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Truncated Regression in Empirical Estimation

Abstract:  In this paper we illustrate the use of alternative truncated regression estimators for the

general linear model.  These include variations of maximum likelihood, Bayesian, and maximum entropy

estimators in which the error distributions are doubly truncated.  To evaluate the performance of the

estimators (e.g., efficiency) for a range of sample sizes, Monte Carlo sampling experiments are

performed. We then apply each estimator to a factor demand equation for wheat-by-class.  
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1A truncated sample is one which the values of the explanatory variables are observed only if the value of

the dependent variable is observed (Judge et al.).  

2In practice, problems arise for which prior beliefs are held about the signs, magnitudes, distributions, or
ranges of plausible values for each of the unknowns.  For instance, uncertainty about the value of an unknown
parameter can be expressed in terms of a probability distribution using Bayesian analysis (Judge et al; Mittelhammer,
Judge, and Miller ).    
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Introduction

In empirical applications, economists are increasingly estimating regression models that are truncated in

nature.1  Most commonly, truncated regression has been associated with singly truncated distributions

(for example, see Maddala).  However, doubly truncated distributions also arise in practice and are

receiving attention in the economic literature (Bhattacharya, Chaturvedi, and Singh; Cohen; Maddala;

Nakamura and Nakamura; Schneider).  Accounting for truncated random variables in regression

analysis is important because ordinary least squares estimators can be inefficient, biased, or inconsistent

(Maddala) otherwise. Moreover, in many empirical modeling situations, it is imminently reasonable to

assume that supports of the dependent variables and/or error terms are not unbounded in space,mR

but rather are contained in a finitely-bounded subset of real space. For example, modeling demand-

share equations, as is done later in the empirical application of this paper, is a clear illustration of such a

situation.

Alternative estimators have been introduced into the economic/econometric literature that allow

a priori information, in various forms, to be introduced in estimation.2  These include variations of

constrained maximum likelihood, Bayesian, and maximum entropy estimators.  In the Bayesian

framework, parameters are treated as random variables in the sense that parameters have associated

probability distributions that describes the state of knowledge about the parameters [Mittelhammer,
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Judge, and Miller (2000, chapters 22-24)].  In contrast, generalized maximum entropy estimators,

introduced by Golan, Judge, and Miller (1996) with asymptotic property extensions by Mittelhammer

and Cardell (1998), not only assume compactness of the parameter space but also finite support of the

error distribution.  For empirical problems with inherent uncertainties, restrictions, or truncations, the

appeal of estimators such as constrained maximum likelihood, Bayesian, and maximum entropy

estimators is that they offer systematic - as opposed to ad hoc - frameworks for incorporating a priori

information into an econometric model. 

In this paper we focus on alternative truncated regression estimators for the general linear

model (GLM).  Our objective is to illustrate the implementation and  finite sampling properties of a

range of maximum likelihood, Bayesian, and maximum entropy estimators for the case of doubly

truncated error distributions.  To evaluate the performance of the estimators for a range of sample sizes,

Monte Carlo sampling experiments are performed.  We focus on small- to- medium sized sample

performance of the various estimators, and their performance relative to ordinary least squares (OLS). 

The performance metric used is mean square error between the empirical and true parameter values.  In

performing comparisons, we examine explicitly the potential benefits of truncating error distributions and

imposing related parameter restrictions (i.e., gains in econometric efficiency) and the econometric costs

of imposing such constraints (i.e., biasedness). 

To complete the paper we apply each estimator to a factor demand equation for wheat-by-

class expressed in share form.  We illustrate issues that arise in empirical estimation contexts, including

setting parameter restrictions and the flexibility of doing so across models.  Finally,  we note practical

problems in modeling truncating error distributions, and make recommendations for additional research.
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The Econometric Estimators

Consider the (GLM) with N observations   In this equation yi is the ith, 1,..., .i i iy x u i Nβ⋅= + =

observation on the dependent variable, is a (1×K) row vector of explanatory values for eachix ⋅

observation i,  is a (K×1) column vector of parameters, and ui is the model residual associated withβ

observation i.  

Three estimators for the GLM that account explicitly for the truncated nature of the dependent

variable are considered and compared to ordinary least squares (OLS).  The first estimator considered

is the standard regression model where the error distribution is doubly truncated, referred to as the

truncated regression model (TRM).  The TRM is estimated in a standard manner using constrained

maximum likelihood based on a truncated likelihood function.  The second estimator considered is a

variation of the standard Bayesian estimator.  It assumes not only prior information on the parameters in

the usual Bayesian way, but also assumes that the error distribution is doubly truncated via the

likelihood function of the standard regression model. We emphasize that the parameter space includes

two truncation parameters indicating the points at which the error distribution is truncated from above

and below.  Since it would be expected that there would be uncertainty regarding the values of the

truncation parameters in any given empirical application, a prior probability distribution is introduced on

these parameters, as well as the other unknown parameters in the model. The Bayesian doubly

truncated estimator, or BTR, utilizes Monte Carlo simulation in the estimation of the parameters of the

model, which is justified on the basis of laws of large numbers and central limit theorems.  

The third estimator is the data-constrained maximum entropy estimator for the general linear



3The doubly truncated regression model in (2) is based on truncating the residuals of the GLM.  See Cohen,
Maddala, or Schneider for an alternative formulation that doubly truncates the dependent variable.
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model (Golan, Judge, and Miller 1996; Mittelhammer and Cardell 1998), or GME.  Here finite support

of the parameter space is assumed in addition to a truncated symmetric error distribution.  The

parameters for the GME model are estimated via nonlinear optimization by maximizing an entropy

function subject to data and other constraints.  To motivate the functional specification of the estimators

more fully, we first review the principal characteristics of  the doubly truncated regression model.

Maximum Likelihood in the Truncated Case

Under standard assumptions of normality, the likelihood function for the GLM is given by

(1) 2 / 2 2( , | , ) (2 ) exp( ( ) ( ) / 2 )nL y x y x y xβ σ πσ β β σ− ′= − − −

Maximizing (1) yields an estimator equivalent to the standard OLS estimator,   Under generalˆ .OLSβ

regularity conditions the maximum likelihood estimators are consistent and asymptotically normally

distributed (Mittelhammer, Judge, and Miller(2000), chapter 3).

Doubly truncating the residuals, as , yields a truncated regression model, 1,...,ic u d i N< < =

(TRM).  The TRM has the log-likelihood function3 

(2)
2

2 / 2
1 ( , )

exp( ( ) ( ) / 2 )
( , | , ) (2 ) ( )n n

i c d i in

y x y x
L y x I y x

d c
F F

β β σ
β σ πσ β

σ σ

−
= ⋅

′− − −
= Π −

−    
        

where F is the standard normal cdf, c is the lower bound and d is the upper bound for error truncation,

and  is the standard indicator function taking the value 1 when  and 0 otherwise. ( , )( )c d iI u ( , )iu c d∈
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Maximizing (2) yields a truncated regression estimator, or ˆ .TRMβ

Bayesian Doubly Truncated  Regression

Similar to maximum likelihood methods, the Bayesian approach uses the likelihood function to link the

information contained in a sample of data and the value of the unknown parameters of an econometric

model.   In addition, the Bayesian method factors additional information into problem solutions via the

specification of a prior pdf, B(C), on the parameter vector of the statistical model.  In general the

marginal posterior distribution for  is defined asβ

k

0

R 0

L(b, | , ) (b, )d
p(b| , )

L(b, | , ) (b, )d db

∞

∞

σ π σ σ
=

σ π σ σ 
  

∫
∫ ∫

y x
y x

y x

for a likelihood function  and prior pdf   Furthermore, if we assume the prior on

the  values is independent of the prior on F values, so that , then the marginal

L( , , )β σ y x ( , ).π β σ

β ( , ) ( ) ( )π β σ ≡ π β π σ

posterior on  can be simplified toβ

kR

L ( | , ) ( )
p( | , )

[L ( | , ) ( )]db
∗

∗

β π β
β =

β π β∫
y x

y x
y x

where

0
L ( | , ) L( , | , ) ( )d

∞

∗ β = β σ π σ σ∫y x y x

is effectively the marginal likelihood function for  after F has been integrated out of the likelihoodβ

function.
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To specify the posterior pdf for the GLM with the doubly truncated error distribution in more

functionally explicit form, we make several basic assumptions.  First of all, it is assumed that the

likelihood function  is defined to be the truncated likelihood function in (2), expanded toL( , , )β σ y x

include c and d as unknown parameters, i.e., the likelihood function is algebraically identical to (2) with

expanded parameter arguments as . We also let the prior pdf on F be the standardL( , ,c,d , )β σ y x

parameter transformation-invariant ignorance prior B(F)%F -1, which implies

. Finally, we assume the prior pdf on is uniform, as( ) ( ) 1,c,d, , c , d −π β σ = π β σ [ ],c,d ′′ξ ≡ β

  Here, again,  is
i i ii h h

1 k+2
A i=1

k 2
i 1( ,c,d) ( ) [ ] I ( ) where A= [ , ].−+
=

  ξ ξ 
 

π β = π ξ = ξ − ξ ξ ×∏ ll ( )AI ξ

the standard indicator function taking the value 1 when  and 0Aξ ∈

otherwise.  The uniform prior distribution is a particularly useful choice of prior because it effectively

allows prior inequality restrictions to be imposed on   Based on these assumptions, the joint.β

posterior pdf is proportional to

( )

2

i i

n 1
( b)'( b)/(2 )

-1n / 2 n k 2

i i h Ac,dn
i 1 i 1

p

e
(2 )

( , | , ) I (y ) I ( )
d c

(F F

− −  − − − σ 
+

•
= =

β

  σ
     π     ξ σ ∝ − × ξ − ξ ξ               −     σ σ     

∏ ∏

y x y x

y x x l

which is a product of 1/F, the likelihood function in (2), and the uniform prior .  Note that( )π ξ

integrating out F  from the marginal posterior pdf on  is not readily analytically tractable.  ξ



4An alternative to importance sampling is sample/importance resampling where, in effect, parameters are
resampled with a weighted bootstrap. See Smith and Gefland or Rubin for further details.

5The basic idea in selecting h(22) is that the importance function is a good approximation to the posterior

kernel (Kloek and Van Dijk; Geweke). 
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To account for intractable analytical integration, Monte Carlo integration can be used to

estimate moments of the posterior distribution. Let and suppose  is a[ ],c,d, ′′θ = β σ ( )p θ

posterior pdf from which iid random outcomes , i = 1, . . . , n*, can be generated.  Then we can(i)
∗θ

rely on laws of large numbers to estimate the expectation of  as simply a sample mean of Monte( )g Θ

Carlo repetitions,
*n as

*
i

i 1

1
Ê[g( )] g ( )     E[g( )]

n∗
=

Θ = θ → Θ∑

More sophisticated Monte Carlo methods are required when it is not possible to directly

sample from , as is the case in the empirical work contained in this paper.  One approach to( )p θ

Monte Carlo integration is the use of importance sampling to estimate moments based on the kernel of

the posterior distribution (Mittelhammer, Judge, and Miller; Van Dijk, Hop and Louter).4  Let  be( )h θ

a density function from which samples are easily obtained.5  Historically  is called the importance( )h θ

function.  Let  denote the importance weight, which is defined as  on the( )w θ ( ) ( ) / ( )w p hθ θ θ=

region where   Then is approximated by the sampling importance estimator ( ) 0.h θ > [ ( )]E g Θ

* *
asn n

* * *
i i i* *

i 1 i 1

  E[g( )]
1 1

Ê[g( )] g( )w( ) w( )
n n= =

→ Θ
 

Θ = θ θ θ 
  

∑ ∑
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Generalized Maximum Entropy

The generalized maximum entropy (GME) estimator of the GLM model is formulated by

reparameterizing the parameters and error terms (see Golan et al. for additional details).  The

reparameterization consists of convex combinations of user defined points that identify the supports for

individual parameters and residual terms (S i for i= $$, :) as well as the use of unknown convexity

weights (p and w) applied to the support points.  In particular, the parameters are specified as

$$=vec($$1,...,$$G)=S $p, and the residuals are defined accordingly as ::=vec(::1,...,::G)=S :w.  It is

clear that the GME framework inherently incorporates the assumption that the distribution of the

residuals is doubly truncated – the support for the residuals is specified so that the feasible outcomes of

the residuals are truncated appropriately.

The principle underlying the GME estimator for the coefficients, $$=S $p, is to choose an

estimate that is based on the information contained in the data, the constraints on the admissible values

of the coefficients (such as nonnegativity and normalization of the convexity weights), and the data

sampling structure of the model (including the choice of the supports for the coefficients).  In effect, the

information set used in the estimation is shrunk to the boundary of the observed data and the parameter

constraint information through use of a maximum entropy objective.  In the absence of any data or other

constraints, the coefficient and residual estimates will shrink to the centers of the prior supports defined

by S i (for i= $$,::).  

The parameter estimates for the general linear model, , are estimated by solving theˆ GMEβ

following constrained generalized maximum entropy problem:  
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(3)
,

max{ ln ln }
p w

p p w w′ ′− −

subject to

(4) ( )y X S S wp µβ= +

(5) ( 1 ) 1 , ( 1 ) 1K M K NG M NGp I w I′ ′⊗ = ⊗ =

Regularity assumptions and asymptotic properties of the data-constrained GME estimator for the GLM

are reported in Mittelhammer and Cardell (1998).   

Monte Carlo Experiments

For the sampling experiments we define a single equation model with truncated error structure that is

similar to the general linear model experiments used in Mittelhammer and Cardell.  In this study we

focus on both small and medium size sample performance of the OLS, TRM, BTR, and GME

estimators.  The performance measure is the mean square error (MSE) between the estimated and true

parameter values.   

The linear model is specified as  where  is a discrete1 2 32 1 1 3i i i i iy x x x u= + − + + 1ix

random variable such that  are iid Bernolli(.5) and the pair of explanatory variables , 1,...,ilx i N= 2ix

and  are generated as  iid outcomes from 3ix

2 1 .5
,

5 .5 1
N

    
    

    

that is then truncated at ±3 standard deviations.  The disturbance terms are drawn from a N(0,F)

distribution, that is truncated at ±3 standard deviations and F2 = 1. Thus, the true support of the



6See Bernardo and Smith for specification of the square-root inverted gamma distribution.  The distribution

was parameterized so its mean closely approximated the true value of F. 

7Geweke’s numerical standard error was used to determine the adequacy of importance sampling
distributions.

8See Mittelhammer and Cardell for discussion of a numerically efficient solution technique for the data
constrained GME estimator of the GLM.
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disturbance distribution in this Monte Carlo experiment is truncated normal, with lower and upper

truncation points at -3 and +3, respectively.

In the Monte Carlo simulations, the source distribution, for implementing importance sampling

for calculating the BTR estimator,  is of the form h(>>,F)=B(>>)h(F) where B(>>) is the uniform prior

distribution discussed previously, and h(F ) is now a square-root inverted gamma distribution.6  To

implement Monte Carol integration, with p($$,F,c,d |x,y) %L($$,F,c,d|x,y)B($$,F,c,d), and given the

aforementioned choice of importance function is the prior distribution, the importance weights becomes

.  In  the results presented below, the posterior distribution of( ) ( ) ( )w , L , | , /( h )σ = σ σ σy xξ ξξ ξ

parameters was obtained by re-sampling the source distribution 200 times for each Monte Carlo

simulation.7 

Software

The statistical analysis was conducted using the GAUSS computer package (Aptech Systems, Inc.

1995).  Specifically, the TRM was estimated using the constrained maximum likelihood module (CML)

and the GME was estimated using the nonlinear optimization module (OPTMUM).8  Alternatively the

BTR estimates relied on Monte Carlo integration with importance sampling, as discussed above. Van

Dijk, Hop, and Louter provide a useful primer and flowchart for implementing Monte Carlo integration
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with importance sampling.  Mittelhammer, Judge, and Miller (2000) provide a comprehensive

discussion of alternative Bayesian and GME estimators and their statistical properties, a review of

Monte Carlo experiments, and empirical examples including supporting GAUSS code on CD-ROM.

Results

Table 1 contains the mean values and MSE of the estimated parameters based on 1000 Monte Carlo

repetitions for sample sizes of 25, 50, and 200 sample observations per equation.  Support points for

the GME estimator were defined to be (-5, 0,5) for the errors and each parameter coefficient.  For the

TRM  model the errors were truncated at (-5,5).  However, the TRM results were nearly identical to

the OLS for the assumed error supports and are not reported in Table 1.  The parameter support

points for the BTR model were set at (-5,5) for each coefficient while the supports for the truncation

parameters were c0(cL,cU)=(-7,-3) and d0(dL,dU)=(3,7) .  The error supports for each estimator were

subjectively chosen to include the true error terms, and in the case of the TRM and GME, they were

also constrained to be symmetric.  Also, the parameter supports were chosen  to include, but not be

centered about, the true parameter values.  Non-centering of parameter supports on the true parameter

values generally introduces bias into the GME estimates.

From the results in Table 1, we can infer several implications as to the performance of the

estimators.  Increasing the sample sizes from 25 to 50 to 200 observations, the outcomes of the OLS,

BTR, and GME estimators all move closer to the true parameter values in terms of the mean of the

replicated estimator outcomes, and the dispersion of the estimator distributions notably decreases.  As

mentioned above, the results for the OLS and TRM estimators were nearly identical across the sample

sizes.  This could be expected from the fact that the true error distribution was considerably more



9The MSE superiority of the GME over the BTR estimator makes intuitive sense.  The prior distributions of
the BTR are uniform, defining only restrictions of the support spaces.  GME not only defines restrictions of the
supports, but also estimates a discrete distribution for each parameter.  Incorporation of more restrictive constraints
or more informative prior distributions into the BTR estimator may likely improve its MSE performance.
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severely truncated (at a support of (-3,3)) than was the truncated distribution used in the TRM model. 

For small samples of 25 observations the mean square error performance of the GME estimator is

superior relative to OLS, which is consistent with Monte Carlo results from other studies (Golan,

Judge, and Miller 1996, Mittelhammer and Cardell 1998).  The BTR, with its underlying sampling

assumptions, consistently had the largest MSE, although the BTR was generally superior to GME in

terms of estimator bias.  As the sample size increases from 25 to 50 to 200 observations, the MSEs of

the OLS, BTR, and GME estimators are converging to one another.9  

Illustrative Empirical Application

In the US there are six major classes of wheat grown, including hard red winter (HRW), hard red spring

(HRS), soft red winter (SRW), soft white (SWW), hard white (HW), and durum (DUR).  Hard white

wheat will be excluded from this analysis due to its recent emergence, resulting in a lack of sufficient

market information. The remaining five classes of wheat are used to produce a wide variety of products:

HRW and HRS are utilized in the production of bread and rolls, SRW is used to produce flat breads,

cakes, crackers, and pastries; SWW used to produce crackers, cookies, pastries, muffins, and flour for

cakes; and DUR is used in the production of semolina flour and a variety of pasta products.

A restricted cost function approach is used to derive factor demand equations for the flour

milling industry.  The cost function is a function of input prices of wheat by class for a given output level

of flour.  A translog functional form is assumed (see Berndt):



10For additional information on this empirical application and the remaining factor demand equations see
Terry and Marsh (2000).
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( )2

0
1 1 1 1

ln ln ln .5 ln ln ln .5 ln ln ln
m m m m

i i ij i j Y YY iY i
i i j i

C w w w Y Y w Y
= = = =

= α + α + γ + α + γ + γ∑ ∑∑ ∑
where wi are the input prices of wheat, Y represents total output, and "i, (ij are parameters to be

estimated.  The translog share equations derived from Shepard’s Lemma can be written as

1 1 ...    for i=1, ... ,mi i i mi m iYs w w Y= α + γ + + γ + γ

where si is the cost share of input i.  The own-price elasticity is given by

.  

2

 ij i i
ii

i

s s

s

γ + −
ε =

For the purposes of this study, a single factor demand equation is examined which relates the share of

soft red winter wheat (SRW) to its own-price, the price of HRW, HRS, SWW, and DUR .  The SRW

equation is of particular interest because reported estimates of own-price elasticity have been

predominately positive using standard OLS and feasible generalized least squares approaches (Terry

2000).10  Annual price and quantity data spanning the years 1981 to 1997 for each of the five wheat

classes were obtained from USDA-ERS  

Applying truncated regression techniques to this empirical example is appealing for several

reasons.  First, the dependent variable of a share equation is bounded between 0 and 1, implying the

error terms are inherently small and bounded in magnitude.  Hence, there is potential for increasing

econometric estimator efficiency by truncating the error distributions when using both the BTR and

GME estimators.  Second, the BTR and GME models allow parameter restrictions to be relatively

easily imposed that in turn can be utilized to impose negativity of the own-price elasticity.  Given the

findings of Terry (2000), and others, the own-price elasticity is restricted to the range (-2,0).  Third, the



11 In practice, specific ranges of the supports may well be imposed for each parameter based on a priori
information.  Alternatively, as done in the empirical example above, except for the own-price variable the upper and
lower support points were set wide enough so that in all likelihood the supports contain the true parameter values. 
Further insight into setting the support boundaries can come from examining OLS estimates and unbiased GME
estimates for the GLM (see Mittelhammer and Cardell).
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sample is limited to 17 observations.  This provides an interesting comparison between the BTR

estimator and the GME estimator, which has been shown in small samples to be superior in MSE to

OLS (Golan, Judge, and Miller; Mittelhammer and Cardell).

Estimates using OLS, BTR, and GME for three scenarios are presented in Table 2.  In

Scenario 1, error supports were truncated to the interval (-5,5) for the GME  model using support

points {-5,0,5} .  Supports for the truncation parameters of the BTR were set to c0(-7, -3) and

d0(3,7).  The parameters (except for SRW) are constrained to be in the (-5,5) interval for the BTR

estimator, and support points of {-5,0,5} were used for parameters in defining the GME estimator.11 

For each scenario the SRW parameter was constrained to (-.2, .14) in order to restrict the mean level

own price elasticity to (-2,0).  In Scenario 2, errors were truncated more severely to the interval (-1, 1)

using the support points {-1,0,1} for the GME model.  Supports for the truncation parameters of the

BTR were c0(-1.25, -0.75) and d0(0.75,1.25).  Parameter restrictions were the same as Scenario 1. 

In Scenario 3, errors were truncated in a very restrictive manner to the interval (-.1, .1) using support

point {-0.10,0,0.10} in representing the GME error support.  Support points for parameters of the

GME estimator, other than the SRW parameter, remained at {-5,0,5}.  For the BTR estimator,

parameters are constrained to be in the interval (-3,3) for the intercept and (-1,1) for the non-SRW



12 In general the range of the errors for the share equation depends on the values of si-x$.  However, given
a properly specified share equation, one can define a range for the upper and lower support points that contains the
true error terms.  In this application the estimated errors for OLS were first examined.  The maximum and minimum
values of the OLS residuals were 0.00575 and -0.01292, respectively.  Hence, for the BTR and GME estimators, the
lower support point was set at -5 and the upper support point was set at 5 for Scenario 1.  Re-examining the GME
estimated residuals, lower and upper supports were defined for Scenarios 2 and 3. 
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slope parameters.  Supports for the truncation parameters of the BTR were c0(-0.125, -0.075) and

d0(0.075,0.125).12

The own-price elasticities are reported in Table 2 for each model and scenario.  Similar to

Terry (2000), we find the own-price elasticity from OLS is positive and elastic.  For the GME

estimator own-price elasticities are negative (by constraint) and slightly less than unity for each scenario. 

The own-price elasticities of the BTR estimator are negative (by constraint) and elastic for all three

scenarios.  The BTR own-price becomes more inelastic as error supports are shrunk.  As the error

and/or the parameter supports are shrunk from Scenarios 1 to 3, the sum of square errors and the

standard errors decrease for both the BTR and GME estimators. 

Additional insight can be drawn from the results of the truncated regression models.  First, the

BTR model requires that supports be shrunk tighter relative to the GME estimator to comparably

decrease the measures of standard error for the parameter estimates.  This is because BTR only

assumes uniform priors and  GME empirically estimates a discrete weight distribution for each

parameter and error term.  Second, for both the GME and BTR estimators, the own-price elasticity

estimates are near the mean of the subjectively defined range (-2,0).  This suggests that data underlying

the share equations have little information as to the true value of the own-price elasticity. 
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Conclusions

Circumstances often arise in empirical work under which restricting parameter spaces and/or truncating

regression models can be beneficial to the efficiency of parameter estimates.  We analyzed, identified,

and illustrated some theoretical and practical issues relating to the use of both traditional and new

truncation methods in empirical work. 

Performance of ordinary least squares (OLS), Bayesian doubly truncated (BTR), and

generalized maximum entropy (GME) estimators were examined based on a particular set of Monte

Carlo experiments.  In small sample situations GME is mean square error superior to OLS and BTR for

the defined experiments.  Increasing the sample size, demonstrated that the mean squared error of the

estimators were converging to one another.  Further, the estimators were used to estimate a derived

demand function for soft red winter wheat using a  translog share equation.  Estimated own-price

elasticities were different for the GME and BTR models relative to OLS, and there was an indication

that the data contained relatively little information with which to identify the own price elasticity.    

The results in this study suggest the need for a  rigorous comparison of truncated estimators.  It

furnishes some insight for empirical economists desiring to apply truncated regression models in the

general linear model context.  Further research is needed that deals with understanding the role of

truncation assumptions for various loss functions and that deal with developing guidelines for setting

informative constraints on parameter spaces and error distributions.
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Table 1. Mean value of parameter estimates from 1000 Monte Carlo simulations using ordinary least
squares (OLS), Bayesian doubly truncated (BTR), and generalized maximum entropy (GME) regression
models.  Mean square error (MSE) of parameter estimates are in parentheses.a

Ob
s

OLS BTR GME OLS BTR GME BTR 
Truncation
Supports

BTR
Truncation
Parameter b

25 $1 = 2 2.06085
(1.44494)

1.74961
(2.11388)

1.34094
(0.66598)

$3 = -1 -0.98557
(0.05976)

-0.98747
(0.12383)

-0.86365
(0.06906)

cL = -7
cU = -3

-5.01330
(0.89135)

50 2.00171 
(0.56142)

1.85854 
(1.83957)

1.53769
(0.40421)

-1.00489
(0.02883)

-1.01461
(0.10420)

-0.94848
(0.02938)        

5.01756 
(1.00288)

200 2.0079
(.14847   )

2.00290
(1.56862 )

1.85001
(0.13080)

-1.00166 
(0.00684 )

-1.00344  
(0.07152   )

-0.99010
(0.00680 )

       -5.05562 
(1.10781)

25 $2 =1 1.02298
(0.17931)

1.02027
(0.36894)

0.97083
(0.12486)

$4 = -3 2.97908
(0.06903)

3.03893
(0.10832)

3.06813
(0.02379)

dL = 3
dU = 7

5.00345
(0.87842)

50 0.99753
(0.08452)

1.01085
(0.31011)

0.98288
(0.07010)

3.00192
(0.02775)

3.03050
(0.09531)

3.06722
(0.01731)

5.08199
(0.97853)

200 0.99933
(0.01955 )

0.99216  
(0.23833) 

0.99916
(0.01859)

2.99911 
(0.00706   )

3.00193  
(0.07715 )

3.02418
(0.00603 )

          5.07121
(1.07285)

a Estimates for TRM were nearly identical to OLS.  Error restrictions (-5,5) for BTR and {-5,0,5} for GME.  Parameter
restrictions (-5,5) for BTR and {-5,0,5} for GME. 
b Supports for truncation parameters are c0(cL,cU) and d0(dL,dU).  
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Table 2.  Parameter estimates of Soft Red Winter Wheat share equation. 
Standard errors are reported in parenthesis. 

 Estimator
Scenario 1a Scenario 2b Scenario 3c

Variable d OLS BTRe GME BTRe GME BTRe GME

Intercept 1.572 4.846 0.008 -0.707 0.048 0.431 1.089
(0.20) (2.86) (0.57) (2.90) (0.50) (0.332) (0.348)

PHRW -0.469 3.029 -0.002 0.895 0.003 -0.006 0.107
(0.18) (2.87) (0.51) (2.77) (0.45) (0.058) (0.311)

PHRS -0.065 3.873 -0.002 -0.689 -0.016 0.031 -0.191
(0.12) (2.92) (0.33) (2.84) (0.29) (0.057) (0.203)

PSRW 0.574 -0.131 -0.030 -0.061 -0.030 -0.060 -0.022
(0.10) (0.10) (0.28) (0.10) (0.25) (0.098) (0.169)

PSWW 0.025 -4.152 -0.0002 0.883 0.012 -0.009 0.033
(0.10) (2.86) (0.29) (2.78) (0.26) (0.058) (0.179)

PDUR -0.015 -1.924 -0.009 -0.220 -0.073 -0.032 -0.037

(0.03) (2.82) (0.09) (2.52) (0.08) (0.058) (0.056)

QFlour -0.255 -0.861 0.035 0.081 0.034 -0.041 -0.153
(0.04) (0.90) (0.104) (0.59) (0.09) (0.057) (0.064)

c -6.181 -0.997 -0.086
(1.12) (0.14) (0.014)

d 5.630 1.024 0.091
(1.16) (0.14) (0.015)

Own-Price
Elasticity

2.365 -1.544 -0.986 -1.159 -0.985 -1.153 -0.944

SSE f 0.0004 0.590 0.006 0.104 0.004 .007 .002
a Error restrictions (-5,5) and parameter restrictions (-5,5) for BTR.  Error restrictions 
{-5,0,5} and parameter restrictions {-5,0,5} for GME. Truncation parameter supports for
BTR are c0(-7, -3) and d0(3,7).
b Error restrictions (-1,1) and parameter restrictions (-5,5) for BTR.  Error restrictions 
{-1,0,1} and parameter restrictions {-5,0,5} for GME. Truncation parameter supports for
BTR are c0(-1.25, -.75) and d0(.75,1.25).
c Error restrictions {-.1,0,.1} and parameter restrictions {-5,0,5} for GME.  Error, slope
parameter, and intercept restrictions are (-.1,.1), (-1,1), and (-3,3) respectively for BTR.
Truncation parameter supports are c0(-.125, -.075) and d0(.075, .125).
d Six major classes of wheat include hard red winter (HRW), hard red spring (HRS), soft red
winter (SRW), soft white (SWW), hard white (HW), and durum (DUR)
e The posterior distribution of parameters was estimated by re-sampling the source
distribution 1000 times.  
f Sum square error between observed and predicted shares.
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