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Truncated Regression in Empirical Estimation

Abstract: Inthis paper we illudrate the use of dternative truncated regression estimators for the
generd linear modd. These indude variations of maximum likelihood, Bayesian, and maximum entropy
estimators in which the error digtributions are doubly truncated. To evauate the performance of the
esimators (e.g., efficiency) for arange of sample sizes, Monte Carlo sampling experiments are

performed. We then gpply each estimator to afactor demand equation for wheat-by-class.
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Introduction

In empirica gpplications, economids are increasingly estimating regresson modd s that are truncated in
nature.! Most commonly, truncated regression has been associated with singly truncated distributions
(for example, see Maddaa). However, doubly truncated distributions also arise in practice and are
receiving atention in the economic literature (Bhattacharya, Chaturvedi, and Singh; Cohen; Maddda;
Nakamura and Nakamura; Schneider). Accounting for truncated random variables in regresson
andydisisimportant because ordinary least squares estimators can be inefficient, biased, or inconsstent

(Maddd @) otherwise. Moreover, in many empirica modding situations, it isimminently reasonable to
assume that supports of the dependent variables and/or error terms are not unbounded in R™ space,

but rather are contained in a finitely-bounded subset of red space. For example, modeling demand-
share equations, asis done later in the empirica application of this paper, isaclear illugtration of such a
gtuation.

Alternative estimators have been introduced into the economic/econometric literature that alow
apriori information, in various forms, to be introduced in esimation.? These include variations of
condrained maximum likelihood, Bayesian, and maximum entropy estimators. In the Bayesan
framework, parameters are treated as random variables in the sense that parameters have associated

probability distributions that describes the state of knowledge about the parameters [Mittelhammer,

A truncated sample is one which the values of the explanatory variables are observed only if the value of
the dependent variable is observed (Judge et al.).

2In practice, problems arise for which prior beliefs are held about the signs, magnitudes, distributions, or
ranges of plausible values for each of the unknowns. For instance, uncertainty about the value of an unknown
parameter can be expressed in terms of a probability distribution using Bayesian analysis (Judge et al; Mittelhammer,
Judge, and Miller).



Judge, and Miller (2000, chapters 22-24)]. In contrast, generdized maximum entropy estimators,
introduced by Golan, Judge, and Miller (1996) with asymptotic property extensions by Mittelhammer
and Carddl (1998), not only assume compactness of the parameter space but aso finite support of the
error digtribution. For empirical problems with inherent uncertainties, restrictions, or truncations, the
gpped of estimators such as constrained maximum likelihood, Bayesian, and maximum entropy
estimatorsis that they offer systematic - as opposed to ad hoc - frameworks for incorporating a priori
information into an econometric moddl.

In this paper we focus on aternative truncated regression estimators for the generd linear
modd (GLM). Our objectiveisto illustrate the implementation and finite sampling properties of a
range of maximum likelihood, Bayesian, and maximum entropy estimators for the case of doubly
truncated error digtributions. To evauate the performance of the estimators for arange of sample Szes,
Monte Carlo sampling experiments are performed. We focus on smal- to- medium sized sample
performance of the various estimators, and their performance relative to ordinary least squares (OLYS).
The performance metric used is mean square error between the empirical and true parameter vadues. In
performing comparisons, we examine explicitly the potentid benefits of truncating error distributions and
imposing reated parameter restrictions (i.e., gains in econometric efficiency) and the econometric costs
of imposing such congraints (i.e., biasedness).

To complete the paper we apply each estimator to a factor demand equation for wheet-by-
class expressed in share form. Weilludtrate issues that arise in empirical estimation contexts, including
Setting parameter restrictions and the flexibility of doing so across models. Findly, we note practical

problems in modeling truncating error distributions, and make recommendations for additiond research.



The Econometric Estimators

Consider the (GLM) with N observationsy: = x,b +u, i =1,..., N. Inthisequation y; isthei™
observation on the dependent varidble, x,isa (1xK) row vector of explanatory values for each

observationi, b isa(Kx1) column vector of parameters, and u; isthe moddl residual associated with

observetioni.

Three estimators for the GLM that account explicitly for the truncated nature of the dependent
variable are consdered and compared to ordinary least squares (OLS). Thefirst estimator considered
is the standard regression model where the error distribution is doubly truncated, referred to asthe
truncated regresson model (TRM). The TRM is estimated in a standard manner using constrained
maximum likelihood based on atruncated likelihood function. The second estimator consdered isa
variation of the sandard Bayesian estimator. It assumes not only prior information on the parametersin
the usual Bayesian way, but dso assumes that the error digtribution is doubly trunceated viathe
likelihood function of the standard regression model. We emphasize that the parameter space includes
two truncation parameters indicating the points at which the error didtribution is truncated from above
and below. Sinceit would be expected that there would be uncertainty regarding the vaues of the
truncation parametersin any given empirica gpplication, aprior probability digtribution is introduced on
these parameters, aswell as the other unknown parametersin the modd. The Bayesian doubly
truncated estimator, or BTR, utilizes Monte Carlo smulation in the estimation of the parameters of the
model, which isjudtified on the bads of laws of large numbers and centrd limit theorems.

The third estimator is the data-constrained maximum entropy estimator for the generd linear



modd (Golan, Judge, and Miller 1996; Mittelhammer and Cardell 1998), or GME. Here finite support
of the parameter space is assumed in addition to a truncated symmetric error distribution. The
parameters for the GME mode are estimated via nonlinear optimization by maximizing an entropy
function subject to data and other congraints. To motivate the functiona specification of the estimators
more fully, we firgt review the principa characteristics of the doubly truncated regresson mode!.
Maximum Likelihood in the Truncated Case

Under stlandard assumptions of normdity, the likelihood function for the GLM is given by

(D L(b,s |y, x)=(2ps *) ""?exp(- (Y- xb)&y- xb)/2s ?)

“oLs
b

Maximizing (1) yields an estimator equivaent to the standard OL S estimator, . Under generd

regularity conditions the maximum likelihood estimators are consstent and asympitoticaly normaly
distributed (Mittelhammer, Judge, and Miller(2000), chapter 3).

Doubly trunceting theresduds, as c <u, <d,i =1,..., N, yields atruncated regresson mode
(TRM). The TRM hasthe log-likelihood function®

2
(2) L(b,S |y’ X) — (zps 2)-n/2 exp(- (Y' Xb)qy- Xb)/z )P|n:1| (C’d)(yi_ Xixb)
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where F isthe stlandard normal cdf, c isthe lower bound and d is the upper bound for error truncation,

and | . 4(u;) isthestandard indicator function taking the value 1 when u T (c,d) andOotherwise.

3The doubly truncated regression model in (2) is based on truncating the residuals of the GLM. See Cohen,
Maddal a, or Schneider for an alternative formulation that doubly truncates the dependent variable.
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Maximizing (2) yields atruncated regression estimetor, or b™M

Bayesian Doubly Truncated Regression

Similar to maximum likelihood methods, the Bayesian approach uses the likdihood function to link the
information contained in a sample of data and the vaue of the unknown parameters of an econometric
model. In addition, the Bayesian method factors additiond information into problem solutions viathe
specification of aprior pdf, B(C), on the parameter vector of the statisticd model. In generd the

margina posterior didribution for b isdefined as

¥

Q L(®.s| ¥ X p(b,s)ds
Q 35 L(b,s| y X p(b,s)ds gdb

p(bly,®) =

for alikdihood function L(b,s|y,x) and prior pdf p(b,s). Furthermore, if we assume the prior on
the b vauesisindependent of the prior on F values, sothat p(b,s)° p(b)p(s), then the margind
posterior on b can be amplified to

L. (b]y, ¥ p(b)
Q. [L- (B, X) p(b)]do

p(bly, x) =

where

L. 0 1y.)= Q Lb.s| % X p(s)ds

is effectively the margind likdlihood function for b after F has been integrated out of the likelihood

function.



To specify the posterior pdf for the GLM with the doubly truncated error distribution in more
functiondly explicit form, we make severd basc assumptions. Firgt of dl, it is assumed that the
likelihood function L(b, s|y,x) is defined to be the truncated likelihood function in (2), expanded to
indude ¢ and d as unknown parameters, i.e,, the likdihood function isagebraicaly identica to (2) with
expanded parameter argumentsas L(b,s,c,d|y, X) . Weadso let the prior pdf on F be the standard

parameter transformation-invariant ignorance prior B(F)%F 2, which implies

p(b.c.d,s)=p(b,c,d)s *.Findly, weassumethe prior pdf on x° [béc,d] *is uniform, as
p(b,c,d) = p(x) = gf)ik:f[x& - xhi]'lglA(x) where A="[2[x, ,x,]. Here again,1, (x) is

the standard indicator function taking the value 1 whenx1 A and O
otherwise. The uniform prior digtribution is a particularly useful choice of prior because it effectively

alows prior inequdity restrictionsto beimposed on b . Based on these assumptions, the joint

posterior pdf is proportiona to
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whichisaproduct of 1/F, the likelihood function in (2), and the uniform prior p(x) . Note that

integrating out F from the margina posterior pdf on X isnot readily andyticaly tractable.



To account for intractable andytica integration, Monte Carlo integration can be used to

estimate moments of the posterior distribution. Let g [béc,d, s]%and suppose p(@) isa

posterior pdf from which iid random outcomes q*(i) ,i=1,...,n* canbegenerated. Then we can

rely on laws of large numbers to estimate the expectation of g(Q) as smply asample mean of Monte

Carlo repstitions,

n

El0Q)]=—& 9@) ® E[gQ)]

i=1
More sophisticated Monte Carlo methods are required when it is not possible to directly

samplefrom p(q), asisthe casein the empirica work contained in this paper. One approach to

Monte Carlo integration is the use of importance sampling to estimate moments based on the kernd of

the posterior distribution (Mittelhammer, Judge, and Miller; Van Dijk, Hop and Louter).* Let h(q) be
adensity function from which samples are easily obtained.® Higtoricdly h(q) is caled the importance
function. Let w(q) denote the importance weight, which isdefined as w(q) = p(q)/h(q) onthe

region where h(q) > 0. Then E[g(Q)] isapproximated by the sampling importance estimator

. é10 . ,u/f1g8 o=
E[9(Q)] =gﬁa g(g;)w(a; )y—*a w(c,)® E[g(Q)]
i= i=1

4An alternative to importance sampling is sample/importance resampling where, in effect, parameters are
resampled with a weighted bootstrap. See Smith and Gefland or Rubin for further details.

SThe basic ideain selecti ng h(2) isthat the importance function is a good approximation to the posterior
kernel (Kloek and Van Dijk; Geweke).



Generalized Maximum Entropy

The generdized maximum entropy (GME) estimator of the GLM modd is formulated by
reparameterizing the parameters and error terms (see Golan et d. for additional details). The
reparameterization conssts of convex combinations of user defined points that identify the supports for
individua parameters and residua terms (S' fori=$, =) aswel asthe use of unknown convexity
weights (p and w) applied to the support points. In particular, the parameters are specified as
$=vec($,,....$5)=S®p, and the residuals are defined accordingly as = =vec(Z ,,..., = o)=S*W. Itis
clear that the GME framework inherently incorporates the assumption that the distribution of the
resduasis doubly truncated — the support for the resdudsis specified so that the feasible outcomes of
the resduals are truncated gppropriately.

The principle underlying the GME estimator for the coefficients, $=S®p, is to choose an
estimate that is based on the information contained in the data, the constraints on the admissible values
of the coefficients (such as nonnegativity and normdization of the convexity weights), and the data
sampling sructure of the modd (including the choice of the supports for the coefficients). In effect, the
information set used in the estimation is shrunk to the boundary of the observed data and the parameter
congraint information through use of a maximum entropy objective. In the absence of any data or other
condraints, the coefficient and resdua estimates will shrink to the centers of the prior supports defined
by S’ (fori=$,2).

~ GME
b

The parameter estimates for the generd linear modd, , are estimated by solving the

following congtrained generdized maximum entropy problem:



3 max{- pdn p- wlnw}
p,w

subject to

(4) y=X(SPp) +S"w

©®) Pl ALy ) =1, Wi ALy )=1

Regularity assumptions and asymptotic properties of the data-constrained GME estimator for the GLM
are reported in Mittelhammer and Cardell (1998).

Monte Carlo Experiments

For the sampling experiments we define a Sngle equation modd with truncated error structure thet is
gmilar to the generd linear modd experiments used in Mittelhammer and Cardell. In this study we
focus on both smdl and medium size sample performance of the OLS, TRM, BTR, and GME
estimators. The performance measure is the mean square error (M SE) between the estimated and true

parameter values.

Thelinear modd isspecifiedas ¥, = 2+ 1x, - 1%, +3%, +U wherex, isadiscrete
random varidble suchthat x,,i =1,..., N areiid Bernalli(.5) and the pair of explanatory variables x;,

and x, aregenerated as iid outcomes from

a@0al .500
Nee. - -
E&55 &5 1gp
that is then truncated a +3 standard deviations. The disturbance terms are drawn from a N(O,F)

distribution, that istruncated at +3 standard deviations and F? = 1. Thus, the true support of the



disturbance digtribution in this Monte Carlo experiment is truncated norma, with lower and upper
truncation points at -3 and +3, respectively.

In the Monte Carlo smulations, the source didtribution, for implementing importance sampling
for caculating the BTR egimator, is of the form h(>,F)=B(>)h(F) where B(>) is the uniform prior
distribution discussed previoudy, and h(F ) is now a square-root inverted gamma distribution.® To
implement Monte Carol integration, with p($,F,c,d [x,y) %L($,F,c,d|x,y)B($,F,c.d), and given the

aforementioned choice of importance function isthe prior distribution, the importance weights becomes

w(x,s)=L(xs|y,x)/(sh(s)). In theresuits presented below, the posterior distribution of

parameters was obtained by re-sampling the source distribution 200 times for each Monte Carlo
smulation.”

Software

The gatitica andysis was conducted using the GAUSS computer package (Aptech Systems, Inc.
1995). Specificdly, the TRM was estimated using the congtrained maximum likeihood module (CML)
and the GME was estimated using the nonlinear optimization module (OPTMUM) .2 Alternatively the
BTR esimates rlied on Monte Carlo integration with importance sampling, as discussed above. Van

Dijk, Hop, and Louter provide a useful primer and flowchart for implementing Monte Carlo integration

6See Bernardo and Smith for specification of the square-root inverted gammadistribution. The distribution
was parameterized so its mean closely approximated the true value of F.

"Geweke’s numerical standard error was used to determine the adequacy of importance sampling
distributions.

8See Mittelhammer and Cardell for discussion of a numerically efficient solution technique for the data
constrained GME estimator of the GLM.
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with importance sampling. Mittelhammer, Judge, and Miller (2000) provide a comprehensive
discussion of dternative Bayesian and GME estimators and their Satistica properties, areview of
Monte Carlo experiments, and empirica examples including supporting GAUSS code on CD-ROM.
Results

Table 1 contains the mean vaues and M SE of the estimated parameters based on 1000 Monte Carlo
repetitions for sample sizes of 25, 50, and 200 sample observations per equation. Support points for
the GME estimator were defined to be (-5, 0,5) for the errors and each parameter coefficient. For the
TRM mode the errors were truncated at (-5,5). However, the TRM results were nearly identicd to
the OL S for the assumed error supports and are not reported in Table 1. The parameter support
points for the BTR mode were set at (-5,5) for each coefficient while the supports for the truncation
parameters were cO(c,,c,)=(-7,-3) and dO(d, ,d,)=(3,7) . The error supports for each estimator were
subjectively chosen to include the true error terms; and in the case of the TRM and GME, they were
also condtrained to be symmetric. Also, the parameter supports were chosen to include, but not be
centered about, the true parameter values. Non-centering of parameter supports on the true parameter
vaues generadly introduces bias into the GME estimates.

From the results in Table 1, we can infer severd implications as to the performance of the
estimators. Increasing the sample sizes from 25 to 50 to 200 observations, the outcomes of the OLS,
BTR, and GME edtimators al move closer to the true parameter valuesin terms of the mean of the
replicated estimator outcomes, and the disperson of the estimator distributions notably decreases. As
mentioned above, the results for the OLS and TRM estimators were nearly identical across the sample

gzes. This could be expected from the fact that the true error distribution was congderably more
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severely truncated (at a support of (-3,3)) than was the truncated distribution used in the TRM model.
For small samples of 25 observations the mean square error performance of the GME estimator is
superior relative to OLS, which is congstent with Monte Carlo results from other studies (Golan,
Judge, and Miller 1996, Mittelhammer and Carddl 1998). The BTR, with its underlying sampling
assumptions, consstently had the largest M SE, dthough the BTR was generdly superior to GME in
terms of estimator bias. Asthe sample size increases from 25 to 50 to 200 observations, the M SEs of
the OLS, BTR, and GME egtimators are converging to one another.®
[lustrative Empirical Application
In the US there are Sx mgor classes of wheat grown, including hard red winter (HRW), hard red spring
(HRS), soft red winter (SRW), soft white (SAMWV), hard white (HW), and durum (DUR). Hard white
wheat will be excluded from this analyd's due to its recent emergence, resulting in alack of sufficient
market information. The remaining five classes of whesat are used to produce awide variety of products:
HRW and HRS are utilized in the production of bread and rolls, SRW is used to produce flat breads,
cakes, crackers, and pastries; SV used to produce crackers, cookies, pastries, muffins, and flour for
cakes, and DURIs used in the production of semolinaflour and avariety of pasta products.

A restricted cost function gpproach is used to derive factor demand equations for the flour
milling indugtry. The cogt function is afunction of input prices of whesat by class for agiven output level

of flour. A trandog functiona form is assumed (see Berndt):

%The MSE superiority of the GME over the BTR estimator makes intuitive sense. The prior distributions of
the BTR are uniform, defining only restrictions of the support spaces. GME not only defines restrictions of the
supports, but also estimates a discrete distribution for each parameter. Incorporation of more restrictive constraints
or more informative prior distributions into the BTR estimator may likely improve its M SE performance.

12



InC=Ina,+q a,Inw+.53 g g Inwinw +a,InY+.5g, (InY)*+3 g,InwInY
i=1

i=1 i=1 j=1

wherew; aretheinput prices of whest, Y represents total output, and **;, (;; are parametersto be
esimated. The trandog share equations derived from Shepard’ s Lemma can be written as

S=a+gw+..+g,w,+g,Y fori=1, .. ,m

where 5 isthe cost share of input i. The own-price dadticity is given by
g;* Si2 - §
3 .
For the purposes of this study, a Sngle factor demand equation is examined which relates the share of

e =
soft red winter wheat (SRW) to its own-price, the price of HRW, HRS, SY\WV, and DUR. The SRW
equation is of particular interest because reported estimates of own-price dagticity have been
predominately postive usng standard OL S and feasible generdized least squares approaches (Terry
2000).2° Annua price and quantity data spanning the years 1981 to 1997 for each of the five whesat
classes were obtained from USDA-ERS

Applying truncated regresson techniques to this empiricad example is gppeding for severd
reasons. Firdt, the dependent variable of a share equation is bounded between 0 and 1, implying the
error terms are inherently smdl and bounded in magnitude. Hence, thereis potentia for increesing
econometric estimator efficiency by truncating the error distributions when using both the BTR and
GME egstimators. Second, the BTR and GME modes dlow parameter restrictions to be relatively
eadly imposed that in turn can be utilized to impose negdtivity of the own-price dadticity. Given the

findings of Terry (2000), and others, the own-price eadticity is restricted to the range (-2,0). Third, the

OFor additional information on this empirical application and the remaining factor demand equations see
Terry and Marsh (2000).
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sampleislimited to 17 observations. This provides an interesting comparison between the BTR
esimator and the GME egtimator, which has been shown in smal samplesto be superior in MSE to
OLS (Golan, Judge, and Miller; Mittedhammer and Cardell).

Egimatesusing OLS, BTR, and GME for three scenarios are presented in Table 2. In
Scenario 1, error supports were truncated to the interva (-5,5) for the GME modd using support
points{-5,0,5} . Supports for the truncation parameters of the BTR were set to cO(-7, -3) and
dO(3,7). The parameters (except for SRW) are condtrained to bein the (-5,5) interval for the BTR
estimator, and support points of {-5,0,5} were used for parameters in defining the GME estimator.™*
For each scenario the SRW parameter was constrained to (-.2, .14) in order to redtrict the mean level
own price eladticity to (-2,0). In Scenario 2, errors were truncated more severdly to the interva (-1, 1)
using the support points{-1,0,1} for the GME modd. Supportsfor the truncation parameters of the
BTR were cO(-1.25, -0.75) and d0(0.75,1.25). Parameter restrictions were the same as Scenario 1.
In Scenario 3, errors were truncated in a very redtrictive manner to the interva (-.1, .1) using support
point {-0.10,0,0.10} in representing the GME error support. Support points for parameters of the
GME egtimator, other than the SRW parameter, remained a {-5,0,5}. For the BTR estimator,

parameters are congtrained to be in the interva (-3,3) for the intercept and (-1,1) for the non-SRW

Tin practice, specific ranges of the supports may well be imposed for each parameter based on a priori
information. Alternatively, as donein the empirical example above, except for the own-price variable the upper and
lower support points were set wide enough so that in all likelihood the supports contain the true parameter val ues.
Further insight into setting the support boundaries can come from examining OL S estimates and unbiased GME
estimates for the GLM (see Mittelhammer and Cardell).
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dope parameters. Supports for the truncation parameters of the BTR were c0(-0.125, -0.075) and
d0(0.075,0.125).12

The own-price dadticities are reported in Table 2 for each model and scenario. Similar to
Terry (2000), we find the own-price eadticity from OLS is postive and elastic. For the GME
estimator own-price eadticities are negative (by congraint) and dightly less than unity for each scenario.
The own-price dadticities of the BTR estimator are negative (by congraint) and eastic for al three
scenarios. The BTR own-price becomes more indagtic as error supports are shrunk. Asthe error
and/or the parameter supports are shrunk from Scenarios 1 to 3, the sum of square errors and the
standard errors decrease for both the BTR and GME estimators.

Additiond insght can be drawn from the results of the truncated regresson moddls. Firg, the
BTR model requires that supports be shrunk tighter relative to the GME estimator to comparably
decrease the measures of standard error for the parameter estimates. Thisis because BTR only
assumes uniform priorsand GME empiricaly estimates a discrete weight distribution for each
parameter and error term. Second, for both the GME and BTR estimators, the own-price eagticity
estimates are near the mean of the subjectively defined range (-2,0). This suggests that data underlying

the share equations have little information as to the true value of the own-price eadiicity.

210 general the range of the errors for the share equation depends on the values of s-x$. However, given
aproperly specified share equation, one can define arange for the upper and lower support points that contains the
true error terms. In this application the estimated errors for OLS were first examined. The maximum and minimum
values of the OL S residuals were 0.00575 and -0.01292, respectively. Hence, for the BTR and GME estimators, the
lower support point was set at -5 and the upper support point was set at 5 for Scenario 1. Re-examining the GME
estimated residuals, lower and upper supports were defined for Scenarios 2 and 3.

15



Conclusions

Circumstances often arise in empirical work under which restricting parameter spaces and/or truncating
regresson models can be beneficid to the efficiency of parameter estimates. We andyzed, identified,
and illustrated some theoreticad and practica issues relating to the use of both traditiona and new
truncation methods in empirical work.

Performance of ordinary least squares (OLS), Bayesian doubly truncated (BTR), and
generdized maximum entropy (GME) estimators were examined based on a particular set of Monte
Carlo experiments. In smdl sample stuations GME is mean square error superior to OLS and BTR for
the defined experiments. Increasing the sample size, demonstrated that the mean squared error of the
estimators were converging to one another. Further, the estimators were used to estimate a derived
demand function for soft red winter wheet using a trandog share equation. Estimated own-price
eladticities were different for the GME and BTR models relative to OLS, and there was an indication
that the data contained relativey little information with which to identify the own price dadticity.

The reaultsin this sudy suggest the need for a rigorous comparison of truncated estimators. It
furnishes some insight for empirical economists desiring to gpply truncated regresson moddsin the
generd linear modd context. Further research is needed that deals with understanding the role of
truncation assumptions for various loss functions and that ded with developing guiddines for setting

informative congtraints on parameter spaces and error distributions.
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Table 1. Mean vaue of parameter estimates from 1000 Monte Carlo smulaions using ordinary least

squares (OLS), Bayesian doubly truncated (BTR), and generalized maximum entropy (GME) regresson
models. Mean square error (MSE) of parameter estimates are in parentheses?

Ob OoLS BTR GME oLs BTR GME BTR BTR
S Truncation Truncation
Supports Parameter °
25 $,=2 2.06085 1.74961 1.34094 $,=-1 -0.98557 -0.98747 -0.86365 c =-7 -5.01330
(1.44494) (2.11388) (0.66598) (0.05976) (0.12383) (0.06906) cy=-3 (0.89135)
50 2.00171 1.85854 1.53769 -1.00489 -1.01461 -0.94848 5.01756
(0.56142) (1.83957) (0.40421) (0.02883) (0.10420) (0.02938) (1.00288)
200 2.0079 2.00290 1.85001 -1.00166 -1.00344 -0.99010 -5.05562
(.14847 ) (1.56862) (0.13080) (0.00684) (0.07152 ) (0.00680) (1.10781)
25 $,=1 1.02298 1.02027 0.97083 $,=-3 2.97908 3.03893 3.06813 d = 5.00345
(0.17931) (0.36894) (0.12486) (0.06903) (0.10832) (0.02379) dy= (0.87842)
50 0.99753 1.01085 0.98288 3.00192 3.03050 3.06722 5.08199
(0.08452) (0.31011) (0.07010) (0.02775) (0.09531) (0.01731) (0.97853)
200 0.99933 0.99216 0.99916 2.99911 3.00193 3.02418 5.07121
(0.01955) (0.23833) (0.01859) (0.00706 ) (0.07715) (0.00603) (1.07285)

& Estimates for TRM were nearly identical to OLS. Error restrictions (-5,5) for BTR and {-5,0,5} for GME. Parameter
restrictions (-5,5) for BTR and {-5,0,5} for GME.

® Supports for truncation parameters are cO(c,,c,) and dO(d, ,d,).
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Table2. Parameter estimates of Soft Red Winter Whesat share equation.
Standard errors are reported in parenthesis.

Estimator
Scenario 12 Scenario 2° Scenario 3°
Variable® OLS BTR® GME BTR® GME BTR® GME
I nter cept 1.572 4.846 0.008 -0.707 0.048 0.431 1.089
(0.20) (2.86)  (0.57) (290)  (0.50) (0.332)  (0.348)
Prrw -0.469 3.029 -0.002 0.895 0.003 -0.006 0.107
(0.18) (2.87)  (0.51) (2.77)  (0.45) (0.058)  (0.311)
Purs -0.065 3.873 -0.002 -0.689  -0.016 0.031 -0.191
(0.12) (292)  (0.33) (2.84)  (0.29) (0.057)  (0.203)
Psrw 0.574 -0.131 -0.030 -0.061  -0.030 -0.060 -0.022
(0.10) (0.10) (0.28) (0.10) (0.25) (0.098) (0.169)
Psww 0.025 -4.152  -0.0002 0.883 0.012 -0.009 0.033
(0.10) (2.86) (0.29) (2.78) (0.26) (0.058) (0.179)
Pour -0.015 -1.924 -0.009 -0.220 -0.073 -0.032 -0.037
(0.03) (2.82) (0.09) (2.52) (0.08) (0.058)  (0.056)
Qriour -0.255 -0.861 0.035 0.081 0.034 -0.041 -0.153
(0.04) (0.90) (0.104) (0.59) (0.09) (0.057)  (0.064)
c -6.181 -0.997 -0.086
(1.12) (0.14) (0.014)
d 5.630 1.024 0.091
(1.16) (0.14) (0.015)
Own-Price 2.365 -1.544 -0.986 -1.159 -0.985 -1.153 -0.944
Elasticity
SSEf 0.0004 0.590 0.006 0.104 0.004 .007 .002

& Error restrictions (-5,5) and parameter restrictions (-5,5) for BTR. Error restrictions
{-5,0,5} and parameter restrictions {-5,0,5} for GME. Truncation parameter supports for
BTR arec0(-7, -3) and dO(3,7).

b Error restrictions (-1,1) and parameter restrictions (-5,5) for BTR. Error restrictions
{-1,0,1} and parameter restrictions {-5,0,5} for GME. Truncation parameter supports for
BTR arec0(-1.25, -.75) and d0(.75,1.25).

C Error restrictions {-.1,0,.1} and parameter restrictions {-5,0,5} for GME. Error, slope
parameter, and intercept restrictions are (-.1,.1), (-1,1), and (-3,3) respectively for BTR.
Truncation parameter supports are cO(-.125, -.075) and d0(.075, .125).

4 Six major classes of wheat include hard red winter (HRW), hard red spring (HRS), soft red
winter (SRW), soft white (SWW), hard white (HW), and durum (DUR)

¢ The posterior distribution of parameters was estimated by re-sampling the source
distribution 1000 times.

f Sum square error between observed and predicted shares.
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