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ABSTRACT

Declining soil fertility is one of the major agricultural problems in Republic of Benin. It leads
to low yields and high production costs of crops. To improve soil fertility and alleviate its
consequences, ISFMT are continuously promoted in the country. This paper makes an empirical
contribution in addressing the paucity of evidence regarding the heterogeneous effect of ISFMT
adoption on Allocative Inefficiency (Al) of maize farms. A correlated random coefficient model
assuming a factor-structure for the unobserved covariates combined with instrumental variables
(IV) was specified. The multinomial endogenous treatment and mixed discrete-continuous
outcome were jointly estimated using the Generalized Structural Equation Model (GSEM)
package. The model is estimated for a sample of 431 maize producers located in 19 villages in
north-East of Republic of Benin with four ISFMT (Mucuna pruriens (MP), Crop Residue (CR),
Cattle Manure (CM), and Pigeon Pea (PP)), The results consistently suggest that adopting any
of the four ISFMT, significantly decreases the Al scores of the maize farms. On average, the
largest decrease of maize farm Al stems from adopting PP, followed by CM and CR. Moreover,
we find that the effects of adopting ISFMT vary depending on the gender of farmer, the use of
mineral fertilizer and whether the maize farm is located in cotton area of the north of Republic
of Benin. To reduce the Al of maize farm, policy makers should put more emphasis in ISFMT
promotion for wider adoption by Beninese maize farmers

JEL classification : H21 ; Q16 ; Q18 ; 033 ; Q12 ; Q15

KEY WORDS: Maize producers, ISFMT, heterogeneous impact, Allocative Efficiency,
correlated random coefficient model, Republic of Benin

1. INTRODUCTION
Sustainability has been a widely discussed and topical concept in the scientific community in
recent years, since the Rio de Janeiro Earth Summit in 1992. At the heart of these debates, the
issue of the preservation of natural resources in the image of the soil, which as a base and
support for food production, is seriously threatened. Indeed, land pressure as a consequence of
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demographic pressure generates an abusive and irrational exploitation of natural resources
(PSI/GDT). This results in soil degradation which has been widely addressed in soil socio-
economics (Adjolohoun et al., 2013; Avakoudjo et al., 2013). This results in a decline in soil
fertility (Azontondé¢ et al., 2009) marked by the decline in soil nutrients such as nitrogen,
phosphorus and potassium which regress (Azocli et al., 2015; Kombienou et al., 2015a).
Faced with this land degradation, several strategies or technologies have been developed
through the joint action of farmers as well as through research. We have Sustainable Land
Management Technologies (SLMT). These technologies are recognized around the world as an
instrument for combating land degradation and, in turn, a mechanism for increasing land
productivity (Martey et al., 2021) guaranteeing improved incomes (Martey et al., 2021) and a
way to ensure food (Nkomoki et al., 2018; Sileshi et al., 2019) and nutrition (Kim et al., 2019;
Manda et al., 2016; Zeng et al., 2017) of households. Although it should not be a panacea, they
represent a way out for many producers faced with this problem. However, in view of this, these
SLMT are poorly adopted (Mugwe et al., 2009; Ngwira et al., 2014; Vidogbéna et al., 2016).
While several studies have highlighted the role of certain key factors in explaining this low
adoption rate (Etsay et al., 2019; Nigussie et al., 2017), others have highlighted economic
parameters such as profitability of these technologies as an important aspect of their adoption
(Giger et al., 2018; Tanto and Laekemariam, 2019). However, the poor combination of
production factors could also be an obstacle to their adoption. Thus, in a recent study on mineral
fertilizer, Legesse et al., (2019) showed that technical inefficiency reduces profitability, which
discourages adoption. Also, results from a study in Zambia showed that the use of ISFMT
improves the technical efficiency of hybrid maize production among smallholder farmers
(Tchale et al., 2005). These studies have the merit of highlighting the role of efficiency in the
literature on the adoption of ISFMT. This is all the more so as the agricultural policies that have
developed and popularized these technologies ultimately expect an increase in yields and
therefore producers who maximize their production. However, Nisrane et al., (2011) estimated
the average level of agricultural efficiency of smallholder farmers in Ethiopia at 0.46 between
1994 and 2009, indicating that an average farmer produces less than half of the value of
production produced by the most efficient farmer using the same technology and the same
inputs. These results indicate that it is indeed possible to increase agricultural production at a
certain level of input use. It is therefore imperative to provide empirical evidence on the
effectiveness of the use of these technologies.

This article adds to the existing literature on technology efficiency impact analysis in the
following ways. First, we investigate (for the first time, to our knowledge) the economic
efficiency of adopting multiple ISFMT. Most studies have focused on technical (Issahaku and
Abdulai, 2020a; Ndlovu et al., 2014; Selejio et al., 2018) and environmental (Abdulai and
Abdulai, 2016; Issahaku and Abdulai, 2020) efficiency. Only the study conducted in Zimbabwe
by Musara et al., (2012) mentioned the economic efficiency of mineral fertilizer. Generally,
recent work on efficiency has paid little attention to SLMT (Gebregziabher et al., 2012;
Sherlund et al., 2002). Second, we contribute to the literature on the impact of the adoption of
SLMT by the analytical approach employed in this study, in addition to the use of the control
function to control for possible selection bias and endogeneity bias. These two biases are those
commonly encountered in adoption studies. Issahaku and Abdulai, (2020) used the stochastic
production frontier corrected for selectivity bias to account for the potential bias of both
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observed and unobserved factors. However, this approach is limited because it does not take
into account the truncated nature of our independent variable (efficiency score) which is more
appropriately expressed as a nonlinear corner solution. Moreover, given the categorical nature
of our dependent variable, the pioneering work of Deb and Trivedi (2006) provided the basis
for estimating these general linearized models based on two treatments. In this extension
Mujica-Mota et al., (2020) proposed another model based on the work of Deb and Trivedi,
(2006) but with three treatments in their equation. This work is a first since it is based on 5
treatments. Third, we contribute to the limited empirical evidence on the effectiveness impacts
of gender in ISFMT adoption.

The rest of the paper is organized as follows. Section 2 presents the background. Section 3
relates the theoretical and empirical framework. Section 4 presents the econometric framework
for a control function model and an estimate of average treatment effects. Next comes a
presentation of the empirical specifications of our estimation model. In Section 5, we discuss
our estimation results and discussion. The last section concludes and draws the main findings
and policy implications.

2. BACKGROUND
Benin's agricultural productive sector is characterized by the predominance of small farms and
by its vulnerability to climate variability and extreme weather events. This sector suffers from
the still low level of productivity and production of agricultural, pastoral and fisheries priority
agricultural sectors (PSDSA, 2017). Incomes and productivity are low and the labor force is
only partially valued, which makes agricultural products very uncompetitive. Most farmers
make very little use of improved inputs and engage in mining practices that accentuate the
degradation of natural resources. Crop production is affected by the characterized degradation
of cultivated areas (Amonmide et al., 2019; Kombienou et al., 2015). This has as a corollary
the decline in soil fertility which negatively influences the yields of food crops, mainly maize,
which fell from 1422 kg.ha! in 2011 to 1281 kg.ha! in 2015, with an average of 1347 kg.ha™!
over the same period, in particular because of bad weather conditions. In Benin, sustainable
land management is advocated for smallholder farmers to combat declining soil fertility. SLMT
typically incorporate practices of integrated soil fertility management (ISFM), conservation
agriculture (CA), soil and water conservation (SWC), agroforestry (AF) and the integrated
agriculture and livestock (IAE). There is a compendium on the subject which details the
specificities of each family of SLM. If it is not easy to situate in time the endogenous
technologies which have been practiced for several centuries by the populations in order to deal
with the problems of declining soil fertility, it is more or less easy to situate in time the
beginning of the use of new soil fertility management technologies (Adégbola et al., 2002).
Studies of SLM technologies in the social sciences have focused exclusively on the socio-
economic determinants and rate of adoption of SLMT (Adebiyi et al., 2019; Adekambi et al.,
2021; Riemer, 2018), on the economic impact and profitability of SLM technologies (Adégbola
and Adékambi, 2006; Adjiba et al., 2019; Tovihoudji et al., 2021) and on peasant perception,
research and popularization of SLMT (Egah et al., 2014). These studies help to understand the
factors that motivate or demotivate the adoption of these SLM technologies and their impact on
the well-being of producers. However, adoption can only be explained by these factors. The
allocation of these resources for obtaining maximum output (TE) or the combination of these
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inputs in order to minimize costs with the aim of obtaining maximum output (Allocative
Efficiency = EA) is not suggested in the Beninese literature on the SLM, however, is an
important element that can enhance the low adoption rates obtained. However, as reported
elsewhere, SLM technologies have the capacity to improve the efficiency of producers (Legesse
et al., 2019b; Selejio et al., 2018; Tchale et al., 2005). In Benin, there is no empirical evidence
that has produced confirmation of these results obtained elsewhere. This study focuses on 4
selected technologies, the maize of which is the supply of complementary nutrients compared
to a technology taken individually. Pigeon pea and Mucuna pruriens as a cover crop enhance
biomass and enrich the soil with organic plant matter and fight soil erosion. The cow house is
a strong means of supplying organic matter of animal origin to the soil. Finally, the management
of harvest residues makes it possible to preserve agro-biodiversity at soil level in order to allow
the microbiological activity essential for soil fertilization. Do the producers effectively combine
the different inputs necessary for their implementation?

3. THEORITHICAL FRAMEWORK
3.1 Modeling the heterogeneous effect of ISFMT adoption on allocative inefficiency
The theoretical framework underlying this study combines both the production theory and the
latent variable model. The production theory provides the analytical framework for maize
farms’ Al analysis and for making assumptions about the behavior of these farms when their
environment changes (Debertin, 1986). Furthermore, evaluation of ISFM practices adoption
effects on maize farms Al scores is grounded in this study on the latent variable (index function)
models. They provide a framework for combining economic theory and “structural econometric
analysis” in causal treatment effects evaluation (Heckman and Vytlacil, 2007, pp. 4782—4783).
Accordingly, the Al outcome is modelled in terms of its determinants as specified by production
theory. In addition, the framework models both the adoption of ISFMT and its dependence with
the Al outcome as produced by the variables common to the two equations.

To outline the latent variable models, we assume that each maize farm seeks to minimize
their level of AIl. We are interested in assessing the causal impact of the adoption of ISFMT on
Al of maize farms. The set of ISFMT studied is T {t = 0, ---,4}, with t = 0 corresponding to
the status of non-adoption. Following Carneiro et al., (2003) and Heckman et al. (2007, P.4792),
we define for each maize farm, a score Al associated with and without adoption of ISFMT t as
Y: and Y, respectively. The Y; and Y, are outcomes realized after adoption or no adoption of
the ISFMT t by the maize farm. The outcomes Y; may be discrete, continuous or mixed
discrete-continuous random variables (Heckman et al. 2007, P.4792). Furthermore, let A; = 1
denotes the adoption of an ISFMT t; Ay =0 fort # 0 denotes the non-adoption of an
ISFMT t. The measured Al score, Y; associated with adoption of an ISFMT t can be written as
follows:

Vi =Yoo+ (Y1 — Yoty + (V2 = Yo)to + (V3 — Yo)tz + (Y, — Yo)ty (1)

where the subscripts indicate the adoption and non-adoption status of ISFMT t (MP =4, CR =3,
CM =2, PP =1 and non-adoption=0), and we omit the individual subscripts to simplify notation.
The equation (1) is an example of Potential outcomes Model, where a maize farm is observed
to have one of five of potential outcomes, depending on which ISFMT is adopted. This model
can be used to estimate structural econometric models (Aakvik et al., 2002). In this study we



consider a generalized Roy model which is a variant of the Potential outcomes Model (Heckman
et al. 2007, P.4811). Following Carneiro et al., (2003) and Heckman and Vytlacil (2007; P:
4811), we model the potential farms Al scores conditioning to variables X as follows:

Yo = XoBo + Uy (2)
Yp = XeBe + Ut 3)
where in each potential outcome of adoption and non-adoption of a ISFMT t; X(( ) is the
observed characteristics of various farms and farmers, such as the management practices of
farmer including managerial characteristics such as adoption status of ISFMT t (Solis et al.,
2007), socio-economic and demographic characteristics and the characteristics of the maize
production environment; B, ) are coefficients to be estimated and Uy ;) is the stochastic term
which captures the unobserved characteristics. It fulfilled the condition E [U(O,t) | X l-] = 0. The
application of the “structural” approach in this study derives X(o +)B(o,) from the production
theory. The expected score of Al resulting from adoption and non-adoption of a ISFMT t are
not observed when the farmer becomes aware of the ISFMT. However, to link the “potential
outcomes framework to the literature on structural econometrics, we assume that they can be
inferred by a latent variable A;. Furthermore, assume that the maize farms are profit-
maximizers. Accordingly, A; represents the expected net differential profit (E (m; — 7'[0)),
deriving from the adoption or non-adoption decisions of an ISFMT t (Adegbola, 2010; Dimara
and Skuras, 2003). The adoption decisions process is expressed as follows:

Ar = 1a(t,0,X,2) =V, “4)
with

4 _{t if A;>0

70 if Ar<0

Since there are five mutually exclusive ISFMT including the non-adoption, Y¢—o A, = 1
(Carneiro et al., 2003). The observed (by the econometrician) variables X and Z affect the
adoption of the ISFMT. The covariates X are common with the outcome equations (2) and (3),
while one or more variables Z are excluded from the latter; p,(t, 0,X, Z) is the deterministic
component and V; is an i.i.d. error term indicating unobserved heterogeneity in the propensity
for treatment. (U(O,t)» Vt) is unobserved. The random variable V; may be a function of Uq 1. A¢
is interpretable as the net gain from adoption decision (because individuals adopt an ISFM
technology if A7 > 0). The latent variable model presented in Eq. (4) underlies the large
majority of discrete choice models uncounted in the econometric literature (Maddala, 1983;
McFadden, 1981). Following Amemiya, (1985, p. 286), Cameron and Trivedi, (2005, p. 496),
the probability that a maize farm adopts an ISFMT ¢t is a function of the independent variables
and parameters and written as follows:

P, =Pr(A; =t) =F.(X4,), t=0,-,4. (5)
where F;(*) is the cumulative distribution function of the error term V; in Eq. (4). Different
functional specifications for F; correspond to specific models, notably multinomial logit;
nested logit, multinomial probit, ordered, sequential, and multivariate models (Cameron and
Trivedi, 2005, p. 496).

The individual level causal effect of adoption on maize farm scores Al, is the differential Al
scores between the adoption and non-adoption decisions of the ISFMT t and is given by A=



Y; =Y, t+# 0 (Carneiro et al., 2003; Heckman and Vytlacil, 2007, p. 4793). However, at a
given time, we observe any farmer in one of the five possible adoption status. We do not know
the Al score of the farm in other status and hence cannot directly estimate the individual level
treatment effects (Heckman, 2007; p. 4814). Therefore, the population level effects parameters
are mostly evaluated. Both Average Treatment Effect (ATE) and conditional Average
Treatment Effect (ATE| x) have been the focus of many economic impact evaluation studies.
The former estimates for a farmer selected in the population, its mean gain for moving from
non-adoption status of ISFMT t = 0, to adoption of ISFMT t status. The latter is evaluated for

subpopulation with given observed characteristics X; = x. Both parameters are respectively
expressed as follows:

ATE(t,0) = E[AE,A, = 1 | —E[AE,A, = 0] (6)
ATE(t,0|x) = E [AE |x,A; = 1] — E [AE | x,A, = 0] (7)

The Average Treatment Effect on Treated (ATE1 or ATT) and conditional Average Treatment
Effect on treated (ATE1|x) are also widely estimated. The latter estimates how those
individuals with observed characteristics X; = x that are currently adopted the ISFMT benefit
from them on average (Cornelissen et al., 2016, p. 9).

To define the causal effects in terms of economically interpretable parameters,
following Heckman (2007, p. 4784) we relate the treatment effect model in Eq. (1) to structural
econometric model as follows:

Y, =8+ Xy + A XA+ A7 + ey, (8)
where Y; is the predicted farm-specific Al scores, 0 is the constant of the model, X is the vector
of explanatory variables that have potential influence on Y;; ¥y = By, 4 = B¢ — Bo, e = Uy —
Uy, and &, = Uy; 7, = E[n;] is the mean of n;; ; = n, — E[n;] is the deviation of n; from its
mean; e, = A7 + & 1s a composite error term comprising the interaction term of deviation
from ATE, fj; with A, and the error term &.; X, = X — X is demeaned explanatory variables;
Y;: 1s a mixed discrete-continuous random variable (Carneiro et al., 2003). The first coefficient
on the adoption binary dummy A;, is the Average Treatment Effect conditional on X = x,
ATE(X) = XA. It estimates the average gain of an ISFMT adoption for a farmer with
characteristics X, randomly selected. By demeaning the covariates X before interacting them
with A; we ensure that 77, is the average treatment effect at means of X. With this linear
specification it is also the unconditional ATE. The second coefficient on the adoption binary
dummy A;, ; the mean of n, = Uy; — Uy;, is referred to as the idiosyncratic gain for a
particular ISFMT adoption (Heckman, 1997). It constitutes the unobserved heterogeneity which
implies that the effect of ISFMT adoption may vary across maize farmers even after controlling
for observable heterogeneity using covariates X. The sum of the two coefficients on the
adoption binary dummy A; gives the individual adoption effect 4; on individual farm Al scores
associated with adoption of ISFMT.

To outline the heterogeneous response model, in more formal terms, let’s assume that
both unobserved components in the error term e, are linearly related to the error term V; in the
ISFMT adoption equation, Eq. (4). From this assumption two important sub-cases of the
heterogeneous response model are derived. First, we hypothesize that A; is statistically
independent of 1j; that’s to say (U; — U,), given X and hence are uncorrelated as would occur
when treatment is randomized across farmers. But A, is related to €, only. This means that



farmers who are more likely due to unobserved characteristics adopt ISFMT differ in their pre-
treatment characteristics from farms who are less likely to adopt. These characteristics may
include the farmer’s motivation, level of knowledge and innate managerial and technical
abilities in understanding and using the ISFMT (Abdulai and Huffman, 2014). We conclude
that, after controlling for the observables X, adoption of ISFMT by farmers is not based on the
idiosyncratic gains associated with them (Cornelissen; et al. 2016). Second, we suppose that
the error term e; in Eq. (8) depends linearly on the unobservable V; in Eq. (4). The adoption
individual level causal effect A; varies even after accounting for X. This case arises because as
discussed earlier, farmers adopt the ISFMT on the basis of partial or full knowledge of their
idiosyncratic gains resulting from adoption. In consequence 77; and A, are positively correlated,
even conditional on X, resulting in E[A.7;|A; = 1] > E[A7;|A; = 0]. This implies that, in
addition to respond differently to adoption of ISFMT, farmers with the same X are influenced
by their knowledge of their idiosyncratic gains. This phenomenon is distinct from that of
selection bias. Eq. (8) is referred as the “CRC” or ‘“heterogeneous treatment effect” or
“essential heterogeneity” model. This is the model specified in this paper to analyze the
heterogeneous effect of adoption of ISFMT on maize farm Al. Several econometric models
were developed to handle the issue of interaction of treatment effect with unobserved
heterogeneity.

4. STUDY AREA
The study was carried out in the ProSOL project intervention area located in the north-east of
Republic of Benin. The area comprises seven counties which form part of the Agricultural
Development Hub (ADH) 2. The study was conducted in Kandi, Gogounou and Bembéreké
town. The ADH two is subdivided in three homogenous Agricultural Development Sub-Hubs
(ADSH) (Adégbola et al. 2018). It lies between latitudes N 10°00” et N 11°20’; and longitudes
E 1°20° et E 4°00°. Rainfall distribution in the ADH 2 is unimodal pattern, allowing for one
cropping season lasting from July to September and a dry season from October to April. This
results in a growing period ranging from 180 to 200 days. The average annual rainfall is 1 005
mm. Temperatures range from a minimum of 22.4 °C, to a maximum of 34.7 °C, with an annual
average of 28.45 °C. The predominant soil types are ferralitic and ferruginous soils. Raw and
little evolved mineral soils are also encountered in the area. The soils have good physical
properties, poor chemical characteristics and therefore of low fertility (Amonmide et al., 2019).
About 80% of these soils have a level of fertility below the average (Adégbola et al, 2018). Due
to continuous cropping without adequate replenishment, the soils in this area undergo a very
strong chemical degradation. This includes deficiencies in organic matter, phosphorus,
nitrogen, cation exchange capacity and exchangeable bases. The ADH 2 location has a high
(low) population density of an average of 36 about inhabitants per km2. Population pressure
has resulted in increased land-use intensity and has shorten the duration of natural fallows. The
main economic activity undertaken in ADH 2 is rainfed subsistence agriculture. The dominant
land-use systems are cash crops, annual staple food and livestock. The main cash crop is cotton
(Gossypium sp) followed by the cashew nuts (Anacardium occidentale). ADH 2 is ranked the
first cotton producer area in Benin in 2016 with 73% of national cotton production. The most
important staple food crops are: sorghum (Sorghum bicolor) with 52% of national production
in 2016; yam (Discoprea esculenta) with 26% of national production in 2016; rice (Oryza
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sativa) with 24% of national production in 2016 and maize (Zea mays): 23% of national
production in 2016. They are cultivated from season to season mostly intercropped with cowpea
(Phaseolus vulgaris) and groundnut (Arachis hypogaea). Livestock production is a major
enterprise especially dairy cattle. Other livestock in the area include sheep and goats. There is
a high proportion of use of animal traction by farmers. The ADH 2 recorded the second highest
value of the presence index of agricultural services, estimated at 0.50 % Farmers in the hub
have an average access to agricultural services.

5. A latent factor model for ISFMT adoption effect
Drawing from the theoretical framework described in the previous section, maize farms adopt
ISFMT ¢t on the basis of partial or full knowledge of derived idiosyncratic net gains. This article
therefore chose the CRC model to analyze the heterogeneous effect of adoption of ISFMT on
scores Al of maize (Aakvik et al., 2005). Furthermore, we use a model of four latent factors (1)
to address the estimates bias issue often uncounted in empirical analysis due to moderate/severe
contamination or association of selected IV with outcomes independent of adoption of ISFMT
(Aakvik et al., 2002; Banerjee and Basu, 2021; Carneiro et al., 2003). The latent factor models
have the potential to identify treatment effects even in the absence of instrumental variables.
However, Banerjee and Basu, (2021) argue that a latent factor model combined with the IV
approach is more robust than the latter. It reduces substantially the bias in estimating the causal
effects of endogenous treatments. We apply in this paper a latent factor () model combined
with Instrumental variables (IV) (Banerjee and Basu, 2021; Mujica-Mota et al., 2020). To build
the latent factor model, and following Aakvik et al., (2002), Carneiro et al., (2003) and Banerjee
and Basu, (2021), we assume the factor structure of the errors V; and e; in Eq. (4) and Eq. (8),
respectively to be written as follows:

Ve =68:l: + € (8)
er = Aely +uy 9)
where [; are the latent factors (scalar), €; and u; are stochastic error terms; [; €; and u; have
mean zero, for every t # t’, they are mutually independent, and are independent of the
exogenous variables in the both selection and outcome equations. The parameters to be
estimated §; and A; are the factors loading for the selection and outcome equations,
respectively.

A two-stage approach was used to estimate the parameters. In the first stage, the
stochastic cost frontier was specified to estimate the AE scores. The model returns Al scores of
farms, bounded between 0 and 1. Then in the second stage, both the predicted Al scores function
and the adoption of ISFMT model are jointly estimated to analyze the effects of adoption.
Following Debb and Trivedi (2006) and Mujica-Mota et al., (2020), the system of Egs. (5) and
(8) was specified as a joint distribution of endogenous treatment and outcome using a latent
factor structure. In this framework, a CRC model for a multinomial choice of ISFMT and a
mixed discrete-continuous outcome is specified (Carneiro et al., 2003). Let A; =
[ALAZ,A3,A4] be four binary dummy variables that equal 1 for adopters of ISFMT t and 0
otherwise. In addition, we assume that the distribution function of V;, F; in Eq. (5) is a Weibul
(or Type I extreme value) probability distribution. Thus, following Deb and Trivedi, (2006b)



the probability of adoption can be written as a mixed multinomial logit (MMNL) structure as
follows:

PT(Atlx, Z, lt) =

exp(xPe+zar+6¢lt)

=0, 4 (10)

1+Y 4o exp(xPr+ zag+l) -
where x and z are defined as in the Eq. (4), f, @ and § are parameters to be estimated; [, are
latent factors representing the unobserved covariates (unobserved heterogeneity) such as
farmers motivation, level of knowledge and innate managerial and technical abilities in
understanding and using the ISFMT (Abdulai and Huffman, 2014). They are included in both
treatment and outcome equations to allow for unobserved influencing adoption of ISFMT to
affect their impact on Al scores (Banerjee and Basu, 2021; Deb and Trivedi, 2006b; Nkegbe et
al., 2018). Thus, we can distinguish the selection on unobservable from that on observables. In
addition, they allow for the control of unobserved covariates in the same manner as is done with
observed confounders and therefore solve for the endogeneity issue (Banerjee and Basu, 2021).
The factor loadings are interpreted in much the same way as coefficients on observed covariates
can (Deb and Trivedi, 2006b). In addition to the latent factors, we include identifying exclusion
restriction z. To fulfil the rank condition, four were chosen (Wooldridge, 2002). The four
following available instruments access to information (Asfaw et al., 2012; Khonje et al., 2015;
Tufa et al., 2019); contact with project (Horner and Wollni, 2022; Pender and Gebremedhin,
2007); contact with extension agents (Owusu and Abdulai, 2019; Sileshi et al., 2019) and
distance to market (Kalinda et al., 2017; Wale, 2022) were selected based on the literature.

In the second stage, the CRC model is specified. More specifically, this consisted in
interacting the latent factors [, with the adoption A, dummies (Mujica-Mota et al., 2020).
Consequently, the model of Al scores is specified following Eq. (7). Furthermore, since the Al
scores are bounded between 0 and 1, the two-limit Tobit (TLT) regression model is specified
as in Eq. (7) (Mamam et al., 2018; Musa et al., 2015; Okello et al., 2019; Sapkota and Joshi,
2021) :

InAE* = XB + Xt-1 AX(Be — Bo) + Ay Z?:l,k:l Aeele + A Z?:l,k:l Apgele +
A3 2§=1,k=1 Atile + Ay Z‘tl-=1,k=1 Auele + Xtcq Al +uy (11)
where In AE™ is a latent variable representing the natural logarithm of Al scores of maize farms;
X is a set of exogenous covariates common to both two equations with associated parameter
vector [; A; are four binary dummy variables as defined earlier; four latent factors [;, each for
the binary dummy variables; 24 interaction terms of the latent factors [, with the adoption
dummies A;; The latent factors are included in Eq. 11 to control for the endogeneity of each
binary dummy variables A;; (8 — By) are coefficients to be estimated. They denote the
adoption effects of each of the four ISFMT ¢t relative to their non-adoption; A; and A, are
factor loadings to be estimated, which are assumed to be different from zero if they control for
endogeneity of A, (Mtjica-Mota et al., 2020), u, is the same error term as in Eq.12. Denoting
In AE as the observed variables, the TLT model is specified as follows:
1 if nAE* > 1
InAE =<{InAE" if 0 <InAE* <1 (12)
0 if nAE* <0
For identification of the parameters in model estimation, a set of restrictions are imposed. First,
the number of outcomes must be > 4 (Banerjee and Basu, 2021). Second, we impose A, = 0
V t # t', i.e. each adoption decision of ISFMT is affected by a unique latent factor. Third, one
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requires that one of the factor loadings 4;; in Equations (10) or (11) be normalized to a constant
value. We set the factor loadings in Equation (10), A;; = 1 V t. This implies that the scale of
effects of unobserved factor is normalized and equal to 1 in the adoption equation (Aakvik et
al., 2002; Banerjee and Basu, 2021; Deb and Trivedi, 2006b, 2006a).

The variance of the latent variable was set at one in both equations.

We use the GSEM software package in STATA 14 to jointly estimate the Eq. (11) and Eq. (12)
by maximising the (simulated) likelihood of the sample of data with multiple values of [,
sampled from k using Halton sequences (Bhat 2001, Debb and Trivedi 2006).

In our study, 200 simulation draws were generated. Deb and Trivedi, (2006) suggest
using a greater number of simulations draws than the square root of the number of observations.
As the sample was composed of 4236 observations, the number of simulations draws obtained
was more than sufficient.

In order to validly estimate this model, the instruments must satisfy the condition
E(&|SCU,LNU, zs¢, zyn, Zic ) = E(€lzsci, Ziniy Zici ) = 0

A Wald test for Ho: L11=0, A12=0, 221 = 0, A22 = 0 is a test of the null of exogeneity of

treatment effects (i.e. no selection by returns).

From the model consistent parameters estimates we can formulate several interesting
ISEMT adoption effects parameters by comparing ISFMT t to ISFMT t’. First, following
Cornelissen et al., (2016, p. 5), Deb and Trivedi, (2006) and Heckman (2007; p. 4802), we
consistently estimate the unconditional ATE(t,t' ) and conditional (ATE (x)) to X, average
treatment effects, respectively as follows:

ATE(t,t") = E[AE,A; = 1 | —E[AE, Ay = 0] (14)
This corresponds to the four coefficients of the binary dummy variables A; in Eq. (11).
ATE(t,t' | x) = E [AE |x,A; = 1] — E [AE | x, Ay = 0] (15)

The hypothetical individuals we consider have the average characteristics of the entire sample.
Both parameters are the effects of assigning a maize farm to an ISFMT adoption status — taking
someone from the overall population (14) or a subpopulation conditional on x (15) — and
determining the mean gain of the move from base state A, = 0. To find ATE we average
ATE(t,t' | x) for the full sample. We apply the generalized regression adjustment (GRA)
model to consistently estimate the average treatment effect (ATE) (Drukker, 2016). A
consistent GRA estimator for the ATE uses Maximum Simulated log likelihood estimators for
parameters based on the GSEM model, which accounts for the endogenous sample-selection
problem. The command margins is used to consistently estimate the means of each predicted
potential outcomes. Then, we apply nlcom to consistently calculate the differences in the
predicted potential outcomes means. margins accounts for the two-step estimation problem
using the standard method discussed by Wooldridge (2010, chaps. 12 and 13) and Cameron and
Trivedi (2005, chap. 6.6).

Then, we estimate the total marginal effects of the adoption of ISFMT ¢, following
Bartus, (2005) using two-steps procedure. The first step was to estimate separately the marginal
effects of the binary dummy variable A; and each interaction term with the variable A;, using
discrete changes in the expected outcomes. The total marginal effect is computed in the second
step by doing the sum of the marginal effects time their respective derivative with respect to
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the binary dummy variable A;. Marginal effects are evaluated at sample means of covariates
and by averaging over the simulated distribution of the latent variables.

6. DATA SOURCE, SAMPLING PROCEDURE AND DESCRIPTIVE

STATISTICS

The data were obtained from surveys carried out between April and May 2021 in 19 villages
located in ADH 2 in Benin where land degradation is severe. Selected villages were either
involved in SLM adoption. Yamane, (1967) sample size determination formula was used to
calculate the minimum sample size of the participating producer households in the ProSOL
project. A random sample of 431 maize producers was surveyed which contained 287
participant and 144 non-participant smallholder producers in the ProSOL project intervention
area and 1550 plots. Detailed plot-level data were collected on cost of input used in ISFMT,
labor input and crop output for the 2020 cropping season. The estimation model consists of two
dependent variables: adoption and Al. The adoption variable indicated whether the farmer
adopted or rejected at least one ISFM technology.
Descriptive statistics demonstrate that Al score is 18% for non-adopter while is 17% for PP,
20% for CM, 19% for CR 16% for MP adopter. There are no significant differences between
non-adopters and adopters of the 4 technologies for Al scores, level of formal education,
number of agricultural workers, distance to market and farm income. The sample of PP and CM
adopters is not homogeneous with non-adopters in the cotton zone with more PP producers in
the cotton zone (85% > 73%) and fewer CM producers than non-adopters (53% < 73%). PP
adopters use less fertilizer than non-adopters (20% < 54%), have less access to information
(0.63% < 0.77%) and extension agents (15% < 36%) but have more access to formal credit
(43% > 24%) and access to projects (88% > 57%), compared to non-adopters. MP adopters
practice more intercropping (12% > 4%), have more access to projects (88% > 57%) but less
access to extension agents (13% < 36%) compared to non-adopters. The proportion of men who
adopted CR is below the non-adopting men (55% < 70%). Also, CR adopters have the least
space allocated to production (7.74 ha < 11.03 ha), the least access to projects (43% < 57%),
the least experienced in SLM (4. 6 years < 5.7 years) compared to the non-adopter. CM adopters
belong more to a group (56% > 42%), have more access to projects (85% > 57%) but are
younger (40 years < 44 years) and less access to extension agents (19 % < 36%) compared to
non-adopters. Only CR (99% > 88%) and MP (100% > 88%) adopters perceive their land as
fertile compared to non-adopters.
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Table 2: Descriptive statistics of AI model

Inefficiency model Non adoption PP CM CR MP

Mean (sd) Mean (sd) Test Mean (sd) Test Mean (sd) Test Mean (sd) Test
Al score 0.176 (0.089) 0.169(0.080) 0.010 0.197(0.082) -0.020 0.189(0.111) -0.012 0.159 (0.058 0.020
Gender of farmer (1=male, 0.704(0.457) 0.732(0.449) -0.059 0.735(0.447) -0.062 0.547(0.501) | 0.155*** | 0.562(0.512) 0.119
O=female)
Age of farmer (Years) 43.715(10.248) | 44.707(9.397) -1.12 40.323(7.301) | 3.653** | 44.205(11.325) | -0.621 | 45.437(10.770) | -1.815
Farmer experience in ISFMP use 5.726(6.024) 6.488(4.302) -1.064 4.852(3.173) 0.728 4.589(4.630) 1.126* 5.375(6.820) 0.155
(vear)
Education level of farmer 0.176(0.381) 0.220(0.419) -0.042 0.235(0.430) -0.058 0.164(0.373) 0.019 0.125(0.341) 0.058
(1=Yes, 0=No)
Use of formal credit for ISFMP 0.236(0.426) 0.425(0.501) | -0.153** | 0.354(0.486) -0.074 0.342(0.477) -0.068 0.312(0.478) -0.027
(1=Yes, 0=No)
Farmland size (hectare) 11.025(12.485) | 12.844(11.749) | -2.369 13.25(13.047) -2.753 7.743(9.611) | 3.606** 8.968(8.452) 1.807
Northern cotton area (1=cotton 0.734(0.442) 0.854(0.358) -0.120% 0.529(0.506) | 0.233*** | 0.794(0.406) -0.059 0.875(0.341) -0.135
zone, 0=non-cotton zone)
Member of an agricultural 0.423(0.494) 0.439(0.502) -0.0005 0.558(0.503) -0.130%* 0.438(0.499) 0.0001 0.437(0.512) 0.001
association (1=Yes, 0=No)
Family labor available (adult 6.456(3.850) 7.049(5.657) -0.630 6.882(4.005) -0.439 6.136(3.367) 0.410 6.062(3.315) 0.431
equivalent)
Crop association (intercropping) 0.041(0.199) 0.049(0.218) 0.002 0.058(0.238) -0.008 0.068(0.254) -0.021 0.125(0.341) | -0.076%*
(1=Yes, 0=No)
Use of inorganic fertilizer 0.539(0.499) 0.195(0.401) | 0.345%** | 0.529(0.506) -0.023 0.561(0.499) -0.064 0.5(0.516) 0.008
(1=Yes, 0=No)
Instrumental variables
Access to information (1=Yes, 0.767(0.423) 0.634(0.488) | 0.145** | 0.794(0.410) -.030 0.794(0.406) -0.034 0.875(0.341) -0.113
0=No)
Contact with project (1=Yes, 0.573(0.495) 0.878(0.331) - 0.852(0.359) - 0.493(0.503) | 0.154** | 0.875(0.341) -
0=No) 0.283*** 0.250%*** 0.262**
Contact with extension agent 0.363(0.481) 0.146(0.358) | 0.189*** | 0.176(0.386) | 0.153** | 0.356(0.482) -0.046 0.125(0.341) | 0.200%
(1=Yes, 0=No)
Distance from market 15.776(10.088) | 17.078(10.502) | -1.045 | 16.767(10.317) | -0.689 | 16.143(10.373) | -0.013 18.25(9.497) -2.199

*sd : standard deviation
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Table 3: Descriptive statistics of the variables in the five equations (non-adoption and four SLM adoption).

Adoption GDT Non adoption PP CM CR MP pruriens
Mean(sd) Mean(sd) Test Mean(sd) Test Mean(sd) Test Mean(sd) Test

Al score 0.704(0.457) 0.732(0.449) -0.059 0.735(0.447) -0.062 0.547(0.501) | 0.155%** | 0.562(0.512) 0.119

Gender of farmer (1=male, 43.715(10.248) | 44.707(9.397) -1.12 40.323(7.301) | 3.653** | 44.205(11.325) | -0.621 | 45.437(10.770) | -1.815

O=female)

Age of farmer (Years) 5.726(6.024) 6.488(4.302) -1.064 4.852(3.173) 0.728 4.589(4.630) 1.126%* 5.375(6.820) 0.155

Farmer experience in ISFMP 0.176(0.381) 0.220(0.419) -0.042 0.235(0.430) -0.058 0.164(0.373) 0.019 0.125(0.341) 0.058

use (year)

Education level of farmer 0.236(0.426) 0.425(0.501) | -0.153** | 0.354(0.486) -0.074 0.342(0.477) -0.068 0.312(0.478) -0.027

(1=Yes, 0=No)

Use of formal credit for 11.025 12.844(11.749) | -2.369 13.25(13.047) -2.753 7.743(9.611) | 3.606** 8.968(8.452) 1.807

ISFMP (1=Yes, 0=No) (12.485)

Farmland size (hectare) 0.734(0.442) 0.854(0.358) -0.120%* 0.529(0.506) | 0.233*** | 0.794(0.406) -0.059 0.875(0.341) -0.135

Northern cotton area (1=cotton | 0.423(0.494) 0.439(0.502) -0.0005 0.558(0.503) -0.130% 0.438(0.499) 0.0001 0.437(0.512) 0.001

zone, 0=non-cotton zone)

Member of an agricultural 6.456(3.850) 7.049(5.657) -0.630 6.882(4.005) -0.439 6.136(3.367) 0.410 6.062(3.315) 0.431

association (1=Yes, 0=No)

Family labor available (adult 0.041(0.199) 0.049(0.218) 0.002 0.058(0.238) -0.008 0.068(0.254) -0.021 0.125(0.341) -0.076*

equivalent)

Crop association 0.539(0.499) 0.195(0.401) | 0.345%** | (0.529(0.506) -0.023 0.561(0.499) -0.064 0.5(0.516) 0.008

(intercropping) (1=Yes, 0=No)

Total income (FCFA) 311817.5 339670.6 - 346874.5 - 317555 1900.316 336844.8 -
(171096.8) (138245.4) 22696.13 (144190.9) 30116.83 (139709.2) (108513.7) 18394.14

Soil fertility level (1=Fertile, 0.880(.325) .902(.300) .002 .882(.327) .024 0.986(.117) -.098*** 1(0) -.098*

0=Less fertile)

Access to information (1=Yes, | 0.767(0.423) 0.634(0.488) | 0.145** | 0.794(0.410) -.030 0.794(0.406) -0.034 0.875(0.341) -0.113

0=No)

Contact with project (1=Yes, 0.573(0.495) 0.878(0.331) - 0.852(0.359) - 0.493(0.503) | 0.154** | 0.875(0.341) | -0.262%**

0=No) 0.283*** 0.250%**

Contact with extension agent 0.363(0.481) 0.146(0.358) | 0.189*** | 0.176(0.386) | 0.153** | 0.356(0.482) -0.046 0.125(0.341) 0.200*

(1=Yes, 0=No)

Distance from market 15.776(10.088) | 17.078(10.502) | -1.045 | 16.767(10.317) | -0.689 | 16.143(10.373) | -0.013 18.25(9.497) -2.199

*sd : standard deviation
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Table 4: Farm Al indices by SLM

Al range Non adoption PP CM CR MP
Freq(perc) Freq(perc) | T test | Freq(perc) T test Freq(perc) | T test | Freq(perc) | T test

0.00-0.10 51(19.10) 7(17.07) 1.917 2(5.88) 8.593* 7(9.59 10.43* | 3(18.75) 1.399

0.11-0.20 134(50.19) 22(53.66) 18(52.94) 41(56.16 10(62.50)

0.21-0.30 55(20.60) 7(17.07) 12(35.29) 15(20.55 2(12.50)

0.31-0.40 21(7.87) 5(12.20) 1(2.94) 9(12.33 1(6.25)

0.41-0.50 4(1.50) - 1(2.94) - -

0.51-0.60 2(0.75) - - - -

0.61-0.70 - - - - -

0.71-0.80 - - - - -

0.81-0.90 - - - 1(1.37) -

Summary statistics

Mean 0.176 0.169 0.197 0.189 0.159

Minimum 0.049 0.056 0.079 0.066 0.066

Maximum 0.558 0.344 0.498 0.829 0.304

Freq: Frequency (number of observations)

Perc : pourcentage (%)
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7. EMPIRICAL RESULTS
In this section we present the results from the jointly estimated correlated coefficient model.
After some preliminary remarks regarding the goodness-of-fit, we present in Table 5 the results
of the factors affecting the Al scores. This was followed by an analysis of the effect of ISFMT
adoption on Al (Table 6). In this study, we have used S = 186 simulations draws based on
Halton draws.

8.1. Goodness-of-fit of the correlated random coefficients model estimations

We apply in this study, the GSEM to correct for the three problems of selection, endogeneity
biases and censoring (Nkegbe et al., 2018). Furthermore, the goodness-of-fit measures of the
correlated random coefficients model estimations are presented in Table 5. The Wald tests
statistic (Wald chi2) results indicate that the null hypothesis that all slope coefficients are zero
is rejected at the 1% significance level. Accordingly, the variables in each of the four adoption
equations and the impact model of Al contribute significantly as a group to explain the decisions
to adopt or not the ISFMT and the Al scores of maize farms, respectively. In other respects,
following Mujica-Mota et al., (2020); we perform the Hausman test z statistic where the null
hypothesis is that the four factors loading A; are jointly equal to zero (joint exogeneity of the
four adoption binary dummy variables A;). We reject the null hypothesis in the four cases (p <
.01). We conclude that endogeneity of A, is indeed an issue in the correlated coefficient model
of the Al IVs to be valid, they have to determine the probability of adopting the four ISFMT
(relevance condition), and be correlated with the outcome Y only through their association with
the four binary dummy adoption variables A, (conditional independence condition). The Wald
F test statistic (with 2 degrees of freedom) rejects at a significance level of 1%, the null
hypothesis that the instruments are irrelevant to identify the Al scores equation.

8.2. Correlated random coefficient model estimates of factors affecting allocative
inefficiency

The coefficients and standard errors for the main variables that determine the maize farms Al
as reported by the CRC model estimate are depicted in Table 5. The analysis disaggregated the
explanatory variables into two different groups: 15 non- interacted explicative variables, four
latent factors l; for ISFMT (Table 5) and three Adoption binary dummy variables interacted
with farmers characteristics along with 24 interaction terms of the latent factors [, with the
adoption dummies A; (Table 6). The 15 non- interacted terms are the independent variables that
explained the variation in Al among the maize farms. Moreover, the coefficients of most of the
variables included in the model have the expected negative signs. A negative coefficient for an
independent variable implies decrease in cost inefficiency and vice-versa (Mutoko et al., 2015).

Table 5. Factors affecting farm Al of maize farms (CRC models)

Parameters Estimate Robust S. Error
Constant 0.193 0.013%**
Adoption of ISFMT

GDT2 (PP) -0.406 0.094***

GDT3 (CM) -0.674 0.129%**

GDT4 (CR) -0.447 0.072%**
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GDTS5 (MP) -0.315 0.139%**
Farmers and farms characteristics
Gender of farmer -0.70 0.063
Age of farmer -0.384 0.272%*
Farmer experience in ISFMP use -0.105 0.078**
Education level of farmer -0.073 0.014%***
Use of formal credit for ISFM -0.218 0.083***
Farmland size -0.483 0.205%**
Northern cotton area -0.317 0.059%**
Member of an agricultural association -0.210 0.107%**
Family labor available 0.426 0.338%*
Crop association (intercropping) -0.179 (0.053%**
Use of inorganic fertilizer -0.296 0.018%**
Var (e.Y _SE) 0.128 0.007
Latent factors
AL2 -0.139 0.085%*
AL3 -0.154 0.038***
AL4 -0.042 0.009%x**
ALS -0.145 0.058***
Log pseudo likelihood 171.83
Wald chi2
N simulations 186
N observations 431
Instrument strength: Wald F test statistic (2 degrees of GDTT2 eq: 7,13***; GDTTS3 eq:
freedom) 0,62%**
GDTT4 eq: 3,82***; GDTTS eq:
0,904 ***
Wald test for joint significance of coefficients of the Chi2 (11) =2847.05%**
interacted terms: (all interaction terms=0)
Hausman test z statistic of HO: no endogeneity GDTT2 eq: -2,74***, GDTT3 eq:
2,96% %
GDTT4 eq: -16,04***; GDTTS eq: -
9,73 %%k
z statistic: HO: (variance of over- dispersion term) 3,64%**

Note: Significance: *** p<0.01, ** p<0.05, * p<0.1.

Results of correlated random coefficients model in Table 5, show that, on average, the adoption
of the four ISFMT is negatively and statistically (P<0.01) associated with the Al scores. This
result implies that maize farms who adopt these ISFMT were more likely to achieve lower Al.
Furthermore, the four factor loadings (A1), are all negative and statistically significant at the 1%
critical level. This result suggests that the unobserved factors that increase the probability of
adopting ISFMT also lead to lower farm Al relative to that of the randomly assigned in
adoption status (Deb and Trivedi, 2006b). For instance, the negative factor loading, related to
the MP adoption (factor loading (Ais),) (Table 5) suggest that lower Al on farms with the MP
(compared to randomly drawn farms) in part stems from a self-selection of “better” farms from
the non-adoption status towards adopting MP status. We conclude that significant favorable
selection on unobservable into the ISFMT adoption status exists. However maize farms adopt
efficient ISFMT.
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The results show that apart from the dummy adoption variables (At), 10 out of the 11
non- interacted explanatory variables have the expected negative signs and statistically related
to Al (Table 5). First, education level of farmer, use of formal credit for ISFMT, Farmland size,
Living and farming in cotton area, Member of an agricultural association, Crop association and
Use of inorganic fertilizer are those variables that are highly statistically significant in
determining the rice farmers’ allocative inefficiency. The coefficient of education level of
farmer is negative and significant, suggesting a high decrease in Al of maize farms as the
education level of the farmer increases. Kolawole and Ojo, (2007) have found similar results in
Nigeria in small scale food crop production. The use of formal credit for ISFMT decrease Al
because of negative and significant of coefficient at 1% critical level. This result is in line with
those found by recent studies (Abdulai and Abdulai, 2016; Ntabakirabose, 2017). The results
indicated that a unit increase in the access to credit owned by a household head decreased Al.
With access to credit, farmer’s ability is improved to purchase the otherwise unaffordable farm
inputs timely. The coefficient of farmland size was negative and significant at 1% critical level.
This suggests that maize farm Al is likely to decline as farm size increases. This result is in
accordance with the notion of “efficiency economy of scale” that states that larger farms have
efficiency advantage over smaller ones. Similar finding is reported by other authors for
cultivated area of rice and maize farms in Ghana, Northern Uganda, Chitwan district in Nepal,
Mirzapur district in India respectively (Amewu and Onumah, 2015; Okello et al., 2019; Paudel
and Matsuoka, 2009). Estimated coefficients for Northern cotton area locational dummy is
negative and significant at 1% critical level. This implies that there is location relationship in
maize production in the study area. More specifically, maize farmers in Northern cotton area
have about 32%, less Al than their counterparts in other locations. This result is mainly
attributed to distortions introduced by cotton policies (subsidies for inputs, guaranteed purchase
of cotton fiber, access to credit, frequent extension contacts, etc.). Implication of these policies
is taxes imposed on production of other crops in other hubs. This result is similar to the findings
of Okello et al., (2019) who showed that AE is positively and significantly affected by location
of the farmer. In contrast, Zavale et al., (2005) found that farm households located in the
northern and central agro-ecological of Mozambique were more cost inefficient than the ones
located in the southern. Membership in agricultural association is negatively and significantly
related to Al at the 1% critical level. This indicates that membership in farmers’ group lowers
the Al of the maize farm. Membership in farmers’ group constitutes a social network in which
farmers have better access to information about the proper use of ISFMT along with their
adoption. Moreover, they acquire and improve their managerial skills including allocative
efficiency achievement. Similar results were also reported by some other authors (Gideon et
al., 2010; Obeng and Adu, 2014). Crop association is negatively and significantly related to
allocative inefficiency, at the 1% critical level. This indicates that crop associations lower the
Al of the maize farm. This result is in line with Nursalam et al., (2021) who found that crop
association decrease Al. The use of inorganic fertilizer is negatively and significantly associated
with Al at 1% statistical critical level. This result implies that the use of inorganic fertilizers
decreases the Al In addition, it suggests that the ISFMT might be complementary inputs of
inorganic fertilizers. This finding supports the findings by Ahmed et al., (2017). Second, the
years of farmer experience in ISFMP use is statistically and significantly associated with their
maize farm AE at 5% critical. Estimated coefficients for the years of farmer experience in
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ISFMP use is negative and significant at 5% critical level. Soil fertility training attained by
farmer lead to productive ability, to acquire and process useful financial information increases
with time, which decreased Al. No study have learned about this specific factor before but many
studies revealed positive action of experience in agriculture of Al other there (Mutoko et al.,
2015b). The finding indicates that most experienced farmers in ISFMP use achieve various
cost-saving strategies over now more than 5 years in contact with ProSOL. They applied it in
maize production under ISFMP as mentioned by Mutoko et al., (2015) who found that soil
fertility management decreased AIl. Third, age of household farmer and family labour
availability are statistically significant in determining the maize farmers’ Al at 10% critical
level. Age of farmer is negatively and significantly (P<0.10) associated with maize farm Al
This result suggests that young maize farmers are more likely to realize high farm Al than old
farmers. This result is on contrast with the young farmers’ willingness of taking risk in using
new improved technologies (Donkoh et al., 2019). Similar result is reported by Awotide and
Bamire, (2010) in rice farming in Nigeria. The coefficient of family labour availability is
positive and significant at 10% critical statistic level. This result indicates that the Al of maize
farm increases with increasing family labour availability. This implies that smaller households
would use more efficiently the family available labor than their larger counterparts. Some other
authors found comparable result in their studies (Aliyu and Shelleng, 2019; Nwachukwu and
Onyenweaku, 2009; Okello et al., 2019). In contrast, some other authors reported in their studies
a significant and negative relationship of family labour availability with Al (Okello et al., 2019;
Paudel and Matsuoka, 2009; Zavale et al., 2005). Fourth, the coefficient for gender dummy was
negatively associated with the farm Al. The negative coefficient suggests that female farmers
are more likely to achieve higher maize farm Al than male farmers. Some others studies found
similar results (Amewu and Onumah, 2015; Zavale et al., 2005). This is in contrast with the
hypothesis that female farmers are more allocative efficient than their male counterparts.
However, it is not found to be statistically significant.

8.3. Effect of the adoption of ISFMT on Al of maize farms

Drawing from the high significance of the four factor loadings (Ai), the simultaneous equations
model of adoption of ISFMT and Al of maize farms is correctly specified. Accordingly, the
estimated marginal effect identifies the average treatment effect as in the case of randomly
assigned treatment (Deb and Trivedi, 2006b). Table 6 presents results of three parameters
effects of ISFMT adoption on Al, and associated standard errors. In Table 6, the results
including both interaction terms of adoption binary dummy variables with characteristics and
latent factors, respectively are presented. Furthermore, for each of the four ISFMT, three to five
out of six interaction terms of the latent factors with the adoption dummies variables are
statistically significant at 10% critical level at least. We conclude that the CRC coefficients
model is well specified. In addition, the Wald test for joint significance of coefficients of the
interacted terms of adoption dummy variables with three characteristics of the farm, its farm
and living location (gender, use of inorganic fertilizer and cotton area): (all interaction terms=0)
is statistically significant (Prob<0.000) thus, confirming the heterogeneity of the effect of
adoption of ISFMT on Al The implication is that there are significant interactions between the
covariates and the adoption of ISFMT.
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As shown in Table 6, for the three parameters, the effect of adoption of an ISFMT on
maize farms Al was negative and statistically significant at 1% critical level for all four
technologies. This implies that adoption of ISFMT decreases the Al of maize farms.
Specifically, compared to the non-adoption farms of the ISFMT, the highest causal effect of
maize farm Al was realized with CM, estimated to -0.703, -0.674 and -0.562, respectively for
the ATE(X), ATE and marginal effects parameters. In contrast, the lowest causal effects are
achieved with MP which were estimated to be -0. 224, -0.315 and -0.338, respectively for
Marginal effects ATE and ATE (X) parameters. The causal effects of PP and CR adoption on

Al are fairly similar.

Table 6: Correlated random coefficient model estimates: Adoption effects of ISFMT on Al
scores of maize farms (standard errors in parentheses)

Parameters ISFMT

GDT?2 (PP) GDT3 (CM) GDT4 (CR) GDT5 (MP)
Mean ATE -0.406*** (0.094) | -0.674*** (0.129) | -0.447*** (0.072) | -0.315*** (0.139)
Mean ATE (X) -0.422*%** (0.097) | -0.703*** (0.103) | -0.478*** (0.174) | -0.338*** (0.085)

Marginal effects

-0.328*** (0.106)

-0.562%** (0.084)

-0.436*** (0.169)

-0.224%** (0.166)

Interaction terms At # characteristics

significance of
coefficients of the
interacted terms:
(all interaction

(11)=2847.05%**

GDT #sex 0.041* (0.023) -0.094*** (0.025) | -0,114 (0,108) 0.316*** (0.008)
GDT #zone -0.028** (0.007) | -0.107* (0.082) -0.075** (0.033) | -0.179 (0.142)
GDT #Q engrais -0.204* (0.141) -0.075 (0.069) -0.082** (0.035) | -0.008*** (0.002)
Wald test for joint | Chi2

terms=0)

Interaction terms At # latent factors Lt
AAt#L2L3 -0.151 (0,184) -0.005*** (0,018) | 0.073 (0,086) -0.073* (0,057)
AAt #L2L4 0,018 (0,009) -0.184*** (0,036) | -0.018*** (0,005) | 0.109 (0,128)
AAt #L2LS -0.079** (0,035) | 0.022 (0,018) -0.005 (0,004) -0.031 (0,026)
AAt #L3L4 -0.051*** (0,008) | -0.294* (0,202) -0.408 (0,381) -0.126** (0,075)
AAt #L3L5 0.022 (0,017) -0.041* (0,029) -0.127*** (0,036) | -0.194*** (0,042)
AAt #LALS -0.105* (0,012) -0.039*%** (0,012) | -0.149*** (0,018) | -0.108* (0,087)

*E*P <0.01, **P < 0.05, *P < 0.1. Robust standard errors are in parenthesis

19




The results depict in Table 5 show that the effect of adoption of ISFMT on Al differs
substantially across maize farms in the sample. The effects of adopting PP and MP on Al were
4.1% and 31.6%, respectively significantly higher for maize farms of men compared to those
of female. In contrast, the effect of adopting CM on Al was 9.4% smaller for men farms
compared to those of female. Results indicated negative significant differential living area
effects for the adoption of PP, CM and CR. The highest significant differential living area effect
of -0.107 units was recorded for CM adoption. This implies that the Al adoption effect of CM
for farms in cotton area was 0.107 lower as compared to that of farms located in other areas.
MP adopters in cotton area recorded a farm Al 0.179 lower compared to farms in other areas.
However, this difference in adoption effect across area is not statistically significant. In the
same vein, except for CM, adoption of ISFMT significantly lower the Al of farms using
inorganic fertilizer compared to those that do not. Maize farms that combine CM with inorganic
fertilizer record Al of 0.204 unit lower than farms that do not. These results collectively suggest
that different groups of farms react differently to the incentives on ISFMT provided by projects,
NGOs and public extension services working on fertility management in the study area. The
implication of these findings is that the adoption effect of ISFMT on Al was highly
heterogeneous across gender, living areas and use of inorganic fertilizer. In consequence
caution is required in the design and implementation of agricultural policies geared towards
enhancing adoption of ISFMT.

8. CONCLUSION AND POLICY IMPLICATIONS
We showed in the theoretical framework that farmers adopt the ISFMT on the basis of
knowledge of the idiosyncratic gains derived from their adoption. The idiosyncratic gain is
referred to as the unobserved heterogeneity. It implies that the effect of ISFMT adoption may
vary across maize farmers even after controlling for observable heterogeneity using covariates.
This phenomenon is distinct from that of selection bias. We address it by specifying a correlated
random coefficients model for analyzing the heterogeneous adoption effect of the four ISFMT
(MP, CR, CM, and PP), on the Al scores of maize farms which is a mixed discrete-continuous
outcome. Furthermore, to substantially reduce the bias in estimating the causal effects of
endogenous adoption treatments, we assume a factor-structure for the unobserved covariates
combined with instrumental variables. We use the Generalized Structural Equation Model
package to jointly estimate the multinomial endogenous treatment choice and mixed discrete-
continuous outcome. In this regard, our theoretical framework and estimation strategy depart
from the literature relating to impact evaluation of new agricultural technologies adoption.
Major conclusions drawn from these analyses and their respective policy implications are
discussed below.

The estimated adoption effect of ISFMT on Al scores of maize farms is heterogeneous
both in terms of both observed and unobserved variables. Indeed, the four factor loadings are
all negative and statistically highly significant. This implies the existence of selection on
unobserved covariates into the ISFMT adoption status. In addition, the effect of adopting
ISFMT varies depending of the gender of farmer, whether his maize farm is located in northern
cotton area or not and the level use of inorganic fertilizer on the maize farm. We conclude that
the specified correlated random coefficients model fits well the heterogeneous adopting effect
of ISFMT on Al scores of maize farms. Furthermore, in line with our expectations, the results
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consistently suggest that adopting any of the four ISFMT, significantly decreases the Al scores
of the maize farms. On average, the largest decrease ATE(X) on maize farm Al scores
magnitudes (0.703) stem from adopting PP, followed by CM and CR that recorded fairly similar
Al scores effects. The lowest decrease ATE(X) of 0.338 is achieved with MP. We also find
that, different groups of farms react differently to the incentives on ISFMT provided by projects,
NGOs and public extension services working on fertility management in the study area. The
effects of adopting CM and MP on Al were 4.1% and 31.6%, respectively significantly higher
for maize farms of men compared to those of female. In contrast, the effect of adopting PP on
Al was 9.4% lower for men farms compared to those of female. In the same vein, except for
PP, adoption of ISFMT significantly lower the Al of farms using inorganic fertilizer compared
to those that do not. Maize farms that combine the CM with inorganic fertilizer record Al of
0.204 unit lower than farms that do not. As in most determinants of Al studies we find that the
Al scores of maize farms are a function of farmer and farm-level characteristics. Specifically,
the education level of farmer, use of formal credit for ISFMT, farmland size, farm located in
cotton area, member of an agricultural association, crop intercropping, use of inorganic
fertilizer, and gender of farmers were significantly associated with the decrease of Al scores of
maize farms. On the other hand, the family labour availability increases the Al scores of maize
farms.

Our findings have important policy implications for agricultural policy and future
research in Republic of Benin. First, given the positive adoption effect of ISFMT on Al
reduction, it is important for policymakers to identify ways to promote ISFMT for wider
adoption by Beninese maize farmers. In this regard, as ISFMT are knowledge-intensive,
removal of barriers to knowledge and creating awareness would greatly help in encouraging
adoption. Promotion needs to be carefully targeted to heterogeneous conditions, both in terms
of agroecological environments as well as farms and farmers’ characteristics including
resources available at the farm level. It is also important to address issues related to the use of
ISFMT such as access to land and credit. Moreover, our results suggest that adopting ISFMT
in combination with mineral fertilizer reduces significantly maize farms Al farmers than
adopting ISFM alone. From a policy perspective, increasing farmers’ accessibility to factor
inputs is key to enhancing mineral fertilizer adoption. This study is based on cross-section data
datasets. Hence, our estimates do not capture the adoption dynamics and long run effect of
ISFMT on maize farms allocative inefficiency. Therefore, future research should focus on
adoption dynamics and Al impact of ISFMT using nationally representative repeated
agronomic observations and socioeconomic panel datasets. This would allow to account for
previous input use and management decisions, and thus help to overcome potential limitations
associated with cross sectional data.
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