8.452) 1.807 

Farmland size (hectare) 0.734(0.442) 0.854(0.358) -0.120* 0.529(0.506) 0.233*** 0.794(0.406) -0.059 0.875(0.341) -0.135 
Northern cotton area (1=cotton 
zone, 0=non-cotton zone) 

0.423(0.494) 0.439(0.502) -0.0005 0.558(0.503) -0.130* 0.438(0.499) 0.0001 0.437(0.512) 0.001 

Member of an agricultural 
association (1=Yes, 0=No) 

6.456(3.850) 7.049(5.657) -0.630 6.882(4.005) -0.439 6.136(3.367) 0.410 6.062(3.315) 0.431 

Family labor available (adult 
equivalent) 

0.041(0.199) 0.049(0.218) 0.002 0.058(0.238) -0.008 0.068(0.254) -0.021 0.125(0.341) -0.076* 

Crop association 
(intercropping) (1=Yes, 0=No) 

0.539(0.499) 0.195(0.401) 0.345*** 0.529(0.506) -0.023 0.561(0.499) -0.064 0.5(0.516) 0.008 

Total income (FCFA) 311817.5 
(171096.8) 

339670.6 
(138245.4) 

- 
22696.13 

346874.5 
(144190.9) 

-
30116.83 

317555 
(139709.2) 

1900.316 336844.8 
(108513.7) 

-
18394.14 

Soil fertility level (1=Fertile, 
0=Less fertile) 

0.880(.325) .902(.300) .002 .882(.327) .024 0.986(.117) -.098*** 1(0) -.098* 

Access to information (1=Yes, 
0=No) 

0.767(0.423) 0.634(0.488) 0.145** 0.794(0.410) -.030 0.794(0.406) -0.034 0.875(0.341) -0.113 

Contact with project (1=Yes, 
0=No) 

0.573(0.495) 0.878(0.331) -
0.283*** 

0.852(0.359) -
0.250*** 

0.493(0.503) 0.154** 0.875(0.341) -0.262** 

Contact with extension agent 
(1=Yes, 0=No) 

0.363(0.481) 0.146(0.358) 0.189*** 0.176(0.386) 0.153** 0.356(0.482) -0.046 0.125(0.341) 0.200* 

Distance from market 15.776(10.088) 17.078(10.502) -1.045 16.767(10.317) -0.689 16.143(10.373) -0.013 18.25(9.497) -2.199 
*sd : standard deviation 
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Table 4: Farm AI indices by SLM 

AI range Non adoption PP CM CR MP  
Freq(perc) Freq(perc) T test Freq(perc) T test Freq(perc) T test Freq(perc) T test 

0.00-0.10 51(19.10) 7(17.07) 1.917 2(5.88) 8.593* 7(9.59 10.43* 3(18.75) 1.399 
0.11-0.20 134(50.19) 22(53.66) 18(52.94) 41(56.16 10(62.50) 
0.21-0.30 55(20.60) 7(17.07) 12(35.29) 15(20.55 2(12.50) 
0.31-0.40 21(7.87) 5(12.20) 1 (2.94) 9(12.33 1(6.25) 
0.41-0.50 4(1.50) - 1 (2.94) - - 
0.51-0.60 2(0.75) - - - - 
0.61-0.70 - 

- 
- - - - 

0.71-0.80 - 
- 

- - - - 

0.81-0.90 - 
- 

- - 1(1.37) - 

Summary statistics      
Mean  0.176 0.169 0.197 0.189 0.159 
Minimum 0.049 0.056 0.079 0.066 0.066 
Maximum 0.558 0.344 0.498 0.829 0.304 

Freq: Frequency (number of observations) 

Perc : pourcentage (%) 
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7. EMPIRICAL RESULTS 
In this section we present the results from the jointly estimated correlated coefficient model. 
After some preliminary remarks regarding the goodness-of-fit, we present in Table 5 the results 
of the factors affecting the AI scores. This was followed by an analysis of the effect of ISFMT 
adoption on AI (Table 6). In this study, we have used S = 186 simulations draws based on 
Halton draws. 

8.1. Goodness-of-fit of the correlated random coefficients model estimations 
We apply in this study, the GSEM to correct for the three problems of selection, endogeneity 
biases and censoring (Nkegbe et al., 2018). Furthermore, the goodness-of-fit measures of the 
correlated random coefficients model estimations are presented in Table 5. The Wald tests 
statistic (Wald chi2) results indicate that the null hypothesis that all slope coefficients are zero 
is rejected at the 1% significance level. Accordingly, the variables in each of the four adoption 
equations and the impact model of AI contribute significantly as a group to explain the decisions 
to adopt or not the ISFMT and the AI scores of maize farms, respectively. In other respects, 
following Mújica-Mota et al., (2020); we perform the Hausman test z statistic where the null 
hypothesis is that the four factors loading λ𝑡𝑡 are jointly equal to zero (joint exogeneity of the 
four adoption binary dummy variables 𝐴𝐴𝑡𝑡). We reject the null hypothesis in the four cases (p < 
.01). We conclude that endogeneity of 𝐴𝐴𝑡𝑡 is indeed an issue in the correlated coefficient model 
of the AI. IVs to be valid, they have to determine the probability of adopting the four ISFMT 
(relevance condition), and be correlated with the outcome Y only through their association with 
the four binary dummy adoption variables 𝐴𝐴𝑡𝑡 (conditional independence condition). The Wald 
F test statistic (with 2 degrees of freedom) rejects at a significance level of 1%, the null 
hypothesis that the instruments are irrelevant to identify the AI scores equation. 
  

8.2. Correlated random coefficient model estimates of factors affecting allocative 
inefficiency 
The coefficients and standard errors for the main variables that determine the maize farms AI 
as reported by the CRC model estimate are depicted in Table 5. The analysis disaggregated the 
explanatory variables into two different groups: 15 non- interacted explicative variables, four 
latent factors 𝑙𝑙𝑡𝑡 for ISFMT (Table 5) and three Adoption binary dummy variables interacted 
with farmers characteristics along with 24 interaction terms of the latent factors 𝑙𝑙𝑡𝑡  with the 
adoption dummies 𝐴𝐴𝑡𝑡 (Table 6). The 15 non- interacted terms are the independent variables that 
explained the variation in AI among the maize farms. Moreover, the coefficients of most of the 
variables included in the model have the expected negative signs. A negative coefficient for an 
independent variable implies decrease in cost inefficiency and vice-versa (Mutoko et al., 2015). 

Table 5. Factors affecting farm AI of maize farms (CRC models) 

Parameters Estimate Robust S. Error 
Constant 0.193  0.013*** 
Adoption of ISFMT   
GDT2 (PP) -0.406  0.094*** 
GDT3 (CM) -0.674  0.129*** 
GDT4 (CR) -0.447  0.072*** 
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GDT5 (MP) -0.315  0.139*** 
Farmers and farms characteristics   
Gender of farmer -0.70  0.063 
Age of farmer -0.384  0.272* 
Farmer experience in ISFMP use -0.105  0.078** 
Education level of farmer -0.073  0.014*** 
Use of formal credit for ISFM -0.218  0.083*** 
Farmland size -0.483  0.205*** 
Northern cotton area -0.317  0.059*** 
Member of an agricultural association -0.210  0.107*** 
Family labor available 0.426  0.338* 
Crop association (intercropping) -0.179  0.053*** 
Use of inorganic fertilizer -0.296  0.018*** 
Var (e.Y_SE) 0.128  0.007 
Latent factors   
λL2 -0.139 0.085** 
λL3 -0.154 0.038*** 
λL4 -0.042 0.009*** 
λL5 -0.145 0.058*** 
Log pseudo likelihood 171.83  
Wald chi2   
N simulations 186  
N observations 431 
Instrument strength: Wald F test statistic (2 degrees of 
freedom) 

GDTT2 eq: 7,13***; GDTT3 eq: 
0,62*** 
GDTT4 eq: 3,82***; GDTT5 eq: 
0,904*** 

Wald test for joint significance of coefficients of the 
interacted terms: (all interaction terms=0) 

Chi2 (11) =2847.05*** 

Hausman test z statistic of H0: no endogeneity GDTT2 eq: -2,74***; GDTT3 eq: 
2,96*** 
GDTT4 eq:  -16,04***; GDTT5 eq: -
9,73*** 

z statistic: H0: (variance of over- dispersion term) 3,64*** 
Note: Significance: *** p<0.01, ** p<0.05, * p<0.1. 

Results of correlated random coefficients model in Table 5, show that, on average, the adoption 
of the four ISFMT is negatively and statistically (P<0.01) associated with the AI scores. This 
result implies that maize farms who adopt these ISFMT were more likely to achieve lower AI. 
Furthermore, the four factor loadings (λlt), are all negative and statistically significant at the 1% 
critical level. This result suggests that the unobserved factors that increase the probability of 
adopting ISFMT also lead to lower farm AI, relative to that of the randomly assigned in 
adoption status (Deb and Trivedi, 2006b). For instance, the negative factor loading, related to 
the MP adoption (factor loading (λl5),) (Table 5) suggest that lower AI on farms with the MP 
(compared to randomly drawn farms) in part stems from a self-selection of “better” farms from 
the non-adoption status towards adopting MP status. We conclude that significant favorable 
selection on unobservable into the ISFMT adoption status exists. However maize farms adopt 
efficient ISFMT. 
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The results show that apart from the dummy adoption variables (At), 10 out of the 11 
non- interacted explanatory variables have the expected negative signs and statistically related 
to AI (Table 5). First, education level of farmer, use of formal credit for ISFMT, Farmland size, 
Living and farming in cotton area, Member of an agricultural association, Crop association and 
Use of inorganic fertilizer are those variables that are highly statistically significant in 
determining the rice farmers’ allocative inefficiency. The coefficient of education level of 
farmer is negative and significant, suggesting a high decrease in AI of maize farms as the 
education level of the farmer increases. Kolawole and Ojo, (2007) have found similar results in 
Nigeria in small scale food crop production. The use of formal credit for ISFMT decrease AI 
because of negative and significant of coefficient at 1% critical level. This result is in line with 
those found by recent studies  (Abdulai and Abdulai, 2016; Ntabakirabose, 2017). The results 
indicated that a unit increase in the access to credit owned by a household head decreased AI. 
With access to credit, farmer’s ability is improved to purchase the otherwise unaffordable farm 
inputs timely. The coefficient of farmland size was negative and significant at 1% critical level. 
This suggests that maize farm AI is likely to decline as farm size increases. This result is in 
accordance with the notion of “efficiency economy of scale” that states that larger farms have 
efficiency advantage over smaller ones. Similar finding is reported by other authors for 
cultivated area of rice and maize farms in Ghana, Northern Uganda, Chitwan district in Nepal, 
Mirzapur district in India  respectively (Amewu and Onumah, 2015; Okello et al., 2019; Paudel 
and Matsuoka, 2009). Estimated coefficients for Northern cotton area locational dummy is 
negative and significant at 1% critical level. This implies that there is location relationship in 
maize production in the study area. More specifically, maize farmers in Northern cotton area 
have about 32%, less AI than their counterparts in other locations. This result is mainly 
attributed to distortions introduced by cotton policies (subsidies for inputs, guaranteed purchase 
of cotton fiber, access to credit, frequent extension contacts, etc.). Implication of these policies 
is taxes imposed on production of other crops in other hubs. This result is similar to the findings 
of Okello et al., (2019) who showed that AE is positively and significantly affected by location 
of the farmer. In contrast, Zavale et al., (2005) found that farm households located in the 
northern and central agro-ecological of Mozambique were more cost inefficient than the ones 
located in the southern. Membership in agricultural association is negatively and significantly 
related to AI, at the 1% critical level. This indicates that membership in farmers’ group lowers 
the AI of the maize farm. Membership in farmers’ group constitutes a social network in which 
farmers have better access to information about the proper use of ISFMT along with their 
adoption. Moreover, they acquire and improve their managerial skills including allocative 
efficiency achievement. Similar results were also reported by some other authors (Gideon et 
al., 2010; Obeng and Adu, 2014). Crop association is negatively and significantly related to 
allocative inefficiency, at the 1% critical level. This indicates that crop associations lower the 
AI of the maize farm. This result is in line with Nursalam et al., (2021) who found that crop 
association decrease AI. The use of inorganic fertilizer is negatively and significantly associated 
with AI at 1% statistical critical level. This result implies that the use of inorganic fertilizers 
decreases the AI. In addition, it suggests that the ISFMT might be complementary inputs of 
inorganic fertilizers. This finding supports the findings by Ahmed et al., (2017). Second, the 
years of farmer experience in ISFMP use is statistically and significantly associated with their 
maize farm AE at 5% critical. Estimated coefficients for the years of farmer experience in 
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ISFMP use is negative and significant at 5% critical level. Soil fertility training attained by 
farmer lead to productive ability, to acquire and process useful financial information increases 
with time, which decreased AI. No study have learned about this specific factor before but many 
studies revealed positive action of experience in agriculture of AI other there (Mutoko et al., 
2015b). The finding indicates that most experienced farmers in ISFMP use achieve various 
cost-saving strategies over now more than 5 years in contact with ProSOL. They applied it in 
maize production under ISFMP as mentioned by Mutoko et al., (2015) who found that soil 
fertility management decreased AI. Third, age of household farmer and family labour 
availability are statistically significant in determining the maize farmers’ AI at 10% critical 
level. Age of farmer is negatively and significantly (P<0.10) associated with maize farm AI. 
This result suggests that young maize farmers are more likely to realize high farm AI than old 
farmers. This result is on contrast with the young farmers’ willingness of taking risk in using 
new improved technologies (Donkoh et al., 2019). Similar result is reported by Awotide and 
Bamire, (2010) in rice farming in Nigeria. The coefficient of family labour availability is 
positive and significant at 10% critical statistic level. This result indicates that the AI of maize 
farm increases with increasing family labour availability. This implies that smaller households 
would use more efficiently the family available labor than their larger counterparts. Some other 
authors found comparable result in their studies (Aliyu and Shelleng, 2019; Nwachukwu and 
Onyenweaku, 2009; Okello et al., 2019). In contrast, some other authors reported in their studies 
a significant and negative relationship of family labour availability with AI (Okello et al., 2019; 
Paudel and Matsuoka, 2009; Zavale et al., 2005). Fourth, the coefficient for gender dummy was 
negatively associated with the farm AI. The negative coefficient suggests that female farmers 
are more likely to achieve higher maize farm AI than male farmers. Some others studies found 
similar results (Amewu and Onumah, 2015; Zavale et al., 2005). This is in contrast with the 
hypothesis that female farmers are more allocative efficient than their male counterparts. 
However, it is not found to be statistically significant. 

8.3. Effect of the adoption of ISFMT on AI of maize farms 
Drawing from the high significance of the four factor loadings (λlt), the simultaneous equations 
model of adoption of ISFMT and AI of maize farms is correctly specified. Accordingly, the 
estimated marginal effect identifies the average treatment effect as in the case of randomly 
assigned treatment (Deb and Trivedi, 2006b). Table 6 presents results of three parameters 
effects of ISFMT adoption on AI, and associated standard errors. In Table 6, the results 
including both interaction terms of adoption binary dummy variables with characteristics and 
latent factors, respectively are presented. Furthermore, for each of the four ISFMT, three to five 
out of six interaction terms of the latent factors with the adoption dummies variables are 
statistically significant at 10% critical level at least. We conclude that the CRC coefficients 
model is well specified. In addition, the Wald test for joint significance of coefficients of the 
interacted terms of adoption dummy variables with three characteristics of the farm, its farm 
and living location (gender, use of inorganic fertilizer and cotton area): (all interaction terms=0) 
is statistically significant (Prob<0.000) thus, confirming the heterogeneity of the effect of 
adoption of ISFMT on AI. The implication is that there are significant interactions between the 
covariates and the adoption of ISFMT. 
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As shown in Table 6, for the three parameters, the effect of adoption of an ISFMT on 
maize farms AI was negative and statistically significant at 1% critical level for all four 
technologies. This implies that adoption of ISFMT decreases the AI of maize farms. 
Specifically, compared to the non-adoption farms of the ISFMT, the highest causal effect of 
maize farm AI was realized with CM, estimated to -0.703, -0.674 and -0.562, respectively for 
the ATE(X), ATE and marginal effects parameters. In contrast, the lowest causal effects are 
achieved with MP which were estimated to be -0. 224, -0.315 and -0.338, respectively for 
Marginal effects ATE and ATE (X) parameters. The causal effects of PP and CR adoption on 
AI are fairly similar. 
 
 
Table 6: Correlated random coefficient model estimates: Adoption effects of ISFMT on AI 
scores of maize farms (standard errors in parentheses) 

Parameters ISFMT 
GDT2 (PP) GDT3 (CM) GDT4 (CR) GDT5 (MP) 

Mean ATE -0.406*** (0.094) -0.674*** (0.129) -0.447*** (0.072) -0.315*** (0.139) 
Mean ATE (X) -0.422*** (0.097) -0.703*** (0.103) -0.478*** (0.174) -0.338*** (0.085) 
Marginal effects -0.328*** (0.106) -0.562*** (0.084) -0.436*** (0.169) -0.224*** (0.166) 

Interaction terms At # characteristics 
GDT #sex 0.041* (0.023) -0.094*** (0.025) -0,114 (0,108) 0.316*** (0.008) 
GDT #zone -0.028** (0.007) -0.107* (0.082) -0.075** (0.033) -0.179 (0.142) 
GDT #Q engrais -0.204* (0.141) -0.075 (0.069) -0.082** (0.035) -0.008*** (0.002) 
Wald test for joint 
significance of 
coefficients of the 
interacted terms: 
(all interaction 
terms=0) 

Chi2 
(11)=2847.05*** 

   

Interaction terms At # latent factors Lt 
λAt #L2L3 -0.151 (0,184) -0.005*** (0,018) 0.073 (0,086) -0.073* (0,057) 
λAt #L2L4 0,018 (0,009) -0.184*** (0,036) -0.018*** (0,005) 0.109 (0,128) 
λAt #L2L5 -0.079** (0,035) 0.022 (0,018) -0.005 (0,004) -0.031 (0,026) 
λAt #L3L4 -0.051*** (0,008) -0.294* (0,202) -0.408 (0,381) -0.126** (0,075) 
λAt #L3L5 0.022 (0,017) -0.041* (0,029) -0.127*** (0,036) -0.194*** (0,042) 
λAt #L4L5 -0.105* (0,012) -0.039*** (0,012) -0.149*** (0,018) -0.108* (0,087) 

***P < 0.01, **P < 0.05, *P < 0.1. Robust standard errors are in parenthesis 
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The results depict in Table 5 show that the effect of adoption of ISFMT on AI differs 
substantially across maize farms in the sample. The effects of adopting PP and MP on AI were 
4.1% and 31.6%, respectively significantly higher for maize farms of men compared to those 
of female. In contrast, the effect of adopting CM on AI was 9.4% smaller for men farms 
compared to those of female. Results indicated negative significant differential living area 
effects for the adoption of PP, CM and CR. The highest significant differential living area effect 
of -0.107 units was recorded for CM adoption. This implies that the AI adoption effect of CM 
for farms in cotton area was 0.107 lower as compared to that of farms located in other areas. 
MP adopters in cotton area recorded a farm AI 0.179 lower compared to farms in other areas. 
However, this difference in adoption effect across area is not statistically significant. In the 
same vein, except for CM, adoption of ISFMT significantly lower the AI of farms using 
inorganic fertilizer compared to those that do not. Maize farms that combine CM with inorganic 
fertilizer record AI of 0.204 unit lower than farms that do not. These results collectively suggest 
that different groups of farms react differently to the incentives on ISFMT provided by projects, 
NGOs and public extension services working on fertility management in the study area. The 
implication of these findings is that the adoption effect of ISFMT on AI was highly 
heterogeneous across gender, living areas and use of inorganic fertilizer. In consequence 
caution is required in the design and implementation of agricultural policies geared towards 
enhancing adoption of ISFMT. 
 

8. CONCLUSION AND POLICY IMPLICATIONS 
We showed in the theoretical framework that farmers adopt the ISFMT on the basis of 
knowledge of the idiosyncratic gains derived from their adoption. The idiosyncratic gain is 
referred to as the unobserved heterogeneity. It implies that the effect of ISFMT adoption may 
vary across maize farmers even after controlling for observable heterogeneity using covariates. 
This phenomenon is distinct from that of selection bias. We address it by specifying a correlated 
random coefficients model for analyzing the heterogeneous adoption effect of the four ISFMT 
(MP, CR, CM, and PP), on the AI scores of maize farms which is a mixed discrete-continuous 
outcome. Furthermore, to substantially reduce the bias in estimating the causal effects of 
endogenous adoption treatments, we assume a factor-structure for the unobserved covariates 
combined with instrumental variables. We use the Generalized Structural Equation Model  
package to jointly estimate the multinomial endogenous treatment choice and mixed discrete-
continuous outcome. In this regard, our theoretical framework and estimation strategy depart 
from the literature relating to impact evaluation of new agricultural technologies adoption. 
Major conclusions drawn from these analyses and their respective policy implications are 
discussed below. 

The estimated adoption effect of ISFMT on AI scores of maize farms is heterogeneous 
both in terms of both observed and unobserved variables. Indeed, the four factor loadings are 
all negative and statistically highly significant. This implies the existence of selection on 
unobserved covariates into the ISFMT adoption status. In addition, the effect of adopting 
ISFMT varies depending of the gender of farmer, whether his maize farm is located in northern 
cotton area or not and the level use of inorganic fertilizer on the maize farm. We conclude that 
the specified correlated random coefficients model fits well the heterogeneous adopting effect 
of ISFMT on AI scores of maize farms. Furthermore, in line with our expectations, the results 



21 
 

consistently suggest that adopting any of the four ISFMT, significantly decreases the AI scores 
of the maize farms. On average, the largest decrease ATE(X) on maize farm AI scores 
magnitudes (0.703) stem from adopting PP, followed by CM and CR that recorded fairly similar 
AI scores effects. The lowest decrease ATE(X) of 0.338 is achieved with MP. We also find 
that, different groups of farms react differently to the incentives on ISFMT provided by projects, 
NGOs and public extension services working on fertility management in the study area. The 
effects of adopting CM and MP on AI were 4.1% and 31.6%, respectively significantly higher 
for maize farms of men compared to those of female. In contrast, the effect of adopting PP on 
AI was 9.4% lower for men farms compared to those of female. In the same vein, except for 
PP, adoption of ISFMT significantly lower the AI of farms using inorganic fertilizer compared 
to those that do not. Maize farms that combine the CM with inorganic fertilizer record AI of 
0.204 unit lower than farms that do not. As in most determinants of AI studies we find that the 
AI scores of maize farms are a function of farmer and farm-level characteristics. Specifically, 
the education level of farmer, use of formal credit for ISFMT, farmland size, farm located in 
cotton area, member of an agricultural association, crop intercropping, use of inorganic 
fertilizer, and gender of farmers were significantly associated with the decrease of AI scores of 
maize farms. On the other hand, the family labour availability increases the AI scores of maize 
farms. 

Our findings have important policy implications for agricultural policy and future 
research in Republic of Benin. First, given the positive adoption effect of ISFMT on AI 
reduction, it is important for policymakers to identify ways to promote ISFMT for wider 
adoption by Beninese maize farmers. In this regard, as ISFMT are knowledge-intensive, 
removal of barriers to knowledge and creating awareness would greatly help in encouraging 
adoption. Promotion needs to be carefully targeted to heterogeneous conditions, both in terms 
of agroecological environments as well as farms and farmers’ characteristics including 
resources available at the farm level. It is also important to address issues related to the use of 
ISFMT such as access to land and credit. Moreover, our results suggest that adopting ISFMT 
in combination with mineral fertilizer reduces significantly maize farms AI farmers than 
adopting ISFM alone. From a policy perspective, increasing farmers’ accessibility to factor 
inputs is key to enhancing mineral fertilizer adoption. This study is based on cross-section data 
datasets. Hence, our estimates do not capture the adoption dynamics and long run effect of 
ISFMT on maize farms allocative inefficiency. Therefore, future research should focus on 
adoption dynamics and AI impact of ISFMT using nationally representative repeated 
agronomic observations and socioeconomic panel datasets. This would allow to account for 
previous input use and management decisions, and thus help to overcome potential limitations 
associated with cross sectional data. 
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